Simplex Method examples

Example 1

Maximize:	$Z = 150x_1 + 175x_2$	w/ slack variables:	$Z - 150x_1 - 175x_2 = 0$	(1)
Subject to:	$7x_1 + 11x_2 \le 77$		$7x_1 + 11x_2 + S_1 = 77$	(2)
	$10x_1 + 8x_2 \le 80$		$10x_1 + 8x_2 + S_2 = 80$	(3)
	$x_1 \leq 9$		$x_1 + S_3 = 9$	(4)
	$x_2 \leq 6$		$x_2 + S_4 = 6$	(5)

Initial non-basic variables (x_1 , x_2) appear in the objective function (1). Choose the variable with the largest negative coefficient (x_2) to enter the calculations and check the intercepts in the constraints (2-5) to see which variables leaves the calculations:

 S_1 : 77/11 = 7 S_2 : 80/8 = 10 S_3 : parallel to x_2 , no intercept S_4 : 6/1 = 6 – smallest non-negative intercept, closest vertex to current point

 S_4 is the leaving variable, x_2 is the entering variable. Solve Eq. (5) for x_2 , substitute into Eqs. (1-5) above to yield:

$Z - 150x_1 + 175S_4 - 1050 = 0$		
$7x_1 + S_1 - 11S_4 = 11$		(7)
$10x_1 + S_2 - 8S_4 = 32$	(8)	
$x_1 + S_3 = 9$		(9)
$x_2 + S_4 = 6$		(10)

Again choose the variable with the largest negative coefficient in the objective function (6), this time x_1 . Check intercepts:

 S_1 : 11/7 = 11/7 – smallest non-negative intercept, closest vertex to current point S_2 : 32/10 = 3.2 S_3 : 9/1 = 9 S_4 : parallel to x_1 , no intercept

 S_1 is the leaving variable, x_1 is the entering variable. Solve equation (7) for x_1 , substitute into Equations (6-10) above to yield:

 $Z + 21.4286S_1 - 60.7143S_4 - 1285.71 = 0 \quad (11)$ $x_1 + (1/7)S_1 - (11/7)S_4 = 11/7 \quad (12)$

1.42857
$$S_1 + S_2 + 7.71429S_4 = 16.2857$$
 (13)
-0.142857 $S_1 + S_3 + 1.57143S_4 = 7.42857$ (14)
 $x_2 + S_4 = 6$ (15)

Again choose the variable with the largest negative coefficient in the objective function (11), this time S_4 . Check intercepts:

 S_1 : (11/7)/(-11/7) = -1 S_2 : 16.2857/7.71429 = 2.1111 – smallest non-negative intercept S_3 : 7.42857/1.57143 = 4.72727 S_4 : 6/1 = 6

 S_4 enters, S_2 leaves... solving Eq. (13) for S_4 gives

 $S_4 = -0.185185S_1 - 0.129630S_2 + 2.1111$ (16)

Substituting into (11) gives:

 $Z + 32.6720S_1 + 7.870S_2 - 1413.88 = 0$ (17)

There are no more negative coefficients, so the method stops. S_1 and S_2 are non-basic variables, $S_1 = S_2 = 0$, and $Z_{max} = 1413.88$. Solving for the remaining variables using Eqs. (12-15) gives:

$$x_1 = 4.8889$$

 $S_3 = 4.1111$
 $x_2 = 3.8889$
 $S_4 = 2.1111$

Example 2 - text's solution

Maximize: $Z = 150x_1 + 175x_2$ w/ slack variables: $Z - 150x_1 - 175x_2 = 0$ (1)Subject to: $7x_1 + 11x_2 \le 77$ $7x_1 + 11x_2 + S_1 = 77$ (2) $10x_1 + 8x_2 \le 80$ $10x_1 + 8x_2 + S_2 = 80$ (3) $x_1 \le 9$ $x_1 + S_3 = 9$ $x_2 \le 6$ $x_2 + S_4 = 6$

Choose x_1 as the first entering variable. Checking the intercepts gives:

S₁: 77/7 = 11

 S_2 : 80/10 = 8 – smallest non-negative intercept

S₃: 9/1 = 9

S₄: parallel to x_1

 S_2 leaves and x_1 enters. Solve Eq. (3) for x_1 and substitute, giving:

 $Z - 55x_2 + 15S_2 - 1200 = 0 \quad (6)$ $5.40x_2 + S_1 - 0.70S_2 = 21 \quad (7)$ $x_1 + 0.80x_2 + 0.10S_2 = 8 \quad (8)$ $-0.80x_2 - 0.10S_2 + S_3 = 1 \quad (9)$ $x_2 + S_4 = 6 \quad (10)$

Choose x_2 to enter, check intercepts:

 $S_1: 21/5.40 = 3.8889 - \text{smallest non-negative intercept}$ $S_2: 8/(10/8) = 10$ $S_3: -10/8 = -1.25$ $S_4: 6/1 = 6$

 S_1 leaves, x_2 enters. Solve Eq. (7) for x_2 , substitute to find:

Z + 10.1852 S_1 + 7.87035 S_2 - 1413.89 = 0

There are no more negative coefficients, so the method stops. S_1 and S_2 are non-basic variables, $S_1 = S_2 = 0$, and $Z_{max} = 1413.89$. Solving for the remaining variables using Eqs. (7-10) gives:

 $x_2 = 3.8889$ $x_1 = 4.8889$ $S_3 = 4.1111$ $S_4 = 2.1111$

Example 3 – Problem 15.3 from the text

 $2.5x_1 + x_2 \le 9$

Maximize: $Z = 1.75$	$x_1 + 1.25x_2$	w/ slack variables:	$Z - 1.75x_1 - 1.25x_2 = 0$	(1)
----------------------	-----------------	---------------------	-----------------------------	-----

Subject to: $x_1 + 1.1x_2 \le 8$ $x_1 + 1.1x_2 + S_1 = 8$

$$2.5x_1 + x_2 + S_2 = 9 \tag{3}$$

(2)

Choose x1 as the entering variable, check intercepts:

 S_2 : 9/2.5 = 3.6 – smallest non-negative intercept

S2 leaves, x_1 enters. Solve Eq. (3) for x_1 substitute into Eqs. (1-3), yielding

$Z - 0.55 x_2 + 0.70 S_2 - 6.3 = 0$	(4)
$0.70 x_2 + S_1 - 0.40S_2 = 4.4$	(5)

 $x_1 + 0.40x_2 + 0.40S_2 = 3.6 \tag{6}$

Choose x_2 to enter, check intercepts:

 $S_1: 4.4/0.7 = 6.286 - \text{smallest non-negative intercept}$ $S_2: 3.6/0.4 = 9$

 S_1 leaves, x_2 enters. Solve Eq. (5) for x_2 , substitute into Eqs. (4-6):

 $Z + 0.786S_1 + 0.3857S_2 - 9.757 = 0$

There are no more negative coefficients, so the method stops. S_1 and S_2 are non-basic variables, $S_1 = S_2 = 0$, and $Z_{max} = 9.757$. Solving for the remaining variables using Eqs. (4-6) gives:

$$x_1 = 1.086$$

 $x_2 = 6.286$

Example 4 – Problem 15.4 from the text

Maximize: $Z = 6x_1 + 8x_2$ w/ slack variables: $Z - 6x_1 - 8x_2 = 0$ (1)Subject to: $5x_1 + 2x_2 \le 40$ $5x_1 + 2x_2 + S_1 = 40$ (2) $6x_1 + 6x_2 \le 60$ $6x_1 + 6x_2 + S_2 = 60$ (3) $2x_1 + 4x_2 \le 32$ $2x_1 + 4x_2 + S_3 = 32$ (4)

 x_2 enters, with intercepts:

 $S_1: 40/2 = 20$ $S_2: 60/6 = 10$

 S_3 : $32/4 = 8 - \text{smallest non-negative intercept}, S_3$ leaves

Solve Eq. (4) for x_1 and substitute, yielding

 $Z - 6x_1 + 2S_3 - 64 = 0$ (5) $4 x_1 + S_1 - (1/2)S_3 = 24$ (6) $3x_1 + S_2 - (3/2)S_3 = 12$ (7) $x_2 + (1/2)x_1 + (1/4)S_3 = 8$ (8)

 x_1 enters, with intercepts:

 $S_1: 24/4 = 6$

 S_2 : 12/3 = 4 – smallest non-negative intercept, S_2 leaves

S₃: 8/(1/2) = 16

Solve Eq. (6) for x_2 , yielding

 $Z + (2/3)S_2 + S_3 - 72 = 0$

No negative coefficients remain; the method stops. S_2 and S_3 are non-basic variables, $S_2 = S_3 = 0$, $Z_{max} = 72$. The remaining variables from Eqs (5-8) are

 $x_1 = 4$ $x_2 = 6$ $S_1 = 8$ Example 5

Maximize:	$Z = x_1 + x_2$	w/ slack variables:	$Z-x_1-x_2=0$	(1)
Subject to:	$x_1 + x_2 \ge 10$	(surplus variable)	$x_1 + x_2 - S_1 = 10$	(2)
	$x_1 \leq 8$		$x_1 + S_2 = 8$	(3)
	<i>x</i> ₂ ≤ 12		$x_2 + S_3 = 12$	(4)

 x_1 enters, check intercepts:

S₁: 10/1 = 10

 S_2 : 8/1 = 8 – smallest non-negative intercept, S_2 leaves

 S_3 : parallel to x_1

Which gives

$$Z + S_2 - x_2 - 8 = 0$$

$$x_2 - S_1 - S_2 = 2$$

$$x_1 + S_2 = 8$$

$$x_2 + S_3 = 12$$

 x_2 enters, check intercepts:

S₁: 2/-1 = -2

 S_3 : 12/1 = 12 – smallest non-negative intercept, S_3 leaves

Giving:

$$Z + S_2 + S_3 - 20 = 0$$

- S₁ - S₂ - S₃ = -10
$$x_1 + S_2 = 8$$

$$x_2 + S_3 = 12$$

There are no more negative coefficients in the objective function, so the method stops.

$$S_2 = S_3 = 0$$

 $Z_{max} = 20$
 $x_1 = 8$
 $x_2 = 12$
 $S_1 = 10$