Section 6 - Numerical Integration and Differentiaton

Two general types of integrations are solved nuradly, ones where the function is presented as
tabulated data or as a complicated function.

6.1 Newton-Cotes Formulas

The Newton-Cotes formulas are based on a strateigptacing the complicated function or
tabulated data with an easy-to-integrate approxirgdtinction

1= [ teoax [ f, ()

where

n

f (X)=a, +ax+a,x’+...+a X

Closed and open forms of the Newton-Cotes areahail Closed form are those in which the
data points at the beginning and end of the liofiteitegration are known while open forms are
employed when the integration limits extend beytihedrange of data, similar to extrapolation.

6.1.1 The Trapezoidal Rule

The Trapezoidal Rule is the first of the Newton-€3ofiormulas, connecting each adjacent pair of
data points by a straight line:
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which has errofg, = —1—12 f"(&)(b—a)*where éis betweera andb. This formula is exact for
linear functions (the error vanished if = 0, therefore first order functions are computed
exactly), but introduces significant error for heglorder function§(x).

Multiple-Application Trapezoidal Rule

One straightforward way to improve accuracy isitadg the integration intervah[b] into a
number of segments and apply the rule to eachh Egb-a)/n wheren = number of equal-
width segments betweerr1 data points. Therefore,
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the errorE; decreases by a factor of 4.

Which has erroiE, = . As the number of intervatsdoubles,

6.1.2 Simpson’s Rules

One can increase the accuracy of the approximatrapplying the multiple-application
Trapezoidal Rule many times, slicing the data fieveda finer. This can result, however, in the
need for more tabulated data or more function etelos and lead to more round-off error due

to more calculations. As an alternative, Simpssedihigher-order functions to approximate the
integral.

Simpson’s 1/3 Rule

Approximate the function betweesn andx,, with intermediate point;, with a second-order
Lagrange polynomial
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| Dg[f(x0)+4f(xl)+ f(x,)] wheren=(b-a)/2
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with error E, = —9—10 f @ (£)h®. Note that this rule is accurate t8-8rder even though the

function was approximated with &@rder polynomial. This rule can be applied teegan
number of multiple segments
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Simpson’s 3/8 Rule
If one fits a & order Lagrange polynomial to 4 data points (3rirgks) and integrates,
Simpson’s 3/8 Rule results:

| Ds—;[f(xo) +31 (%) +3 (%) + T (%)]
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648(
factor of 16. This error is similar to that of $ison’s 1/3 Rule. Simpson’s 1/3 Rule is
preferred, but the 3/8 Rule is useful when the nemal intervals is odd. In that case, apply the
3/8 Rule to the three intervals at the end (orkbginning) of the tabulated data and an even
number of intervals remain to be evaluated withlif8eRule.

With h= (b;?)a) and erroE, = f (&), so az doubles the error decreases by a

6.1.3 Higher-Order Newton-Cotes Formulas

There are many higher-order (and seldom used) Ne®@ties formulas, for example Boole’s
Rule:

I D%[7(Xo)+32f(xl)+12f (X2)+32f(X3)+7f(x4 )] !Et :_%rﬁf (6)(5)

6.1.4 Integration with Unequal Segments

To integrate across tabulated data that is notlgwpaced, there are couple of strategies to try,
for example:

1. Use the Trapezoidal Rule throughout, acceptingthars
2. If 3 adjacent segments have the same width, usps®in's 3/8 Rule
If 2 adjacent segments have the same width, uspssims 1/3 Rule
If the next segment is not the same width as tleefollowing, use the Trapezodial Rule

6.1.5 Open Integration Formulas
Open integration formulas are most often used &buate improper integrals, to be discussed
later, and in multistep methods of solving ordindif§erential equations. Here we will simply

list them for future reference:

2 segments, 1 point (themidpoint method), truncation erroiE, = (L/3)h*f @ (¢)



| O(b-a)f(x)
2 segments, 2 points, truncation errcg, = (3/4)h*f @ (¢)
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4 segments, 3 points, truncation errog, = (L4/45h>f @ (&)
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5 segments, 4 points, truncation errdg, = 95 /144h°f @ (&)
11 (%) + f(x,) + f(%;) +11f (X,)
24

| O(b-a)

6 segments, 5 points, truncation errog, = (41/140h"f® &( )
11f (x,) —14f (x,) + 26f (x,) -14f (x,) +11f (x.)

| O(b-a) 20

6.1.6 Multiple Integrals

Multiple integrals are evaluated in exactly the samanner as single integrals. For example
d b b| pd
1= U F(x, y)dx}dy = U F(x, y)dy}dx

Simply evaluate the inside integral at discret@i®g) then evaluate the next integral using the
values obtained in the first step.

6.2 Integration of Equations

If we are faced with the task of numerically int&tgng a function instead of a table of values, we
can exploit the fact that we can generate as mamgtibn evaluations as we need to obtain
acceptable accuracy.

6.2.1 Newton-Cotes Algorithms for Equations

Pseudocodes are given that take advantage of dmncaills instead of tabulated values. The
basic limitation of these formulas is that to imy@@ccuracy more and more segments must be



added, eventually leading to unacceptable roun@offrs. In those cases, either use higher-
order formulas or a better strategy.

6.2.2 Romberg Integration
Richardson Extrapolation
Recall that, for a multiple application trapezoidak,
I =1(h)+E(h)
Wherel is the exact value of the integrih) is the approximation of the integral as a functio

of segment widtlin = (b-a)/n andE(h) is the error associated with the approximatibriwo
separate estimates are done at segment wig#rsdh,, then

| =1(h) +E(h) =1 (h,) + E(hy)

Recall that the error in a multiple applicatiorpgaoidal rule i€ D% h?f". If we assume

that the average value of the second derivatifeesame for both estimates, then

E(h)/E(h,) Oh?/h; or E(h) OE(h,)(h,/h,)*

so that
I(h) +E(h,)(h, /h,)* Tl (h,) + E(h,)
or
E(h,) 0 (W =1 (h)
1~ (h, /h,)
And

Ol + ) =10
(h,/1,)* -1

The error associated with this new estima@(is’). Therefore, we have combined two

trapezoidal rule estimates ©fh?) to yield a new estimate @i(h*). If the interval is halved (that
is, h, = hy/2) then this becomes

O (h) + o [l(h)—l(m]
! Dgl(hz)—gl(hl)
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In a similar manner, two estimates@h®) can be combined to yield an estimat€¢°):

ok -1y
15 ™ 15

wherem = more accurate ardt less accurate, and two estimate®@f) can be combined to
yield an estimate dd(h®):

o84 Ly
63 " 63

Romberg Integration Algorithm

The results above can be generalized to

k-1 _
_ 4™ j+1k-1 | j k-1

| ik 4k—l _1

wherelj:1 .1 andljxq are the more/less accurate integrals, respectiaab; is the improved
integral. The indek is the level of integratiork€1 is the original trapezoidal rules2=O(h%),
k=3=0(h®), etc) and distinguishes between moije-{) and lessj) accurate estimates. It is
possible to successfully apply this strategy tdéadertabulated data of the proper form.

6.2.3 Gauss Quadrature

A characteristic of the Newton-Cotes formulas et tiney rely on fixed-values of the function.

A strategy that starts by determining the bestepfac these function evaluations is the basis for
a class of techniques call&ahuss Quadrature.

To see how these formulas are developed, considerase of approximating the integral of%a 3
order function between -1 and 1. We want to detethe pointsg andx; to evaluate the
function, and the coefficientg andc,, so that the approximation

I 0c, T (%) + ¢, f(x)

exactly represents &’®rder curve. To find these 4 parameters we neshditions:



Cof (%) +,F(x) = [1dx =2
& (%) +¢,F(x) = [ xax =0
¢, F(x,) +C, F (%)= j_llxzdx =2/3

1 3
Co F (%) +¢, f (%) :Lx dx=0

Solving these equations yields the parameigrs, co andc;.

In general, the functions are evaluated at thesrobthe Legendre polynomials of th& Kind.
Legendre polynomials are an orthogonal set of pmiyials which are solutions of the
differential equation

(1—x)‘32’ 2xg—+r(r+1)y 0 -1l<x<1

0= 5o -]

The first several Legendre polynomials of tfikind are

P,(x) = (L/2)(3x% -1)

P,(X) = @/2)(5x% - 3x)

P,(x) = (1/8)(35x* —30x2 +3)

P.(x) = (L/8)(63x® - 70x® +15x)

P.(X) = (1/16)(231x° - 315x* +105¢2 —5)

P, (x) = (1/16)(429x" — 693> + 315x> — 35x)

The coefficients are
21-u?)
C, = 52
(r+9?P2,(u,)

wheeu, arerootsof P,

Points | Weighting Factors Function Arguments Truncaton
Error
2 Co = 1.0000000000000C | X =-0.57735 02691 896: | [J f (&)
¢; = 1.000000000000000 | x; = 0.57735 02691 89626
3 Co = 0.55555 55555 555! | xp=-0.77459 6669:4148: | [ f ©(§)
¢, = 0.88888 88888 88889 x; = 0.0
C, = 0.55555 55555 55556 x, = 0.77459 66692 41483




4 Co=0.34785 48451 374! | X =-0.86113 63115940' | §® (&)
€1 = 0.65214 51548 62546 x; = -0.33998 10435 8485¢
C; = 0.65214 51548 62546 x, = 0.33998 10435 84856
C3 = 0.34785 48451 37454 x; = 0.86113 63115 94053
5 Co=0.23692 68850 561¢ | X, =-0.90617 98459 386! | ] f @O &)
c1=0.47862 86704 99366 x; = -0.53846 93101 05683
c, = 0.56888 88888 88889 x, = 0.0

C3=0.47862 86704 99366 X3 = 0.53846 93101 05683
€, = 0.23692 68850 56189 x, = 0.90617 98459 38664
6 Co=0.17132 44923 791" | X9 =-0.93246 95142 031! | 1§ &)
¢; = 0.36076 15730 48139 x; = -0.66120 93864 66264
C, = 0.46791 39345 72691 x, = -0.23861 91860 83197
C3=0.46791 39345 72691 x; = 0.23861 91860 83197
¢, =0.36076 15730 48139 x, = 0.66120 93864 66265
Cs = 0.17132 44923 79170 x5 = 0.93246 95142 03152

b
Integrating I f (X)dxinvolves a change of variable
a

x:%(b+a)+%(b—a)J, dx:%(b—a)du
[ food=2p-a) f[l(b+a)+1(b—a)u}du
a 2 412 2
=2 0-alle () e, (x)+..+c, ()] +R

Gauss Quadrature provides a highly efficient waghitain very accurate results with minimum
function evaluations. This method can also be us@dmultiple-application approach.

6.2.4 Improper Integrals

If faced with evaluating an improper integral whéseer limit is <o or whose upper limit is,
the following identity allows for a convenient tefarmation of variable and works whenever the
function tends to zero at least as fast a& 1/

1/

b el 1
L f (x)dx = L/at_z f (;)dt forab >0

Note the restriction. This can be used # « and b is positive, at = <o andb is negative. For
the case whea = <o andb =, implement the integral in two steps:



J._bw f(x)dx = .[__wAf (X)dx + J'_bA f (x)dx

where A is sufficiently large so the function igpapaching zero at least as fast 154,

To avoid evaluating a function at one of the limitse one of the open forms of the Newton-Cotes
formulas given in the Section 6.1.5.

6.3 Numerical Differentiation

Numerical differentiation was introduced when wegdne our exploration of numerical methods as an
example of the Taylor series. There are threergétypes of divided difference differentiation
approximations: forward, backward and central:

Forward:
f'(Xi) — f(xi+1)h_ f(Xi) ; O(h)
f'(Xi) —_ f(xi+2) +4f2I:Xi+1) - 3f (Xi) : O(hz)
Backward:
f '(Xi) — f(xi ) _hf (Xi—l) : O(h)
f '(Xi) — 3f (Xi ) - 4f (Xi—l) + f (Xi—z) : O(hz)
2h
Central:
f’(xi) = f(Xi+1)2_hf (Xi—l) : O(hz)
f'(Xi) —_ f(Xi+2) +8f (Xi+;-)2;]8f (Xi—l) + f(Xi—Z) : O(h4)
Corresponding equations for the second derivatives
Forward:
f "(Xi) = f (Xi+2) - 2fh(2Xi+1) + f (Xi) , O(h)
f "(Xi) - f (Xi+3) +4f (Xi+2|,)12_5f (Xi+1) +2f (Xi) . O(hz)
Backward:



Fx)—2f (%) + F(X.,)

F(x) = " ; O(h)
Fr(x) = 21 (x) —5f(xi_l);]r24f (Xi_,) = T(%_3) . O(h?)
Central:
Fr(x) = f(xi+1)—2fh(2xi)+ f(x,) . o(h?)
F'(x) = - f(x,,) +16f(x,,) —30f(x ) +16f (x_) - f(x_,) . O(h)

12h?
6.3.1 Richardson Extrapolation

Similar to what we saw for integration, we can tyge estimates to compute a third, more
accurate, approximation. If the two estimatescaraputed with step sizés andh,, where
h,=hy/2, then

4 1
D Dg D(h,) "3 D(h)

As for integration, this can be applied iterativaging the Romberg algorithm until the result
achieves an acceptable error criterion.

6.3.2 Derivatives of Unequally-Spaced Data
Experimental or field data that is collected ataqntervals can be differentiated using
interpolation. For example, fit a second-orderraage interpolating polynomial to each set of

three adjacent points, then differentiate the tesmudlytically to find

_ (X)) @X =X — Xiu) + f(X)(@2X =X, = Xi,1) + f (X)X =X, —X)
T s XD = Xr) 06 =X = Xr) (g = X)X~ Xo)

f'(x)

which has the same error as a central dividedreifiee.
6.3.3 Derivatives and Integrals for Data with Esror
Due to its subtractive nature, numerical differatitin magnifies errors that are present in raw

data. One way to treat noisy data is to firstqenfa low-order polynomial regression on the
data, then perform the subsequent analysis onttad €urves.
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Always remember that numerical differentiation temnal be unstable, amplifying errors while
numerical integration is forgiving and tends to sihoout errors in the data. Since integration is
additive, random positive and negative small ertensl to cancel out, while differentiation tends
to make such errors worse.
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