Section 3 - Systems of Linear Algebraic Equations

In this section, we will explore the solution okms of equations of the typ& = B, whereA
is the matrix of coefficients of the system of eijuas, is a vector of unknown variables dhds
a vector of known quantities, the “right-hand-sidafsthe system of equations.

With equations of this type, three possibilitiesseéxhe system can have a unique solutidsQ)),
it can have no solutiorA&0, B£0), or it can have infinitely many (non-unique)wgains @=0,
B=0). One of the tasks we will always have is &niify which of these cases we are dealing
with as we attempt to solve the problem.

3.1 Elimination Methods

3.1.1 Gauss Elimination

Consider the following system of equations:

A% tapX, taX t.taX, =b
Ay X T 8yX, T AxX t.t By X, =y

2n"*n

Qg% FAX, FAgXg ot A X, = by
Xy +3,,X, X ..+, X, =by

Multiply the first row (thepivot row) by ayi/a;; and subtract it from the second row, multiply the
first equation byasi/a;; and subtract it from the third row, etc., to yield

A% FapX, HaX, et aX, =b
r r r N
0+ay,X, +ayX; +...+a,,X, = b,

]] I — !
O+a32X2 +a33x3 +"'+a3nxn - b3

]]] —
0+a,,X, +a,X +...+a,X, =b,

nnmn

The second row now becomes the pivot row and thitbadeproceedd@rward eliminatior) until
only one known remains amdis an upper triangular matrix:

Q% +3,X, X ot ayX, =

0+a,,X, + ayuX; +...+a, X, =h,

(n-1) = KD
0+0+...+a""x, =h

To complete the solution of the system of equatibask-substitutéo find

_ br(]n—l)

X, = ——+
(n-1)
ann
(n-2) _ 4(n-2)
X _ bn—l a‘(n—l)an
n-1 a(n_z)
(n-1)(n-1)
etc

Operation count - Adding up the number of floating point operatiofisgs) gives 2*/3 + O(n?)
for the forward elimination andf + O(n) for the back substitution, ane23 + O(n?) for the
entire naive method. Gauss Elimination, therefge¢s very costly asincreases, and most of
the effort (and time) is in the elimination phase¢h® method.

Improvements to, and considerations for, the n&aess Elimination method:

e Division by zero — Must avoid zeros as the diag@mties of the pivot rows.

¢ Round-off errors — Always check the final solutimnsubstituting it into the original
equations, although this is not always a good nreasiuthe validity of the solution with
poorly-conditioned systems.

e lll-conditioned systems — Systems that produceelattanges in results with small
changes in inputs, characterized by small detemmtsnar nearly singular systems.

e Scaling — Multiplying entire equations (rows) bynstants to reduce subtractive
cancellation (rarely done in practice).

e Pivoting — Always done in practice. Reorder thaagpns beginning with the pivot row
so that the largest coefficient in that columrhis bne that is pivotegbértial pivoting).
Pivoting can also be done with columfdl(pivoting) to result in a diagonal matrix, but
since it changes the order of the variables iaisly done in practice. Rarely does a
commercial code actually interchange the rows sihisetakes time; instead an index
vector keeps track of the location of the rows.

Pseudocode — Gauss Elimination with partial pivotig and pivot scaling

SUB Gauss(a, b, n, x, tol, er)
DIMENSION s(n) ' largest element in each row, for scaling
er=0
DOFORi=1,n
s(i) = ABS(A(i,1))
DOFORj=2,n
IF ABS(a(i,j)) > s(i) THEN s(i) = ABS(a(i,))
END DO
END DO
CALL Eliminate(a, s, n, b, tol, er)
IF er<> -1 THEN
CALL Substitute(a, n, b, x)
END IF
END Gauss

SUB Eliminate(a, s, n, b, tol, er)
DOFOR k=1, n-1
CALL Pivot(a, b, s, n, k)

IF ABS(a(k,k)/s(k))<tol THEN
er=-1
EXIT DO
END IF
DOFORi=k+1,n
factor = a(i,k)/a(k,k)
DOFOR j=k+1,n
a(i,j) = a(i,j) - factor*a(k,j)
END DO
b(i) = b(i) - factor*b(k)
END DO
END DO
IF ABS(a(n,n)/s(n))<tol THEN er=-1
END Eliminate

SUB Pivot(a, b, s, n, k)
p=k
big = ABS(a(k,k)/s(k))
DOFORii=k+1, n
dummy = ABS(a(ii,k)/s(ii))
IF dummy > big THEN

big = dummy
p =i
END IF
END DO
IF p <>k THEN
DOFOR jj = k, n ' swap the rows
dummy = a(p.jj)
a(p.ji) = a(kjj)
a(k,jj) = dummy
END DO
dummy = b(p) ' swap the RHS
b(p) = b(k)
b(k) = dummy
dummy = s(p) ' swap the scale factors
s(p) = s(k)
s(k) = dummy
END IF
END Pivot

SUB Substitute(a, n, b, x)
x(n) = b(n) / a(n,n)
DOFORi=n-1,1,-1
sum =0
DOFOR j=i+1,n
sum = sum + a(i,j)*x()
END DO
x(i) = (b(i) - sum) / a(i,i)
END DO
END Substitute

3.1.2 Gauss-Jordan

The Gauss-Jordan method is a variation of Gaussifidtion where all of the matrix rows are
reduced by the current row, not just the subsequees. In addition, the current row is

normalized with respect to its diagonal elemerttisTesults in the identity matrix and the right-
hand-side is equal to the solution vector aftemtig¢hod is complete. However, the operation
count is significantly higher than with Gauss Elatiion (about 50% higher due to the larger
number of elimination steps), so it is rarely usegdractice.

3.2 LU Decomposition and Matrix Inversion

Gauss elimination is designed to solve equatiortkefypeAx = B. Applying this method as
described above becomes inefficient if there averse vectord that must be evaluated. Recall
that Gauss Elimination consists of forward elimioatand back substitution, and that the larger
effort is in the forward elimination.

LU decomposition methods separate the eliminatiep 8om the back substitution, by
“decomposing’A into an upper triangular matrixJ{ and a lower triangular matrix f, so that

Ax-B=0—->UX-D=0
Premultiply byL: LUX-LD=Ax-B
Therefore LU=A,LD=B

There are two distinct steps in LU decompositiome Tirst is the decomposition step whérés
factored odecomposedto lower () and upperl) triangular matrices. The second is the
substitution step whele andU are used to determine a solution for a particuggnt-hand-side
vectorB by generating an intermediate vedibby forward substitution and then back
substituting to finck.

3.2.1 LU Decomposition using Gauss Elimination

Recall that Gauss Elimination results in an upgangular matrix of the form

d; d, a3
A=| 0 a, a,;
0 0 a;

There is also a lower matrix developed in the pgeceRecall that we multiplied the first row by
fo1 = apa/a;; and subtracted it from the second row, multiptieel first row byfs; = agi/a;; and
subtracted it from the third row. Finally, we miply the second row bfg, = a’s»/a’,, and
subtract it from the third row. We don’t have wtthese operations on the right-hand-8deve
can save the values to manipulate it later. Steenumbers in the decomposed ma#rix

1 0 Oja, a, ag
A=LU=|f, 1 0|0 a, a,
f, f, 1] 0 0 a

To evaluate the vector correspondin@tdorward substitute to find the elementdof

3-4

d=b->ad j=23..n

then back substitute to find

d,
X, =
ann
d - qu X,
x =— 17 j=n-1p-2,..1

This method has the same number of operations ass@&dimination for one right-hand-side
vectorB. If more than one right-hand-side vedBis to be evaluated, this LU decomposition
method (referred to d3oolittle decompositiopis more efficient since it saves the effort and
time of the forward elimination.

Pseudocode — LU Decomposition using Gauss-Eliminati, partial pivoting with order
vector

SUB LU_Decomp(a, b, n, x, tol, er)
DIMENSION s(n) ' largest element in each row, for pivot scaling
DIMENSION o(n) ' row order vector
er=0
CALL LU_Decompose(a, n, tol, o, s, er)
IF er <>-1 THEN
CALL LU_Substitute(a,o,n,b,x)
END IF
END LU_Decomp

SUB LU_Decompose(a, n, tol, o, s, er)
DOFORi=1,n
o(i)=i
s(i) = ABS(a(i,1))
DOFORj=2,n
IF ABS(a(i,j)) > s(i) THEN s(i) = ABS(a(i,))
END DO
END DO
DOFOR k=1, n-1
CALL LU_Pivot(a, o, s, n, k)
IF ABS(a(o(k),k)/s(o(k))) < tol THEN
er=-1
PRINT a(o(k),k)/s(o(k))
EXIT DO
END IF
DOFOR i =k+1,n
factor = a(o(i),k)/a(o(k),k)
a(o(i),k) = factor
DOFOR j=k+1,n
a(o(i).j) = a(o(i).j) - factor*a(o(k),)

3-5

END DO
END DO
END DO
IF ABS(a(o(k),k)/s(o(k)) < tol THEN
er=-1
PRINT a(o(k),k)/s(o(k))
END IF
END LU_Decompose

SUB LU_Pivot(a, 0, s, n, k)
p=Kk
big = ABS(a(o(k),k)/s(o(k)))
DOFOR ii = k+1, n
dummy = ABS(a(o(ii),k)/s(o(ii)))
IF dummy > big THEN
big = dummy
p =i
END IF
END DO
dummy = o(p) ' swap the row order
o(p) = o(k)
o(k) = dummy
END LU_Pivot

SUB LU_Substitute(a, n, b, x)
DOFOR i = 2, n' forward substitution on RHS
sum = b(o(i))
DOFORj=1,i-1
sum = sum -a(o(i),j)*b(o(j))
END DO
b(o(i)) = sum
END DO
x(n) = b(o(n)) / a(o(n),n)
DOFOR i =n-1, 1, -1 "' back substitution for solut ion
sum =0
DOFOR j=i+1,n
sum = sum + a(o(i),j)*x(j)
END DO
x(i) = (b(o(i)) - sum) / a(o(i),i)
END DO

END LU_Substitute

3.2.2 Crout Decomposition

Crout Decomposition results in an upper diagondfismaith ones on the diagonal and a lower
triangular matrix. It works by simply sweepingdhgh the matrix a single time:

l, =a, 1=12,..,n
Uy '] j= 23,...,n
Ill

forj= 23,..,n-1

j-1
lj =4 _kzlikukj i=j,j+1..,n
=1

j-1
a _zlji Uy
_ =1

Uy =———— k=j+1,j+2,..,n
&;
n-1
Inn :ann_zlnkukn
k=1

This method is particularly efficient since the ffméents of A are used only once as they are
replaced, and the LU matrices are stored in thgarai matrix. Back substitution proceeds in a
similar manner to that of Gauss Elimination LU deposition, details are left to the student.

Pseudocode — Crout decomposition

SUB CroutDecomp(a,n)
DOFORj=2,n
a(l,j) =a(l,j)/a(1,1)
END DO
DOFOR|j=2,n-1
DOFORi=j, n
sum =0
DOFOR k=1, j-1
sum = sum + a(i,k)*a(k,j)
END DO
a(i,j) = a(i,j) - sum
END DO
DOFOR k =j+1,n
sum =0
DOFORi=1,j-1
sum = sum + a(j,i)*a(i,k)

END DO
a(j,k) = (a(.,k) - sum) / a(,j)
END DO
END DO
sum=0

DOFOR k=1, n-1
sum = sum + a(n,k)*a(k,n)
END DO
a(n,n) = a(n,n) - sum
END CroutDecomp

3.2.3 Matrix Inverse

The most efficient way to determine the inversa afatrix is to perform a LU decomposition,
the successively find the columns of the inversg&imby solving for the unit vectors

1 0 0

0| 1| 0
u = Uy = ey =

0 0 1

The matrix inverse is often used in stimulus-resgostudies.

3.3 Error Analysis and System Condition

A way to check an approximate solution is to suibtiit into the original equations to see if the
original right-hand-side results. However, this te& misleading if the system is ill-conditioned,
that is, nearly singular with very large elemenisA™. A small residuaR =B - AX does not
guarantee an accurate solution. Only if the largetsie ofA™ is on the order of unity can the
system be considered well-conditioned. Conversely;* contains elements much larger than
unity we must conclude the system is ill-conditidne

Theuniform matrix normor row-sum normis

I<isn

A = max> fa)

and can be calculated as the largest sum of ttuabyalues of the elements for each row. The
condition number oA is

condA = A ><||A‘1||

The condition number is always greater than or kefguane. It can be shown that

M < condAM

4 A

that is, the relative error of the solution is@gjé as the relative error of the normPof
multiplied by the condition number. If the coefénts ofA are known td digits, and the
condition number oA = 10, then the solution can only be validtto digits.

Iterative refinement — In some cases, one can eethecround-off error by substituting the
approximate solution into the original set of equad and solving for correction factors.

3.4 Special Matrices

Some problem formulations resultbanded matricesvhich have elements equal to zero except
for a band centered on the main diagonal. Thegsealy occur in the solution of differential
equations. Gauss Elimination and conventional Edodnposition methods can be used but are
inefficient due to the many zeros. Many algoritimse been developed to solve banded
systems.

3.4.1 Thomas Algorithm

Tridiagonal systemghose with a band width of 3, are most often edlwith theThomas
algorithm To make the algorithm particularly efficient,it@rthe tridiagonal system as

fl gl Xl rl
ez f 2 g 2 X2 — r.2
en f n Xn rn

With this reformulation, the pseudocode below & ¢bmplete Thomas algoritm
Pseudocode — Thomas Algorithm

Decomposition
DOFORk=2,n

e(k) = e(k) / f(k-1)

f(k) = f(k) — e(k)*g(k-1)
END DO

Forward substitution
DOFOR k=2, n

r(k)=r(k) - e(k)*r(k-1)
END DO

Back substitution
x(n) = r(n)/f(n)
DOFOR k=n-1, 1, -1
X(K) = (r(k) - g(k)*x(k+1)) / f(k)
END DO

3.4.2 Cholesky Decomposition
A great number of engineering formulations resmtsymmetric, positive definite matrices. For

these types of systems, tGbolesky Decompositianethod is very efficient in that only half of
the operations, and storage capacity, are necesis@gyA =LL T, thatis,U =L :

i-1
& _Zlijlkj
| =|'—'l i=1,2,..k-1

k-1

_ _ 2
L = .| Zlkj
i

The square root will not be a problem for a positiefinite system (recall that for a positive
definite systemX'AX > 0 for allX # 0).

Pseudocode — Cholesky Decomposition

DOFOR k=1,n
DOFORi=1, k-1
sum=0

DOFOR =1, i-1
sum = sum + a(ij)*a(kj)

END DO

a(ki)=(a(ki) — sum) / a(ii)
END DO
sum =0
DOFORj=1, k-1

sum = sum + a(kj)*a(kj)
END DO
a(kk) = SQRT(a(kk) — sum)

END DO

3.5 lterative Techniques
Elimination techniques are the most popular wagdize systems of linear equations, but many

iterative methods also exist. Iterative methoashkast applied to matrices that are large and
sparse, where elimination methods waste time byngt@nd manipulating zeros.

3.5.1 Gauss-Seidel

Given a systemx = B, solve each of the equations for the correspondangble

_b—anx —agk ..
Xl =
ay,
b, @y, —agX; ...

X, =
)

Given an initial guess for the valuesxpfand sweep through the system of equations and
calculate new values for thxe always using the last calculated value;ofThe technique is very
similar to finding roots with fixed-point iteratiordacobi’s Iterationis a variation that calculates
a complete set of before using the new values; it is not as popagaGauss-Seidel but
sometimes results in better performance.

In order for Gauss-Seidel to converge, the diagohahch row must be greater than the sum of
the sum of the rest of the elements of that roat, it

n
jay| > Z|aii|
e

This condition is sufficient but not necessarydonvergence, that is, it will converge if it is
satisfied but the solution may converge evenis ot satisfied.

In order to enhance convergenadaxationis often employed. When a news calculated,
modify it by a weighted average of the old and netues

Xinew - /]Xinew_'_ (1_/])Xi0|d

where <A < 2. If 0< X < 1 the system is under-relaxed, which damps scitlations in the
new values. If 1 & <2 the system is over-relaxed, which speeds upergewnce. Determining
the value of. for a particular problem is a matter of trial ardor.

Pseudocode — Gauss-Seidel

SUBROUTINE GaussSeidel(a, b, n, x, imax, es, lambda
DOFOR i = 1, n ' normalize equations wrt diagonal element
dummy = a(i,i)
DOFORj=1,n
a(i,j) = a(i,j)/dummy
END DO
b(i) = b(i)/dummy
END DO
DOFORi=1,n
sum = b(i)
DOFORj=1,n
IF i<>j THEN sum = sum - a(i,j)*x(j)
END DO
x(i) = sum
END DO
iter =1
DO
sentinel = 1
DOFORi=1,n
old = x(i)
sum = b(i)
DOFORi=1,n
IF i<>] THEN sum = sum - a(i,j)*x(j)
END DO
x(i) = lambda*sum + (1 - lambda)*old
IF sentinel = 1 AND x(i)<>0 THEN
ea = ABS((x(i) - old)/x(i))
IF ea > es THEN sentinel =0
END IF

END DO

iter = iter +1
IF sentinel = 1 OR (iter >= imax) EXIT
END DO

END GaussSeidel

