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Section 2 – Roots of Equations 
 
In this section, we will look at finding the roots of functions.  The basic root-finding problem 
involves many concepts and techniques that will be useful in more advanced topics. 
 
Algebraic and Transcendental Functions  
 
A function of the form )(xfy  is algebraic if it can be expressed in the form: 
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where if is an ith-order polynomial in x.  Polynomials are a simple class of algebraic functions 
that are represented by 
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Where n is the order of the polynomial and the ai are constants.  For example,  
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A transcendental function is one that is not algebraic.  These types of functions include 
trigonometric, logarithmic, exponential or other functions.  Examples include 
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There are two distinct areas when it comes to finding the root of functions: 

1. Determination of the real roots of algebraic and transcendental functions, and usually 
only a single root, given its approximate location 

2. Determination of all of the real and complex roots of polynomials 
 
2.1 Graphical Methods 
 
Graphical methods are straightforward – simply graph the function f(x) and see where it crosses 
the x-axis.  This method will immediately yield a rough approximation of the value of the root, 
which can be refined through finer and more detailed graphs.  It is not necessarily precise, but it 
is very useful in order to determine a starting point for more sophisticated methods. 
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2.2 Closed Methods 
 
The following methods work on “closed” or bounded domains, defined by upper and lower 
values that bracket the root of interest. 
 
2.2.1 Bisection Method 
 
If f(x) is real and continuous in the 
interval from xl to xu, and f(ul) and f(xu) 
have opposite signs, then there must be at 
least one real root between xl and xu. 
 
The bisection method (or binary 
chopping, interval halving or Bolzano’s 
Method) divides the interval between the 
upper and lower bound in half to find the 
next approximate root xr,  
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which replaces the bound of the interval, either xl or xu, whose function value has the same sign 
as f(xr).  The method proceeds until the termination criterion is met 
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Pseudocode – Bisection method 
 

FUNCTION Bisection(xl, xu, xr, ea, imax) 
 DIM iter, es, fxl, fxu, fxr, xrold 
 iter=0 
 fxl=f(xl) 
 fxu=f(xu) 

xrold=xl+(xu-xl)/3  
 DO 

iter = iter+1 
xr = (xu + xl)/2  ‘ Bisection method 

  fxr = f(xr) 
  IF xr = 0 then 
   es = ABS(xr - xrold) 

ELSE 

xr 

f(x) 

xl xu 
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es = ABS((xr - xrold)/xr) 
  END IF 
‘ if fxr and fxu have different signs, replace lower bound 
  IF fxr*fxu < 0 THEN  

xl = xr 
fxl = fxr 

ELSE // replace upper bound 
xu = xr 
fxu = fxr 

  END IF 
xrold = xr 

 UNTIL iter ≥ imax OR es ≤ ea 
 Bisection = xr 
END Bisection 

 
Examples: 

1. Find all of the real roots of 
a. f(x) = sin(10x) + cos(3x) ; 0 ≤ x ≤ 5 
b. f(x) = -0.6x2 + 2.4x + 5.5 
c. f(x) = x10 – 1 ; 0 ≤ x ≤ 1.3 
d. f(x) = 4x3 – 6x2 + 7x -2.3 
e. f(x) = -26 + 85x – 91x2 + 44x3 - 8x4 + x5 

 
2.2.2 False Position Method 
 
The bisection method works fairly 
well, but convergence can be 
improved if the root lies close to one 
of the bounds.  Consider the figure 
shown.  By similar triangles,  
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Solving for xr gives 
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This new root estimate replaces the bound xu or xl whose function value has the same sign as 
f(xr).  The termination criterion is the same as for the bisection method. 
 

xu 
xl 

xr 

f(x) 
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The false position method is generally more efficient than bracketing, but not always (consider, 
for example, the function f(x) = x10-1 between x = 0 and x = 1.3).  The false position method can 
tend to be one-sided, leading to slow convergence.  If this appears to be a problem, try the 
modified false position method.  In this technique, if one bound is fixed for two successive 
iterations, bisect the interval once and proceed with the false position method. 
 
2.3 Open Methods 
 
The bracketing and false position methods are “closed” methods, that is, they “close” an interval 
and converge on the root from both ends of that interval.  Open methods require only one 
(sometimes two) starting values that do not bracket the root, making them self-starting and more 
efficient.  However, they can diverge and even move away from the root that is sought. 
 
2.3.1 Simple Fixed-Point Iteration 
 
Some functions can be manipulated to be of the form x = g(x), either algebraically or by adding x 
to both sides of f(x)=0.  If this is the case, one can converge on a root by iterating 
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While this method is easy to implement, it has several drawbacks.  Convergence can be slow; at 
best it is linear.  Also, the method can diverge, with convergence determined by the sign of the 
first derivative of g(x): if 1)(  xg  then the method converges, if 1)(  xg then fixed-point 
iteration diverges. 
 
Pseudocode – Fixed Point Iteration 

 
FUNCTION FixedPoint(x0, es, imax, iter, ea) 

xr = x0 
iter = 0 
DO  

iter = iter + 1 
xr = g(xrold) ‘ fixed point iteration 
IF iter>1 then 

IF xr = 0 then 
es = ABS(xr - xrold) 
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ELSE 
es = ABS((xr - xrold)/xr) 

END IF 
END IF 
xrold=xr  

END DO 
FixedPoint = xr 

END FixedPoint 
 
2.3.2 Newton-Raphson Method 
 
Newton-Raphson is the most widely 
used method of the root-finding 
formulas.  The tangent to the curve at 
the point xi, f(xi) is used to determine 
the next estimate for the root.  The 
slope of the curve at the point xi can 
be written as 
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with termination criterion 
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Newton-Raphson is quadratically convergent, that is, Ei+1≈Ei2.  The method is very fast and very 
efficient.  Care must be taken, however, since  

 N-R can diverge if the tangent to the curve takes it away from the root 
 N-R can converge slowly if multiple roots exist.  Two methods exist to deal with multiple 

roots: 
 

)(
)(

1
i
i

ii xf
xfmxx   

xi 
xr 

f(x) 



2 - 6 

 
where m is the multiplicity of the root, or  
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 It must be noted that Newton-Raphson method needs an analytical function to work since 

the derivatives must be explicitly determined. 
 
2.3.3 Secant Method 
 
This method is similar to Newton-Raphson, substituting a backward finite-difference 
approximation for the derivative: 
 

ii
ii

i xx
xfxfxf 





1

1 )()()(  
 
So that  
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The secant method requires two points to start, xi-1 and xi.  It also may diverge, similar to the 
Newton-Raphson method. 
 
2.3.4 Modified Secant Method 
 
Instead of using a finite difference approximation of the derivative in Newton-Raphson, estimate 
the derivative using a small perturbation of the independent variable: 
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2.3.5 Multiple Roots 
 
Multiple roots, for example f(x)=(x-a)(x-a)(x-b) cause difficulties when searching for roots.  
Bracketing methods do not work with multiple roots (why?).  In addition, f’(x)=0 at the root, 
causing problems for the Newton-Raphson and the Secant methods. 
 
2.3.6 Multivariate Methods 
 
Given a set of equations f(x) = 0 
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The first-order Taylor expansion can be written as  
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(࢞)ࡶ = ߲
߲࢞ (࢞)ࢌ =

ێۏ
ێێ
߲ۍ ଵ݂
ଵݔ߲

⋯ ߲ ଵ݂
⋮ேݔ߲ ⋮߲ ே݂

ଵݔ߲
⋯ ߲ ே݂

ۑےேݔ߲
ۑۑ
ې
 

 
Solving for δx, the multivariate Newton-Raphson can be expressed as 
௜ାଵ࢞  = ௜࢞ − ሾ(࢏࢞)ࡶሿିଵ(࢏࢞)ࢌ 
 
Example:  

(࢞)ࢌ = ൞
ଵݔ3 − cos(ݔଶݔଷ) − 3

2 = 0
ଵଶݔ4 − ଶଶݔ625 + ଷݔ2 − 1 = 0

ଷݔ20 + ݁ି௫భ௫మ + 9 = 0
 

 
(࢞)ࡶ = ቎

3 (ଷݔଶݔ) ଷsinݔ (ଷݔଶݔ) ଶsinݔ
ଵݔ8 ଶݔ1250− 2

ଶ݁ି௫భ௫మݔ− ଵ݁ି௫భ௫మݔ− 20
቏ 

 
If the analytical derivatives are not available, it is possible to approximate the Jacobian from two 
consecutive iterations (multivariate Secant method) 
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2.4 Roots of Polynomials 
 
Finding all of the roots of a polynomial is a common problem in numerical analysis.  Before 
delving into the methods, let’s first examine efficient ways to evaluate and manipulate 
polynomials. 
 
Evaluation of Polynomials 
 
Consider the following polynomial: 
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Evaluating the function as it is written involves 6 multiplications and three additions.  However, 
if it is written 
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it can be evaluated with only three multiplications and three additions.  In pseudocode, given a 
vector of coefficients a(j),  
 

DO FOR j=n to 0 STEP -1 
df = df * x + p 
p = p * x + a(j) 

END DO 
 
Note that in the pseudocode above, the derivative of the polynomial, df, is evaluated at the same 
time as the function. 
 
Polynomial Deflation 
 
Recall that polynomials can be divided in a manner similar to basic arithmetic, sometimes 
referred to as synthetic division:  
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So that (x2 + 2x - 24) = (x - 4)(x + 6).  In the example here, if (x - 4) was not a factor of the 
polynomial, there would have been a remainder. 
 
Using this idea, once we find a root of an nth-order polynomial we can divide it out (deflating 
the polynomial) and continue work with a new polynomial of order n-1.  However, this process 
is very sensitive to round-off error.  Forward deflation is where the roots are found from smallest 
to largest, backward deflation is where the roots are found and the polynomial deflated from 
largest to smallest.  Root polishing is a technique where the polynomial is deflated as the roots 
are found, and then those roots are used as better initial guesses for a second attempt, often in the 
opposite direction. 
 
Conventional Methods 
 
Since the roots of polynomials are often complex, this has to be a consideration for any root-
finding method applied.  Bracketing methods do not work at all for complex roots.  Newton-
Raphson (and its alternative methods) works well if complex arithmetic is implemented, with all 
of the same divergence possibilities already discussed. 
 
2.4.1 Müller’s Method 
 
Similar to the Secant Method, which projects a line through two function values, Müller’s 
Method projects a parabola through three values to estimate the root.  Fit a parabola of the form  
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where x2 is the root estimate, to intersect three points: [x0, f(x0)], [x1, f(x1)] and [x2, f(x2)] 
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now let 
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To find the new root estimate, x3, apply the alternate form of the quadratic formula: 
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which yields either two real roots or a complex conjugate pair.  By convention, the sign taken to 
be the same sign as b, which always yields the root estimate closer to x2.  Then 

 If only real roots are considered, for the next iteration choose the two points closest to the 
new root estimate x3 and apply the method again to refine the root estimate. 

 If complex roots are possible then proceed in sequence, that is, x1 → x0, x2 → x1, x3 → x2 
and go through the method again to determine a better root estimate. 

 
Pseudocode – Müller’s Method 
 

SUB Muller(xr, h, eps, maxit) 
x2 = xr 
x1 = xr + h*xr 
x0 = xr - h*xr 
DO 
 iter = iter +1 
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 h0 = x1 - x0 
 h1 = x2 - x1 
 d0 = (f(x1) - f(x0)) / h0 
 d1 = (f(x2) - f(x1)) / h1 
 a = (d1 - d0) / (h1 + h0) 
 b = a*h1 + d1 
 c = f(x2) 
 rad = SQRT(b*b - 4*a*c) 
 IF |b+rad| > |b-rad| THEN 
  den = b + rad 
 ELSE 
  den = b - rad 
 END IF 
 dxr = -2*c / den 
 xr = x2 + dxr 
 PRINT iter, xr 
 IF (|dxr| < eps*xr OR iter > maxit) EXIT 
 x0 = x1 
 x1 = x2 
 x2 = xr 
END DO 
END Muller 

 
2.4.2 Bairstow’s Method 
 
If we have a general polynomial  
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that is divided by a factor (x-t), it yields a polynomial that is one order lower 
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and i = n-1 to 0.  If t is a root of the original polynomial, then b0 = 0. 
 
Bairstow’s Method divides the polynomial by a quadratic factor, (x2 – rx – s) to yield 
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with remainder 
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where i = n-2 to 0.  The idea behind Bairstow’s Method is to drive the remainder to zero.  To do 
this, both b1 and b0 must be zero.  Expand both in first-order Taylor series: 
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so that  
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Now let 
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where rbc  /01 , rbsbc  //2 10 , sbc  /13 , etc., so that 
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 Solve these two equations for Δr and Δs, then use them to improve the initial guesses of r and s.  
At each step, the approximate errors are  
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When both of these error estimates fall below a specified value, then the root can be identified as  
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and the deflated polynomial with coefficients bi remains. Three possibilities exist: 
 

1. The polynomial is third-order or higher.  In this case, apply the method again to find the 
root(s). 

2. The remaining polynomial is quadratic – solve for the two remaining roots with the 
quadratic formula. 

3. The polynomial is linear.  In this case, the last root is x = -s/r 
 
Pseudocode – Bairstow’s Method 
 

SUB Bairstow(a, nn, es, rr, ss, maxit, re, im, ier) 
DIMENSION b(nn), c(nn) 
r= rr 
s = ss 
n = nn 
ier = 0 
ea1 = 1 
ea2 = 1 
DO 

IF n<3 OR iter>= maxit EXIT 
iter = 0 
DO 

iter = iter +1 
b(n) = a(n) 
b(n-1) = a(n-1) + r*b(n) 
c(n) = b(n) 
c(n-1) = b(n-1) + r*c(n) 
DO i = n-2, 0, -1 

b(i) = a(i) + r*b(i+1) + s*b(i+2) 
c(i) = b(i) + r*c(i+1) + s*c(i+2) 
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END DO 
det = c(2)*c(2) - c(3)*c(1) 
IF det <> 0 THEN 

dr = (-b(1)*c(2) + b(0)*c(3))/det 
ds = (-b(0)*c(2) + b(1)*c(1))/det 
r = r + dr 
s = s + ds 
IF r<>0 THEN ea1 = ABS(dr/r)*100 
IF s<>0 THEN ea2 = ABS(ds/s)*100 

ELSE 
r = r + 1 
s = s + 1 
iter = 0 

END IF 
IF ea1 <= es AND ea2 <=es OR iter >= maxit EXIT 

END DO 
CALL QuadRoot(r, s, r1, i1, r2, i2) 
re(n) = r1 
im(n) = i1 
re(n-1) = r2 
im(n-1) = i2 
n = n-2 
DO i = 0, n 

a(i) = b(i+2) 
END DO 

END DO 
IF iter < maxit THEN 

IF n = 2 THEN 
r = -a(1)/a(2) 
s = -a(0)/a(2) 
CALL Quadroot(r, s, r1, i1, r2, i2) 
re(n) = r1 
im(n) = i1 
re(n-1) = r2 
im(n-1) = i2 

ELSE 
re(n) = -a(0)/a(1) 
im(n) = 0 

END IF 
ELSE  

ier = 1 
END IF 
End Bairstow 
 
SUB Quadroot(r, s, r1, i1, r2, i2) 
disc = r*r + 4*s 
IF disc > 0 THEN 
 r1 = (r + SQRT(disc))/2 
 r2 = (r - SQRT(disc))/2 
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 i1 = 0 
 i2 = 0 
ELSE 
 r1 = r/2 
 r2 = r1 
 i1 = SQRT(ABS(disc))/2 
 i2 = -i1 
END IF 
END Quadroot 


