Section 5 — Curve Fitting

Quite often we are presented with data in the fofmliscrete values, and the need arises to find
appropriate values between these discrete poiiw® general approaches exist, depending on
the source of the data. If the discrete data ssaraed to posses error (such as the results of
physical experiments), functions are fit to theadat minimize the overall error but not
necessarily pass through any of the points. A [@s@pproach that we will explorelsast
squares regressionlif the data is assumed to be precise, suchaa®ttained from tables of
physical properties or mathematical functions, iva turve to pass through each point, a
process callethterpolation

5.1 Least-Squares Regression
Consider the case fitting a polynomial to a setrgderfect data, the curve to have the form

y=a,+ax+ax’+...+a x

The error associated with each data point) is
e =y —(a, +ax +ax*+...+a x" )i=1,2,..n=#of datapoints

To minimize the error of the entire problem, miremthe sum of the squares of the errors, or
residuals. To do this, take the derivative witpect to each coefficient

ZQZ =S :Z(yi —8 —aX — &X'~ m X"’

gi =-2) (Y —8 —aX —&X —...—a,x") =0
95, ==2>"% (Y, —a, —ax —a,x’ —...—a,x") =0
0a, e ' ' '

0S,

' =—22xi2(yi -3, -ax —ax’—...—a x")=0
oa,

which can be rearranged to give

na, +2)§ai+zxiza2 +---+2Ximam :Zyi

D X8 T XA Y KA, o+ Y XA, = DXy,
zxizao +Z)§331 +in4az +---+inm+zam :ZXiZYi

D Xag Y e+ Y X e, L+ Y X, = ) XY,
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Thestandard error of the estimat8,x (the error in a predicted value ypgiven a value o) is

Sy/x = L
n—(m+1)

wheren is the number of data points amds the order of the polynomial fit. Tiseim of
squares around the meé#or the dependent variabjdas

S=2(y-9°

Thecoefficient of determinatiois a measure of how much of the variation in theds
explained by the model, that is, how well the dasathe statistical model:

Thecorrelation coefficientsr and measures the strength of the association betthe
variables.

Pseudocode — Polynomial Regression, assembly of mad equations
‘ Order of polynomial to be fit: m
‘ Number of data points: n
‘ If n<m+1, regression not possible, if n>=m+1 regr ession possible

DOFORi=1,m+1

DOFOR |j=1,i
k=i+j -2
sum=0

DOFORL=1,n
Sum = sum +x(L) * k
END DO
a(i,j) = sum
a(j,i) = sum
END DO
sum =0
DOFORL=1,n
sum = sum + y(L) * x(L) * (i-1)
END DO
a(i, m+2) = sum
END DO

5.1.1 Linear Regressiom¢l)

For the case when the order of theit 1, the above equations reduce to



na, +> xa =Y,
PRLIEDRTEDRNS

Solving for the regression coefficients gives

a = nz)ﬁyi _inzyi
nzxiz _(zxi)2

8 =Y~ aX

It is assumed here that (has a fixed value, is not random and has no g2py,values are
random and all have the same variance, and (3) viakies for a givem are normally
distributed.

5.1.2 Linearizations of Non-Linear Relationships

Exponential model y = a,e**
Take the natural logarithm of both sides of theagigus to yield the linear /
equation:iny =Ilna, + 5, x

Power model y = a,x*
Take the base-10 logarithm of both sides of theagous to yield the linear
equation:logy =loga, + 3, logx

X

Saturation Growth Rate model y = a,
P + X
1_ 5 .1

Invert the model to yield the linear equatich= -"—- + — |
y a;x a0,

In all of the models above, use linear regressaoevaluate the regression constants, solve for
the model parameters and use in the original modgredictive purposes.

5.1.3 Multiple Linear Regression
Consider the case wheyas a function isnindependent variables:
y=a,+ax +aX, +...+a x, +e

Again, the “best” fit is determined by squaring tlesiduals



Sr =Z(yi _a‘O _aiij _a2X2i _"'_amei 5 |=1,2n

and differentiating with respect to the unknownftiorents

gi :_ZZ(yi ~8 T aX, T Xy ... " 8pXy) =0
0S,
aa; :_zlei(yi A T aX; Xy ~...~a,Xy) =0

with standard error

S
Sy/>< = :
n—-(m+1)

5.1.4 Power Equation of the General Form
When modeling systems of the type
Y = @ XXX L X
take the natural logarithm of both sides to yield
logy =loga, +a, logx, +a,logx, +a,logx; +...+a,logx,

which can be fit with multiple linear regression.

5.1.5 Solution Techniques

The least squares equations are symmetric andtarermt well conditioned. They can be
solved by Gauss Elimination, by Crout or Choleskgamposition methods, or by matrix
inversion. If the best order of polynomial fitassught, Cholesky’s method can be used
efficiently to build and solve the equations.

All solutions must be examined to observe the adiii® the data. Relying solely on
correlation coefficients to determine the apprdenass of the curve fit is not recommended.



5.1.6 Non-Linear RegressionGauss-Newton Method
Consider a model of the form
y, = f(x)+e

wherex; is a non-linear function of parametess &, ... an. Expand this function in a Taylor
series around the parameters. For example, faréhgeterspy andag

of (%) of (x)

FX) s = 10), +5 =bay + =2 by

which linearizes the model with respect to the peaters. Therefore,

y, - f(x); = af;;)j Aa, +af(§)§)j Na, +e
or in matrix form
D=7 0A+E
wheren is the number of data points and
[ of, of, |
g?g? y- (%) Aa,
7 o s 5|0 pp| @
af, of, Y= f(x,) ba,
| 08, 0a, |

Apply the least squares theory to result in themabrequations
Z/ZNA=ZD
These equations are solved foh, the change in the parameters, and

Qi — Qg +Aa,
Ay — +Aa,

The procedure is repeated until the relative error



A i T ‘

g =
e, \ -

falls below an acceptable criterion. Shortcomiafjthis method are that it may converge slowly,
it may oscillate (sometimes wildly) or it may natrverge at all.

5.2 Interpolation

Interpolation is the estimation of intermediateuwes between precisely-known data points. The
most common methods are polynomial interpolaticoh glines.

5.2.1 Newton’s Divided-Difference Interpolating fPobmials
Consider amth-order polynomial to be fit to+1 data points, of the form

fn(X) = b0 +b1(X— Xo) +b2(X— Xo)(x_ Xl) + b3(X— Xo)(x_ Xl)(x_ Xz) t-e
st B (X = X)) (X = %) (X = X 4)

To evaluate the coefficienbs begin by setting = Xo, which gives
by, = (%)

Settingx = x; gives
b1 — f(xl)_bo — f(xl)_ f(xo) — f[xl’

Xp — X% X =X XO]

which is thefirst divided difference Similarly forx = xo, etc.:

FOx) = Fx) _ f(x) = (%)
X, =X - X
b, = — X, — Xg A% = f[Xz,Xl,XO]

b

f[xn,xn_l""’XZ’Xl’XO]

n

These calculations can be efficiently organized table, for example, for 3 data points:

I | x |f(x) |Firstdivided | Second divided| Third divided

differences differences differences
0 | X | f(xo) | f[x1,Xo] f[X2, X1, X0] f[Xa, X2, X1, X0]
1 [ x| f(x) |fxexi) f[Xa, X2, X2]

2 | X2 | f(x2) | f[xsx]




[3 [x [f(xs) | | | |

The first entries in the divided difference colunams the coefficientlsy, b1, by, etc.

The data points need not be equally spaced, ntredohave to be in any particular order. If one
has a choice of data points, it is always beshtmse them to bracket and lie close to the region
where the intermediate estimates will be required.

The error associated with Newton’s divided-differernterpolating polynomial can be estimated,
with an additional data point, as

Rn = f[Xn+l,Xn,Xn -11° XO](X—XO)(X—Xl)...(X—Xn)
where

fn+1(x) = fn(x) + Rn

that is, the error of the prediction can be estadty examining the effect of adding another
data point to the interpolation.

5.2.2 Lagrange Interpolating Polynomials

Newton’s divided-difference interpolating polynofsigan be reformulated to avoid the
computation of the divided differences:

L00=Y LX)

where

L(x)= Ii!x—x

J¢I

so that fom=1 andn=2,

FL(0) = 2L (%) + 2 £ (x,)
Xo =X X =X

X=X X=X, X=Xy X=X, X=X, X=X

(%) + fx) +

0 T X X T X X, = Xo X 7%, X, = Xo Xp =X

f,(x) = f(x,)

In practice, Newton’s polynomial is useful becaiis#fers insight to the behavior of formulas
of different orders, and the error estimate camberporated fairly easily. Therefore, Newton’s
method is good for exploratory computations. Fogle-use applications, the Newton and
Lagrange methods offer similar performance, altoluggrange is easier to program and does
not require the computation and storage of theddbidifferences. Lagrange is the preferred
method if the order of the interpolating polynomgaknown beforehand.
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Inverse interpolation — This is the problem of finding a valudor a given value of(x). Itis
simply a root-finding problem, solved by the methad Section 2.

Extrapolation — This is the process of estimating function valoetside of the range of the
given data. It is always risky and prone to laeg®rs.

5.2.3 Spline Interpolation

Instead of fitting high-order interpolating polyna@is to larges sets of data, we can fit lower-
order polynomials, ospline functionsto subsets of the data points. Generally, sflinetions
avoid the wild swings associated with high-ordelypomials while still passing through each of
the precisely-known data points.

Linear Splines

Connect the data points with straight lines, as

f(x)=f(x)+m(x—-x) forx <x<x,

where

_ i) - f(x)

== =0L...,
" Xisg =X | Aol

Note that the derivatives of linear splines areauottinuous at the data points.

Quadratic Splines
We would like the spline functions to have continsi@erivatives at the points where the spline

functions meet, callekinots To insure thain derivatives are continuous, splines of at |east
order are required. For the first derivative tacbatinuous, fit quadratic functions of the form

f,(X) =ax*+hx+c

to n+1 data points having intervals, resulting in a system af 8nknowns to determine. The
requirements on the spline functions are

1. The function values of adjacent spline functionsthe equal at the interior knots:

f(xy) = a'i—lxi2—1 +b_ X, ¢,y

f(x4)=ax:, +hx, +c

fori =2, 3, ...n. Thisresults in @2 equations.



2. The first and last splines must pass through tldepemts.

f(x,) = ax; +bx, +¢
f(Xn) = anxl’zl + ann +Cn

This condition results in 2 equations.

3. The first derivatives at the interior knots mustdogial for adjacent splines.
2a,_, %, +b =2ax, +b
fori =2, 3, ...n. Thisis anothen-1 conditions.

4. Assume that the second derivative@is zero, so thads = 0

The resulting system onh3quations in 8 unknowns can be solved for the unknown spline
function coefficients.

Cubic Splines

The most useful of the spline interpolations isahbic spline, where we fit cubic equations of
the form

fi(x)=ax’+bx*+gx+d,
between knots. For+1 data points there anantervals and 4 constraints:

The function values must be equal at the intemmt& (2-2 conditions)

The first and last spline functions must pass thhathe end points (2 conditions)
The first derivatives must be equal at the intekimots (-1 conditions)

The second derivatives must be equal at the imtleniots (-1 conditions)
Assume that the second derivatives at the endganetzero (2 conditions)

arnNpE

Applying these conditions results in, for each nndé:

_ Fx) 3 f'(x) _ 3
fi(x) = —B(Xi “x.) (% =X +—6(Xi “x_) (X =%.)
{ fL06a) _ ) —xi_l)}(xi %
X — X4 6
{ fL(x) _ £ —xi_l)}(X )
X — X4 6

The unknown second derivatives can be solved blyimgp
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(Xi - Xi—l) f "(Xi—l) + 2(Xi+1 - Xi—l) f "(Xi) + (Xi+l -X ) f "(Xi+1)
_pd (i) = T(6) | o T(%) = T(X)
X~ X X = X4

to each of the interior knots, resultingrifl equations for the-1 unknowns (recall that the
second derivatives at the ends are assumed tad)e 2ote that this is a tridiagonal system and
can be solved very efficiently through Thomas’ Aigam.
5.3 Fourier Approximation
A periodic functionis one for which

f@)y=f(@t+T)
where the constaftis called theeriodand is the smallest value for which the relatigmsh
holds. Examples include square and sawtooth walesimplest are sinusoidal functions.
Sinusoids can be expressed as sine or cosinedasctvith the general form

f(t) = A, +C, cos,t + )

whereAo is the mean valu&: is the amplitudegy is the angular frequency or how often the
cycles occur and is the phase shift. Recall thaj= 2rf, wheref = 1/T is the frequency of the
periodic function. This form can also be written a

f(t) = A, +A cosw,t+ B, sinajt

whereAs = C1 co9), By = -Ca sind so that) = tan*(-Bi/A1) andC, =/ A? + B? . The relationship
can also be written in the form

f(t) = A, +C,sin(wyt +9)

whered =0 + /2.

5.3.1 Fourier Approximation
Consider the case of fitting data to a linear lsastares model of the form
y(t) = A, +A cosw,t+ B, sinat +e

To determine the constams, A1 andB; that minimize the square of the residuals
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S = ZN:[yi - (Ab +A cosaptt B, Sinwot)]2

One can write the normal equations for this systehich forN equispaced intervalst reduce
to

N 0 0 ](A >y
0 N/2 0 A {=45> ycosmt
0 0 N/2|/B, D ysinat

So that

A =2 YIN
A = (2/N))_ ycoswt
B, = (2/N)D_ ysinat

Extending this result to the general model

y(t) = A, +A coswyt+ B, sinapt +A, cos2ayt+ B, sin2awt +...
...+ +A, cosma,t+ B, sinma,t

gives

A =2 yIN

=(2/N cosjawyt
A =(2/N)D ycosjw, —12 m
B, = (2/N)D_ysin jat

This is seldom done for regressidh¥ 2m + 1), but rather for interpolation or collocatifiv =
2m+1)

5.3.2 Continuous Fourier Series

Fourier showed that an arbitrary periodic functiam be represented by an infinite series of
sinusoids of harmonically related frequencies. d&@rnction with period,

f(t) = a, +a, cos,t) + b, sin(a,t) + a, cosRa,t) + b, Sin2at) +...
or

f(t)=a,+ i[ak coskayt) +b, sin(ka)ot)]
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where w,= 2r/T is thefundamental frequenand the integer multiples @, areharmonics
The coefficients above can be computed as

a, = (1/T)] f(r)dr

a = (2/T).T|' f (r)coska,t)dr
; k=1,2,...
b, = (2/T) j f (7) sin(kag,t)dr

This series can also be expressed in terms of expi@hfunctions as

f(t)=> Ce*

where
T/2 ]
C, =@WT) [f(m)e™dr andi=+-1

-T/2

Time and Frequency Domains

In thetime domairall of the frequency components are superimposeiti® same
amplitude/time scale. In tHeequency domaithe component sinusoids are decomposed and
represented as amplitudes and phase angles amhsaeft frequency.

5.3.3 Fourier Integral and Transform

Non-periodic or non-recurring signals exhibit a tbomous rather than discrete frequency
spectrum. Allow the exponential form of the Fou&eries to have a period that approaches
infinity, then

f(t)= Zi J'F (iw,)e“daw, (inverseFourierTransform)
n—oo

and

Fiw,) = _[ f(r)e""dr (FourierTransform)

—00

Fourier Series is applied to continuous, periomietfunctions and yields frequency domain
magnitudes at discrete frequencies, while the Bodransform is applied to continuous (not
necessarily periodic) time domain functions to gialcontinuous frequency domain function.
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5.3.4 Discrete Fourier Transform (DFT)

Most often we obtain functions by finite sets cddatete values. Consider a function known on
an interval from 0 td in N equally spaced subintervals with width= T/N. Subscript will
designate times at which samples are taken, sd»tissa sample df(t) taken at time,. The data
points are taken at=0, 1, 2, ...N-1. For such a sample a discrete Fourier Transtambe
written as

N-1

F :ﬁZ fe™" k=0.1..N -1, =27/N

n=0

N-1 )
f,=> Fe“" n=01,..N-1
k=0
To perform the calculations, use Euler’s Idenst§ = cosa+isina

F, =

Z|r

ZN: f [coskayn) —isin(kay,n)]

=z

g F. [coskwon) +i sin(ka)on)]

—h
1

k

1
o

The computational effort of this transform paipi®portional toN?, which increases rapidly as
the number of samples increases.

Fast Fourier Transform - The calculations of the DFT can be separated wveo @nd odd
expressions, and can be reduced to calculatioN&dkength sequences. This leads to a halving
of the computational effort each time it is dorethe data consists & intervals, wherd\ is a
power of 2, then this reduction can be carriech®ihdividual terms of the series, resulting in a
computational effort of the entire transformMibg.N, a huge savings.

When performing an FFT, the amount of data thaidkided and the rate at which it was
sampled determine both the frequency resolutiontla@dnaximum frequency at which reliable
results can be calculated.

The maximum frequency is determined by the samphitgAt. Nyquist said that functions
need to be sampled at least twice the highest émquof interest, or else the resulting FFT is
subject taaliasing Alternatively, the highest frequency componehtg can be relied on
correspond to the half the sampling rate. Soafghmpling rate iat, the highest frequency in
Hz that can be relied onfigsax= 1/(2At) = (N/2)/(NAt), whereN is the number of data points
taken at the sampling rate aNdt is the total time of the input data. A simple wayavoid
aliasing is to report only the first half of the FBpectrum and to double the values of the
magnitudes of the frequency components.
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The frequency resolution is directly related to tibial time datafo = 1/NAt. The FFT returns
frequencies in terms of an index. Dividing thedrdnteger byNAt gives the corresponding
frequency directly in Hz.

Pseudocode — Fast Fourier Transform

' The actual FFT itself, real-valued data stored in X
m = LOG(N)/LOG(2)
N2 =N
DOFOR k=1, m
N1 =N2
N2 = N2/2
angle=0
arg = 2*PI/N1

DOFOR j=0, N2-1
¢ = cos(angle)
s = -sin(angle)
DOFOR i =j, N-1, N1
kk =i+ N2
xt = x(i) - x(kk)
X(1) = x(i) - y(kk)
yt =y(i) - y(kk)
y(i) = y(i) + y(kk)
X(KK) = xt*c - yt*s
y(kK) = yt*c + xt*s
END DO
angle = (j+1)*arg
END DO
END DO
' Bit-reversal to unscramble the coefficients
j=0
DOFOR i =0, N-2
IF (i<J) THEN
xt = x(j)
X() = x(i)
x(i) = xt
yt=y())
y() = y()
y(i) =yt
END IF
k=N/2
DO
IF (k >=j+1) EXIT
j=jk
k =k/2
END DO
j =tk
END DO
DOFOR i =0, N-1
x(i) = x(i)/N
y(i) = y(i)/N
END DO
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