
3 - 1

Section 3 - Systems of Linear Algebraic Equations

In this section, we will explore the solution of systems of equations of the type Ax = B, where A
is the matrix of coefficients of the system of equations, is a vector of unknown variables and B is
a vector of known quantities, the “right-hand-sides” of the system of equations.

With equations of this type, three possibilities exist: the system can have a unique solution (A≠0),
it can have no solution (A=0, B≠0), or it can have infinitely many (non-unique) solutions (A=0,
B=0). One of the tasks we will always have is to identify which of these cases we are dealing
with as we attempt to solve the problem.

3.1 Elimination Methods

3.1.1 Gauss Elimination

Consider the following system of equations:

nnnnnnn

nn

nn

nn

bxaxaxaxa

bxaxaxaxa

bxaxaxaxa

bxaxaxaxa

=++++

=++++
=++++

=++++

...

...

...

...

...

332211

33333232131

22323222121

11313212111

Multiply the first row (the pivot row) by a21/a11 and subtract it from the second row, multiply the
first equation by a31/a11 and subtract it from the third row, etc., to yield

nnnnnn

nn

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa

bxaxaxaxa

′=′++′+′+

′=′++′+′+
′=′++′+′+
=++++

...0

...

...0

...0

...

3322

33333232

22323222

11313212111

The second row now becomes the pivot row and the method proceeds (forward elimination) until
only one known remains and A is an upper triangular matrix:

)1()1(

22323222

11313212111

...00

...

...0

...

−− =+++

′=′++′+′+
=++++

n
nn

n
nn

nn

nn

bxa

bxaxaxa

bxaxaxaxa

To complete the solution of the system of equations, back-substitute to find

3 - 2

etc.

)2(
)1)(1(

)2(
)1(

)2(
1

1

)1(

)1(

−
−−

−
−

−
−

−

−

−

−
=

=

n
nn

n
n

nn
n

n
n

n
nn

n
n

n

a

xab
x

a

b
x

Operation count - Adding up the number of floating point operations (flops) gives 2n3/3 + O(n2)
for the forward elimination and n2 + O(n) for the back substitution, and 2n3/3 + O(n2) for the
entire naïve method. Gauss Elimination, therefore, gets very costly as n increases, and most of
the effort (and time) is in the elimination phase of the method.

Improvements to, and considerations for, the naïve Gauss Elimination method:

•••• Division by zero – Must avoid zeros as the diagonal entries of the pivot rows.
•••• Round-off errors – Always check the final solution by substituting it into the original

equations, although this is not always a good measure of the validity of the solution with
poorly-conditioned systems.

•••• Ill-conditioned systems – Systems that produce large changes in results with small
changes in inputs, characterized by small determinants or nearly singular systems.

•••• Scaling – Multiplying entire equations (rows) by constants to reduce subtractive
cancellation (rarely done in practice).

•••• Pivoting – Always done in practice. Reorder the equations beginning with the pivot row
so that the largest coefficient in that column is the one that is pivoted (partial pivoting).
Pivoting can also be done with columns (full pivoting) to result in a diagonal matrix, but
since it changes the order of the variables it is rarely done in practice. Rarely does a
commercial code actually interchange the rows since this takes time; instead an index
vector keeps track of the location of the rows.

Pseudocode – Gauss Elimination with partial pivoting and pivot scaling

SUB Gauss(a, b, n, x, tol, er)
 DIMENSION s(n) ' largest element in each row, for scaling
 er = 0
 DOFOR i = 1, n
 s(i) = ABS(A(i,1))
 DOFOR j = 2, n
 IF ABS(a(i,j)) > s(i) THEN s(i) = ABS(a(i,j))
 END DO
 END DO
 CALL Eliminate(a, s, n, b, tol, er)
 IF er<> -1 THEN
 CALL Substitute(a, n, b, x)
 END IF
END Gauss

SUB Eliminate(a, s, n, b, tol, er)
 DOFOR k = 1, n-1
 CALL Pivot(a, b, s, n, k)

3 - 3

 IF ABS(a(k,k)/s(k))<tol THEN
 er=-1
 EXIT DO
 END IF
 DOFOR i = k+1, n
 factor = a(i,k)/a(k,k)
 DOFOR j = k+1, n
 a(i,j) = a(i,j) - factor*a(k,j)
 END DO
 b(i) = b(i) - factor*b(k)
 END DO
 END DO
 IF ABS(a(n,n)/s(n))<tol THEN er=-1
END Eliminate

SUB Pivot(a, b, s, n, k)
 p = k
 big = ABS(a(k,k)/s(k))
 DOFOR ii = k+1, n
 dummy = ABS(a(ii,k)/s(ii))
 IF dummy > big THEN
 big = dummy
 p = ii
 END IF
 END DO
 IF p <> k THEN
 DOFOR jj = k, n ' swap the rows
 dummy = a(p,jj)
 a(p,jj) = a(k,jj)
 a(k,jj) = dummy
 END DO
 dummy = b(p) ' swap the RHS
 b(p) = b(k)
 b(k) = dummy
 dummy = s(p) ' swap the scale factors
 s(p) = s(k)
 s(k) = dummy
 END IF
END Pivot

SUB Substitute(a, n, b, x)
 x(n) = b(n) / a(n,n)
 DOFOR i = n-1, 1, -1
 sum = 0
 DOFOR j = i+1, n
 sum = sum + a(i,j)*x(j)
 END DO
 x(i) = (b(i) - sum) / a(i,i)
 END DO
END Substitute

3.1.2 Gauss-Jordan

The Gauss-Jordan method is a variation of Gauss Elimination where all of the matrix rows are
reduced by the current row, not just the subsequent ones. In addition, the current row is

3 - 4

normalized with respect to its diagonal element. This results in the identity matrix and the right-
hand-side is equal to the solution vector after the method is complete. However, the operation
count is significantly higher than with Gauss Elimination (about 50% higher due to the larger
number of elimination steps), so it is rarely used in practice.

3.2 LU Decomposition and Matrix Inversion

Gauss elimination is designed to solve equations of the type Ax = B. Applying this method as
described above becomes inefficient if there are several vectors B that must be evaluated. Recall
that Gauss Elimination consists of forward elimination and back substitution, and that the larger
effort is in the forward elimination.

LU decomposition methods separate the elimination step from the back substitution, by
“decomposing” A into an upper triangular matrix (U) and a lower triangular matrix (L), so that

Ax - B = 0 → UX - D = 0
Premultiply by L: LUX – LD = Ax – B
Therefore LU = A , LD = B

There are two distinct steps in LU decomposition: The first is the decomposition step where A is
factored or decomposed into lower (L) and upper (U) triangular matrices. The second is the
substitution step where L and U are used to determine a solution for a particular right-hand-side
vector B by generating an intermediate vector D by forward substitution and then back
substituting to find x.

3.2.1 LU Decomposition using Gauss Elimination

Recall that Gauss Elimination results in an upper triangular matrix of the form

















′′
′′=

33

2322

131211

00

0A

a

aa

aaa

There is also a lower matrix developed in the process. Recall that we multiplied the first row by
f21 = a21/a11 and subtracted it from the second row, multiplied the first row by f31 = a31/a11 and
subtracted it from the third row. Finally, we multiply the second row by f32 = a’32/a’22 and
subtract it from the third row. We don’t have to do these operations on the right-hand-side B, we
can save the values to manipulate it later. Store the numbers in the decomposed matrix A:

















′′
′′

















==

33

2322

131211

3231

21

00

0

1

01

001

LUA

a

aa

aaa

ff

f

To evaluate the vector corresponding to B, forward substitute to find the elements of D:

3 - 5

nidabd
i

j
jijii 3, 2, ,

1

1

…=−= ∑
−

=

then back substitute to find

1 ..., 2,- 1,- , 1 nni
a

xad

x

a

d
x

ii

n

ij
jiji

i

nn

n
n

=
−

=

=

∑
+=

This method has the same number of operations as Gauss Elimination for one right-hand-side
vector B. If more than one right-hand-side vector B is to be evaluated, this LU decomposition
method (referred to as Doolittle decomposition) is more efficient since it saves the effort and
time of the forward elimination.

Pseudocode – LU Decomposition using Gauss-Elimination, partial pivoting with order
vector

SUB LU_Decomp(a, b, n, x, tol, er)
 DIMENSION s(n) ' largest element in each row, for pivot scaling
 DIMENSION o(n) ' row order vector
 er = 0
 CALL LU_Decompose(a, n, tol, o, s, er)
 IF er <> -1 THEN
 CALL LU_Substitute(a,o,n,b,x)
 END IF
END LU_Decomp

SUB LU_Decompose(a, n, tol, o, s, er)
 DOFOR i = 1, n
 o(i) = i
 s(i) = ABS(a(i,1))
 DOFOR j = 2, n
 IF ABS(a(i,j)) > s(i) THEN s(i) = ABS(a(i,j))
 END DO
 END DO
 DOFOR k = 1, n-1
 CALL LU_Pivot(a, o, s, n, k)
 IF ABS(a(o(k),k)/s(o(k))) < tol THEN
 er = -1
 PRINT a(o(k),k)/s(o(k))
 EXIT DO
 END IF
 DOFOR i = k+1, n
 factor = a(o(i),k)/a(o(k),k)
 a(o(i),k) = factor
 DOFOR j = k+1, n
 a(o(i),j) = a(o(i),j) - factor*a(o(k),j)

3 - 6

 END DO
 END DO
 END DO
 IF ABS(a(o(k),k)/s(o(k)) < tol THEN
 er = -1
 PRINT a(o(k),k)/s(o(k))
 END IF
END LU_Decompose

SUB LU_Pivot(a, o, s, n, k)
 p = k
 big = ABS(a(o(k),k)/s(o(k)))
 DOFOR ii = k+1, n
 dummy = ABS(a(o(ii),k)/s(o(ii)))
 IF dummy > big THEN
 big = dummy
 p = ii
 END IF
 END DO
 dummy = o(p) ' swap the row order
 o(p) = o(k)
 o(k) = dummy
END LU_Pivot

SUB LU_Substitute(a, n, b, x)
 DOFOR i = 2, n ' forward substitution on RHS
 sum = b(o(i))
 DOFOR j = 1, i-1
 sum = sum -a(o(i),j)*b(o(j))
 END DO
 b(o(i)) = sum
 END DO
 x(n) = b(o(n)) / a(o(n),n)
 DOFOR i = n-1, 1, -1 ' back substitution for solut ion
 sum = 0
 DOFOR j = i+1, n
 sum = sum + a(o(i),j)*x(j)
 END DO
 x(i) = (b(o(i)) - sum) / a(o(i),i)
 END DO
END LU_Substitute

3.2.2 Crout Decomposition

Crout Decomposition results in an upper diagonal matrix with ones on the diagonal and a lower
triangular matrix. It works by simply sweeping through the matrix a single time:

3 - 7

∑

∑

∑

−

=

−

=

−

=

−=

++=
−

=

+=−=

=

==

==

1

1

1

1

1

1

11

1
1

11

 ..., 2, 1,

 ..., 1, ,

1- , ... 3, 2, for

 , ... 3, 2,

 ..., 2, 1,

n

k
knnknnnn

ii

j

i
ikjijk

jk

j

k
kjikijij

j
j

ii

ulal

njjk
a

ula

u

njjiulal

nj

nj
l

a
u

nial

This method is particularly efficient since the coefficients of A are used only once as they are
replaced, and the LU matrices are stored in the original matrix. Back substitution proceeds in a
similar manner to that of Gauss Elimination LU decomposition, details are left to the student.

Pseudocode – Crout decomposition

SUB CroutDecomp(a,n)
 DOFOR j = 2, n
 a(1,j) = a(1,j) / a(1,1)
 END DO
 DOFOR j = 2, n-1
 DOFOR i = j, n
 sum = 0
 DOFOR k = 1, j-1
 sum = sum + a(i,k)*a(k,j)
 END DO
 a(i,j) = a(i,j) - sum
 END DO
 DOFOR k = j+1, n
 sum = 0
 DOFOR i = 1, j-1
 sum = sum + a(j,i)*a(i,k)
 END DO
 a(j,k) = (a(j,k) - sum) / a(j,j)
 END DO
 END DO
 sum = 0
 DOFOR k = 1, n-1
 sum = sum + a(n,k)*a(k,n)
 END DO
 a(n,n) = a(n,n) - sum
END CroutDecomp

3.2.3 Matrix Inverse

3 - 8

The most efficient way to determine the inverse of a matrix is to perform a LU decomposition,
the successively find the columns of the inverse matrix by solving for the unit vectors

























=

























=

























=

1

...

0

0

;...

0

...

1

0

;

0

...

0

1

21 nuuu

The matrix inverse is often used in stimulus-response studies.

3.3 Error Analysis and System Condition

A way to check an approximate solution is to substitute it into the original equations to see if the
original right-hand-side results. However, this can be misleading if the system is ill-conditioned,
that is, nearly singular with very large elements for A-1. A small residual R = B - A x does not
guarantee an accurate solution. Only if the largest value of A-1 is on the order of unity can the
system be considered well-conditioned. Conversely, if A-1 contains elements much larger than
unity we must conclude the system is ill-conditioned.

The uniform matrix norm, or row-sum norm, is

∑
=≤≤∞

=
n

j
ij

ni
aA

1
1
max

and can be calculated as the largest sum of the absolute values of the elements for each row. The
condition number of A is

1A cond −×= AA

The condition number is always greater than or equal to one. It can be shown that

A

A

x

∆
≤

∆
A cond

x

that is, the relative error of the solution is as large as the relative error of the norm of A
multiplied by the condition number. If the coefficients of A are known to t digits, and the
condition number of A = 10c, then the solution can only be valid to t-c digits.

Iterative refinement – In some cases, one can reduce the round-off error by substituting the
approximate solution into the original set of equations and solving for correction factors.

3.4 Special Matrices

3 - 9

Some problem formulations result in banded matrices, which have elements equal to zero except
for a band centered on the main diagonal. These typically occur in the solution of differential
equations. Gauss Elimination and conventional LU decomposition methods can be used but are
inefficient due to the many zeros. Many algorithms have been developed to solve banded
systems.

3.4.1 Thomas Algorithm

Tridiagonal systems, those with a band width of 3, are most often solved with the Thomas
algorithm. To make the algorithm particularly efficient, write the tridiagonal system as

























=











































nnnn r

r

r

x

x

x

fe

gfe

gf

.........
2

1

2

1

222

11

With this reformulation, the pseudocode below is the complete Thomas algoritm

Pseudocode – Thomas Algorithm

Decomposition
DOFOR k = 2, n
 e(k) = e(k) / f(k-1)
 f(k) = f(k) – e(k)*g(k-1)
END DO

Forward substitution
DOFOR k=2, n

r(k)=r(k) - e(k)*r(k-1)
END DO

Back substitution
x(n) = r(n)/f(n)
DOFOR k = n-1, 1, -1

x(k) = (r(k) - g(k)*x(k+1)) / f(k)
END DO

3.4.2 Cholesky Decomposition

A great number of engineering formulations results in symmetric, positive definite matrices. For
these types of systems, the Cholesky Decomposition method is very efficient in that only half of
the operations, and storage capacity, are necessary since A = LL T, that is, U = LT:

3 - 10

∑

∑

−

=

−

=

−=

=
−

=

1

1

2

1

1 1- ..., 2, 1,

k

j
kjkkkk

ii

i

j
kjijki

ki

lal

ki
l

lla

l

The square root will not be a problem for a positive definite system (recall that for a positive
definite system, XTAX > 0 for all X ≠ 0).

Pseudocode – Cholesky Decomposition

DOFOR k = 1, n
 DOFOR i = 1, k-1
 sum = 0
 DOFOR j = 1, i-1
 sum = sum + a(ij)*a(kj)
 END DO
 a(ki)=(a(ki) – sum) / a(ii)
 END DO
 sum = 0
 DOFOR j = 1, k-1
 sum = sum + a(kj)*a(kj)
 END DO
 a(kk) = SQRT(a(kk) – sum)
END DO

3.5 Iterative Techniques

Elimination techniques are the most popular way to solve systems of linear equations, but many
iterative methods also exist. Iterative methods are best applied to matrices that are large and
sparse, where elimination methods waste time by storing and manipulating zeros.

3.5.1 Gauss-Seidel

Given a system Ax = B, solve each of the equations for the corresponding variable

22

3131112
2

11

3132121
1

...

...

a

xaxab
x

a

xaxab
x

−−−
=

−−−
=

Given an initial guess for the values of x, and sweep through the system of equations and
calculate new values for the xi, always using the last calculated value of xi. The technique is very
similar to finding roots with fixed-point iteration. Jacobi’s Iteration is a variation that calculates
a complete set of xi before using the new values; it is not as popular as Gauss-Seidel but
sometimes results in better performance.

3 - 11

In order for Gauss-Seidel to converge, the diagonal of each row must be greater than the sum of
the sum of the rest of the elements of that row, that is,

∑
≠
=

>
n

ij
j

ijii aa
1

This condition is sufficient but not necessary for convergence, that is, it will converge if it is
satisfied but the solution may converge even if it is not satisfied.

In order to enhance convergence, relaxation is often employed. When a new xi is calculated,
modify it by a weighted average of the old and new values

old
i

new
i

new
i xxx)1(λλ −+=

where 0 ≤ λ ≤ 2. If 0 ≤ λ < 1 the system is under-relaxed, which damps out oscillations in the
new values. If 1 < λ ≤ 2 the system is over-relaxed, which speeds up convergence. Determining
the value of λ for a particular problem is a matter of trial and error.

Pseudocode – Gauss-Seidel

SUBROUTINE GaussSeidel(a, b, n, x, imax, es, lambda)
 DOFOR i = 1, n ' normalize equations wrt diagonal element
 dummy = a(i,i)
 DOFOR j = 1, n
 a(i,j) = a(i,j)/dummy
 END DO
 b(i) = b(i)/dummy
 END DO
 DOFOR i = 1, n
 sum = b(i)
 DOFOR j = 1, n
 IF i<>j THEN sum = sum - a(i,j)*x(j)
 END DO
 x(i) = sum
 END DO
 iter = 1
 DO
 sentinel = 1
 DOFOR i = 1, n
 old = x(i)
 sum = b(i)
 DOFOR i = 1, n
 IF i<>j THEN sum = sum - a(i,j)*x(j)
 END DO
 x(i) = lambda*sum + (1 - lambda)*old
 IF sentinel = 1 AND x(i)<>0 THEN
 ea = ABS((x(i) - old)/x(i))
 IF ea > es THEN sentinel = 0
 END IF

3 - 12

 END DO
 iter = iter +1
 IF sentinel = 1 OR (iter >= imax) EXIT
 END DO
END GaussSeidel

