
2 - 1

Section 2 – Roots of Equations

In this section, we will look at finding the roots of functions. The basic root-finding problem
involves many concepts and techniques that will be useful in more advanced topics.

Algebraic and Transcendental Functions

A function of the form)(xfy  is algebraic if it can be expressed in the form:

0... 01
2

2
1

1   fyfyfyfyf n
n

n
n

n
n

where if is an ith-order polynomial in x. Polynomials are a simple class of algebraic functions
that are represented by

n
nn xaxaxaxaaxf  ...)(3

3
2

210

Where n is the order of the polynomial and the ai are constants. For example,

632
6

2
2

75)(
5.737.21)(

xxxxf
xxxf




A transcendental function is one that is not algebraic. These types of functions include
trigonometric, logarithmic, exponential or other functions. Examples include

)5.03sin()(
1ln)(

2.0
2




 xexf
xxf

x

There are two distinct areas when it comes to finding the root of functions:

1. Determination of the real roots of algebraic and transcendental functions, and usually
only a single root, given its approximate location

2. Determination of all of the real and complex roots of polynomials

2.1 Graphical Methods

Graphical methods are straightforward – simply graph the function f(x) and see where it crosses
the x-axis. This method will immediately yield a rough approximation of the value of the root,
which can be refined through finer and more detailed graphs. It is not necessarily precise, but it
is very useful in order to determine a starting point for more sophisticated methods.

2 - 2

2.2 Closed Methods

The following methods work on “closed” or bounded domains, defined by upper and lower
values that bracket the root of interest.

2.2.1 Bisection Method

If f(x) is real and continuous in the
interval from xl to xu, and f(ul) and f(xu)
have opposite signs, then there must be at
least one real root between xl and xu.

The bisection method (or binary
chopping, interval halving or Bolzano’s
Method) divides the interval between the
upper and lower bound in half to find the
next approximate root xr,

2
ul

r
xxx 

which replaces the bound of the interval, either xl or xu, whose function value has the same sign
as f(xr). The method proceeds until the termination criterion is met

new
r

old
r

new
ra x

xx 

Pseudocode – Bisection method

FUNCTION Bisection(xl, xu, xr, ea, imax)
 DIM iter, es, fxl, fxu, fxr, xrold
 iter=0
 fxl=f(xl)
 fxu=f(xu)

xrold=xl+(xu-xl)/3
 DO

iter = iter+1
xr = (xu + xl)/2 ‘ Bisection method

 fxr = f(xr)
 IF xr = 0 then
 es = ABS(xr - xrold)

ELSE

xr

f(x)

xl xu

2 - 3

es = ABS((xr - xrold)/xr)
 END IF
‘ if fxr and fxu have different signs, replace lower bound
 IF fxr*fxu < 0 THEN

xl = xr
fxl = fxr

ELSE // replace upper bound
xu = xr
fxu = fxr

 END IF
xrold = xr

 UNTIL iter ≥ imax OR es ≤ ea
 Bisection = xr
END Bisection

Examples:

1. Find all of the real roots of
a. f(x) = sin(10x) + cos(3x) ; 0 ≤ x ≤ 5
b. f(x) = -0.6x2 + 2.4x + 5.5
c. f(x) = x10 – 1 ; 0 ≤ x ≤ 1.3
d. f(x) = 4x3 – 6x2 + 7x -2.3
e. f(x) = -26 + 85x – 91x2 + 44x3 - 8x4 + x5

2.2.2 False Position Method

The bisection method works fairly
well, but convergence can be
improved if the root lies close to one
of the bounds. Consider the figure
shown. By similar triangles,

ur
u

lr
l

xx
xf

xx
xf


)()(

Solving for xr gives

)()(
))((

)()(
)()(

ul
ulu

u
ul

ullu
r xfxf

xxxfxxfxf
xfxxfxx 




This new root estimate replaces the bound xu or xl whose function value has the same sign as
f(xr). The termination criterion is the same as for the bisection method.

xu
xl

xr

f(x)

2 - 4

The false position method is generally more efficient than bracketing, but not always (consider,
for example, the function f(x) = x10-1 between x = 0 and x = 1.3). The false position method can
tend to be one-sided, leading to slow convergence. If this appears to be a problem, try the
modified false position method. In this technique, if one bound is fixed for two successive
iterations, bisect the interval once and proceed with the false position method.

2.3 Open Methods

The bracketing and false position methods are “closed” methods, that is, they “close” an interval
and converge on the root from both ends of that interval. Open methods require only one
(sometimes two) starting values that do not bracket the root, making them self-starting and more
efficient. However, they can diverge and even move away from the root that is sought.

2.3.1 Simple Fixed-Point Iteration

Some functions can be manipulated to be of the form x = g(x), either algebraically or by adding x
to both sides of f(x)=0. If this is the case, one can converge on a root by iterating

)(1 ii xgx 

with termination criterion

1
1


 

i
ii

a x
xx

While this method is easy to implement, it has several drawbacks. Convergence can be slow; at
best it is linear. Also, the method can diverge, with convergence determined by the sign of the
first derivative of g(x): if 1)( xg then the method converges, if 1)( xg then fixed-point
iteration diverges.

Pseudocode – Fixed Point Iteration

FUNCTION FixedPoint(x0, es, imax, iter, ea)

xr = x0
iter = 0
DO

iter = iter + 1
xr = g(xrold) ‘ fixed point iteration
IF iter>1 then

IF xr = 0 then
es = ABS(xr - xrold)

2 - 5

ELSE
es = ABS((xr - xrold)/xr)

END IF
END IF
xrold=xr

END DO
FixedPoint = xr

END FixedPoint

2.3.2 Newton-Raphson Method

Newton-Raphson is the most widely
used method of the root-finding
formulas. The tangent to the curve at
the point xi, f(xi) is used to determine
the next estimate for the root. The
slope of the curve at the point xi can
be written as

1

)()(


ii
i

i xx
xfxf

so that

)(
)(

1
i
i

ii xf
xfxx 

with termination criterion

1
1


 

i
ii

a x
xx

Newton-Raphson is quadratically convergent, that is, Ei+1≈Ei2. The method is very fast and very
efficient. Care must be taken, however, since

 N-R can diverge if the tangent to the curve takes it away from the root
 N-R can converge slowly if multiple roots exist. Two methods exist to deal with multiple

roots:

)(
)(

1
i
i

ii xf
xfmxx 

xi
xr

f(x)

2 - 6

where m is the multiplicity of the root, or

 )()()(
)()(

21
iii

ii
ii xfxfxf

xfxfxx 


 It must be noted that Newton-Raphson method needs an analytical function to work since

the derivatives must be explicitly determined.

2.3.3 Secant Method

This method is similar to Newton-Raphson, substituting a backward finite-difference
approximation for the derivative:

ii
ii

i xx
xfxfxf 





1

1)()()(

So that

)()(
))((

1
1

1
ii
iii

ii xfxf
xxxfxx 






The secant method requires two points to start, xi-1 and xi. It also may diverge, similar to the
Newton-Raphson method.

2.3.4 Modified Secant Method

Instead of using a finite difference approximation of the derivative in Newton-Raphson, estimate
the derivative using a small perturbation of the independent variable:

i
iii

i x
xfxxfxf 

)()()(

)()(
)(

1
iii

ii
ii xfxxf

xfxxx  


2 - 7

2.3.5 Multiple Roots

Multiple roots, for example f(x)=(x-a)(x-a)(x-b) cause difficulties when searching for roots.
Bracketing methods do not work with multiple roots (why?). In addition, f’(x)=0 at the root,
causing problems for the Newton-Raphson and the Secant methods.

2.3.6 Multivariate Methods

Given a set of equations f(x) = 0

ଵ݂(ݔଵ, … (ேݔ = ଵ݂(࢞) = 0
ଶ݂(ݔଵ, … (ேݔ = ଶ݂(࢞) = 0

⋯
ே݂(ݔଵ, … (ேݔ = ே݂(࢞) = 0

The first-order Taylor expansion can be written as

࢞)ࢌ + (࢞ߜ = (࢞)ࢌ + ࢞ߜ(࢞)ࡶ
where the Jacobian of f(x) is

(࢞)ࡶ = ߲
߲࢞ (࢞)ࢌ =

ێۏ
ێێ
߲ۍ ଵ݂
ଵݔ߲

⋯ ߲ ଵ݂
⋮ேݔ߲ ⋮߲ ே݂

ଵݔ߲
⋯ ߲ ே݂

ۑےேݔ߲
ۑۑ
ې

Solving for δx, the multivariate Newton-Raphson can be expressed as
௜ାଵ࢞ = ௜࢞ − ሾ(࢏࢞)ࡶሿିଵ(࢏࢞)ࢌ

Example:

(࢞)ࢌ = ൞
ଵݔ3 − cos(ݔଶݔଷ) − 3

2 = 0
ଵଶݔ4 − ଶଶݔ625 + ଷݔ2 − 1 = 0

ଷݔ20 + ݁ି௫భ௫మ + 9 = 0

(࢞)ࡶ = ቎

3 (ଷݔଶݔ) ଷsinݔ (ଷݔଶݔ) ଶsinݔ
ଵݔ8 ଶݔ1250− 2

ଶ݁ି௫భ௫మݔ− ଵ݁ି௫భ௫మݔ− 20
቏

If the analytical derivatives are not available, it is possible to approximate the Jacobian from two
consecutive iterations (multivariate Secant method)

2 - 8

௜௝ܬ = ߲ ௜݂(ݔ௜ , ⋯ , (ேݔ

௝ݔ߲
= ௜݂ቀݔଵ(௡), ⋯ , ,௝(௡ାଵ)ݔ ⋯ ே(௡)ቁݔ − ௜݂ቀݔଵ(௡), ⋯ , ,௝(௡)ݔ ⋯ ே(௡)ቁݔ

௝ݔ
(௡ାଵ) − ௝ݔ

(௡)

2.4 Roots of Polynomials

Finding all of the roots of a polynomial is a common problem in numerical analysis. Before
delving into the methods, let’s first examine efficient ways to evaluate and manipulate
polynomials.

Evaluation of Polynomials

Consider the following polynomial:

01
2

2
3

33)(axaxaxaxf 

Evaluating the function as it is written involves 6 multiplications and three additions. However,
if it is written

01233))(()(axaxaxaxf 

it can be evaluated with only three multiplications and three additions. In pseudocode, given a
vector of coefficients a(j),

DO FOR j=n to 0 STEP -1
df = df * x + p
p = p * x + a(j)

END DO

Note that in the pseudocode above, the derivative of the polynomial, df, is evaluated at the same
time as the function.

Polynomial Deflation

Recall that polynomials can be divided in a manner similar to basic arithmetic, sometimes
referred to as synthetic division:

2 - 9

6

0
)246(

246
)4(
242)4(

2
2








x

x
x

xx
xxx

So that (x2 + 2x - 24) = (x - 4)(x + 6). In the example here, if (x - 4) was not a factor of the
polynomial, there would have been a remainder.

Using this idea, once we find a root of an nth-order polynomial we can divide it out (deflating
the polynomial) and continue work with a new polynomial of order n-1. However, this process
is very sensitive to round-off error. Forward deflation is where the roots are found from smallest
to largest, backward deflation is where the roots are found and the polynomial deflated from
largest to smallest. Root polishing is a technique where the polynomial is deflated as the roots
are found, and then those roots are used as better initial guesses for a second attempt, often in the
opposite direction.

Conventional Methods

Since the roots of polynomials are often complex, this has to be a consideration for any root-
finding method applied. Bracketing methods do not work at all for complex roots. Newton-
Raphson (and its alternative methods) works well if complex arithmetic is implemented, with all
of the same divergence possibilities already discussed.

2.4.1 Müller’s Method

Similar to the Secant Method, which projects a line through two function values, Müller’s
Method projects a parabola through three values to estimate the root. Fit a parabola of the form

cxxbxxaxf )()()(2
2

2

where x2 is the root estimate, to intersect three points: [x0, f(x0)], [x1, f(x1)] and [x2, f(x2)]

ccxxbxxaxf
cxxbxxaxf
cxxbxxaxf





)()()(
)()()(
)()()(

22
2

222
21

2
211

20
2

200

2 - 10

now let

12
12

1

01
01

0

121
010

)()(

)()(

xx
xfxf

xx
xfxf

xxh
xxh












so that

)(2
11

01
01

xfc
ahb

hha








To find the new root estimate, x3, apply the alternate form of the quadratic formula:

acbb
cxx

or
acbb

cxx

4
2

4
2

223

223







which yields either two real roots or a complex conjugate pair. By convention, the sign taken to
be the same sign as b, which always yields the root estimate closer to x2. Then

 If only real roots are considered, for the next iteration choose the two points closest to the
new root estimate x3 and apply the method again to refine the root estimate.

 If complex roots are possible then proceed in sequence, that is, x1 → x0, x2 → x1, x3 → x2
and go through the method again to determine a better root estimate.

Pseudocode – Müller’s Method

SUB Muller(xr, h, eps, maxit)
x2 = xr
x1 = xr + h*xr
x0 = xr - h*xr
DO
 iter = iter +1

2 - 11

 h0 = x1 - x0
 h1 = x2 - x1
 d0 = (f(x1) - f(x0)) / h0
 d1 = (f(x2) - f(x1)) / h1
 a = (d1 - d0) / (h1 + h0)
 b = a*h1 + d1
 c = f(x2)
 rad = SQRT(b*b - 4*a*c)
 IF |b+rad| > |b-rad| THEN
 den = b + rad
 ELSE
 den = b - rad
 END IF
 dxr = -2*c / den
 xr = x2 + dxr
 PRINT iter, xr
 IF (|dxr| < eps*xr OR iter > maxit) EXIT
 x0 = x1
 x1 = x2
 x2 = xr
END DO
END Muller

2.4.2 Bairstow’s Method

If we have a general polynomial

n
nn xaxaxaaxf  ...)(2

210

that is divided by a factor (x-t), it yields a polynomial that is one order lower

12
2101 ...)(  n

nn xbxbxbbxf

where

tbab
ab

iii
nn

1


and i = n-1 to 0. If t is a root of the original polynomial, then b0 = 0.

Bairstow’s Method divides the polynomial by a quadratic factor, (x2 – rx – s) to yield

22
4322 ...)(  n

nn xbxbxbbxf

2 - 12

with remainder

01)(brxbR 

and

21
11









iiii
nnn

nn

sbrbab
rbab

ab

where i = n-2 to 0. The idea behind Bairstow’s Method is to drive the remainder to zero. To do
this, both b1 and b0 must be zero. Expand both in first-order Taylor series:

ss
brr

bbssrrb
ss

brr
bbssrrb










00
00

1111

),(
),(

so that

0
00

111

bss
brr

b
bss

brr
b










Now let

21
11









iiii
nnn

nn

scrcbc
rcbc

bc

where rbc  /01 , rbsbc  //2 10 , sbc  /13 , etc., so that

021
132

bscrc
bscrc




2 - 13

 Solve these two equations for Δr and Δs, then use them to improve the initial guesses of r and s.
At each step, the approximate errors are

s
s

r
r

sa

ra





,

,




When both of these error estimates fall below a specified value, then the root can be identified as

2
42 srrx 

and the deflated polynomial with coefficients bi remains. Three possibilities exist:

1. The polynomial is third-order or higher. In this case, apply the method again to find the
root(s).

2. The remaining polynomial is quadratic – solve for the two remaining roots with the
quadratic formula.

3. The polynomial is linear. In this case, the last root is x = -s/r

Pseudocode – Bairstow’s Method

SUB Bairstow(a, nn, es, rr, ss, maxit, re, im, ier)
DIMENSION b(nn), c(nn)
r= rr
s = ss
n = nn
ier = 0
ea1 = 1
ea2 = 1
DO

IF n<3 OR iter>= maxit EXIT
iter = 0
DO

iter = iter +1
b(n) = a(n)
b(n-1) = a(n-1) + r*b(n)
c(n) = b(n)
c(n-1) = b(n-1) + r*c(n)
DO i = n-2, 0, -1

b(i) = a(i) + r*b(i+1) + s*b(i+2)
c(i) = b(i) + r*c(i+1) + s*c(i+2)

2 - 14

END DO
det = c(2)*c(2) - c(3)*c(1)
IF det <> 0 THEN

dr = (-b(1)*c(2) + b(0)*c(3))/det
ds = (-b(0)*c(2) + b(1)*c(1))/det
r = r + dr
s = s + ds
IF r<>0 THEN ea1 = ABS(dr/r)*100
IF s<>0 THEN ea2 = ABS(ds/s)*100

ELSE
r = r + 1
s = s + 1
iter = 0

END IF
IF ea1 <= es AND ea2 <=es OR iter >= maxit EXIT

END DO
CALL QuadRoot(r, s, r1, i1, r2, i2)
re(n) = r1
im(n) = i1
re(n-1) = r2
im(n-1) = i2
n = n-2
DO i = 0, n

a(i) = b(i+2)
END DO

END DO
IF iter < maxit THEN

IF n = 2 THEN
r = -a(1)/a(2)
s = -a(0)/a(2)
CALL Quadroot(r, s, r1, i1, r2, i2)
re(n) = r1
im(n) = i1
re(n-1) = r2
im(n-1) = i2

ELSE
re(n) = -a(0)/a(1)
im(n) = 0

END IF
ELSE

ier = 1
END IF
End Bairstow

SUB Quadroot(r, s, r1, i1, r2, i2)
disc = r*r + 4*s
IF disc > 0 THEN
 r1 = (r + SQRT(disc))/2
 r2 = (r - SQRT(disc))/2

2 - 15

 i1 = 0
 i2 = 0
ELSE
 r1 = r/2
 r2 = r1
 i1 = SQRT(ABS(disc))/2
 i2 = -i1
END IF
END Quadroot

