Section 8 — Partial Differential Equations

Partial differential equationsire those that involve more than one independamndhe.
Because of their widespread application in engingerve will concentrate on linear, second-
order partial differential equations of the form
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whereA, B andC are in general functions @fandy, and D can be a function rfy, du/dxand
ou/oy.

If B>-4AC< 0, the equation islliptic, such as the Laplace Equation
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which describes a steady-state condition in twoedisions. 1B%>-4AC= 0, the equation is
parabolig such as the heat conduction equation
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If B>-4AC> 0 then the equation g/perbolic such as the wave equation

7.1 The Laplace Equation

Consider a thin plate of thickneag. The temperature of the plate at any positigry)(can be
shown to be an instance of the Laplace equation
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or with source/sink(x, y) it is Poisson’s equation
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The component of the heat flux vector in tltgrection is given by Fourier’'s Law
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(wherei isx ory) and describes the flow of heat in any directlois, the coefficient of thermal
diffusivity, p is the densityc is the heat capacity, is the temperaturd, = H/pcV whereH is
heat and/ is volume. Alsok’ =koc.

The Laplace equation can be approximated throuwte filifferences. Compute the second
derivatives a®(h?)
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And Laplace’s equation becomes
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If AX = Ay, this is the_aplacian difference equation

Ty Ty *T

i i,j+1

+T ;4 —4T,; =0

This can be applied at all of the interior nodeghefplate. In addition, boundary conditions
must be specified at all the boundary points ireotd obtain a unique solution.

If the temperature at a boundary point is knowrnri@dlet boundary condition), then the
temperature at that point is simply set to thatigand moved to the right hand side of the
equation. If the derivative of the temperaturether heat flux, is known (Neumann boundary
condition), for example
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Case 2: Node at internal corner with convection
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Case 3: Node at plane surface with convection

2hAx hAXx

(2Ti—1,j +Ti,j+1+Ti,j—1)+ T, _2(T+2)-I-i,i =0

T. h




Case 4: Node at external corner with convection
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In Case 3 and Case 5 above, to model adiabatiacgsr surfaces of symmetry beir q”
equal to zero.

7.1.1 Solution Methods

Most numerical solutions of the Laplace equatioine systems that are large — a 5x5 grid
with Dirichlet boundary conditions yields 9 equatan 9 unknowns; a 10x10 grid yields 64
equations. A significant number of entries of tha&trix are zero, making general methods
inefficient for storage and solution. Gauss-Seigi@lopular (applied to Laplace’s equation,
Gauss-Seidel is called theebmann methgd Convergence is assumed because of the strong
diagonal dominance of the Laplace difference equatOver-relaxation is often used to
accelerate convergence.

7.1.2 Secondary Variables

The primary variable for the Laplace equation teiot the quantity of interest. Here we solve
for temperature but often the heat flux is of manportance. Once the temperature distribution
is known the heat flux can be found at any poiatagntral-difference approximations:
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Care must be taken to consider the signg @hdagx to find 6 in the proper quadrant.
7.1.3 Irregular Boundary Conditions

This general technique of approximating partialedéntial equations is fairly straightforward
for orthogonal grids and constant boundary conaiolf the boundaries of the domain are
curved, one can formulate the boundary conditiarterms of variable grid spacing that closely
matches the shape of the boundary. Derivative tanynconditions, in particular, are difficult to
express over curved boundaries. Often very firdsgire employed instead of writing the
derivative conditions for curved boundaries.

7.2 Parabolic Equations

A common example of parabolic partial differengguations is the heat conduction equation
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As with elliptic equations, finite difference apgnmations can be substituted for the partial
derivatives. However, now we have to account fanges in both space and time. The spatial
second derivative can be approximated as
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The superscripts in this notation denote time.sHpiproximation has err@(Ax?). The time
derivative can be approximated with a forward défece (Euler’'s method)
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With errorO(At). Substituting into the heat conduction equagves
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where A = kAt /(AX)?. This equation can be applied to all of the iotenodes and provides an

explicit way to compute the values at each nodefature time based on the present values at
neighboring nodes.

Convergence and Stability

Convergence is defined as the condition wherxeandAt approach zero, the approximation
becomes closer to the true solution. Stabilityaéned as the condition where errors at any

stage of the calculation are not amplified buteatire attenuated as the computation progresses.

To ensure bothd < 1/2 or At < (Ax)? /(2k) . However, using a time step this large often sead
to oscillation, which can usually be avoided by lihetation A <1/4. To minimize the

truncation error, it is best that< 1/6. Using a step size this small, however, greaityaases
the computational burden.

Derivative Boundary Conditions

As for elliptic equations, imaginary points outsimfethe domain can be used with symmetry
arguments to successfully model derivative boundangditions, for example
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Parabolic Equations in Two Dimensions
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This equation gives the temperature distributiothefface of a heated plate. Substitute finite
difference approximations as above. The converand stability condition is now
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7.2.1 Implicit Methods
Implicit methods approximate the spatial derivatiwehe future timé+1, with errorO(Ax?)
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So that

er;l _2-]-i|+1 +1-||_;_1 _ -I-i|+l _-I-il

(Ax)? At

or

AT @2 AT =T 5 A=k
@)

This equation applies to all interior nodes. Tingt fand last nodes must account for the
boundary conditions. If the temperature is givetha first and last nodes,

T =fo(t) and T)M=f, (™)

This givesm equations iim unknowns at each time step. The equations atiegonal and
symmetric, so they can be solved very efficientBradient boundary conditions, however,
result in a banded set of equations that may natidiegonal nor symmetric.

Crank-Nicholson Method
The Crank-Nicholson method is an implicit methodttis second-order accurate in both space

and time. In this method, the difference approxioms are computed at the midpoint of each
time interval. To do this, first approximate tivae derivative as usual
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beginning and end of the time increment
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This equation applies to all of the interior nodasyndary conditions take care of the first and
last nodes. Even though this formulation is manalicated than the simple implicit method, it
is much more accurate in practice.

Implicit Methods in Two Dimensions

TheAlternating Direction Implicitf ADI) method provides a way to solve parabolicaepns in

two dimensions using tridiagonal matrices for Dhtet boundary conditions. To do this, execute
each time increment in two half-steps. For thet firalf-step, approximate the heat conduction
equation witho?T/ox? expressed explicitly an@fT/oy? written implicitly:
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The second half-step is taken implicitlydfir/ox? and explicitly ind?T/oy?:
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Both of these half-steps results in tridiagonatesys of equations for Dirichlet boundary
conditions, and the solution process is efficient.

7.3 Finite-Element Method

In finite-difference methods, the domain is dividetb a grid of discrete points called nodes,
and the PDE is written for each node and its neaghlg nodes. While this pointwise approach
is conceptually easy, it is difficult to apply tgssems with irregular geometry or unusual
boundary conditions.

As opposed to finite-difference methotlsjte-element methodtivide the domain into
similarly-shaped regions, elementsand an approximate solution for the PDE is dgwedifor
each of the elements. The total solution is geadray linking together, aissemblingthe
individual solutions, taking care to ensure cortinat the inter-element boundaries.



7.3.1 The General Approach
The following steps are a general outline of tingd+element approach:
Discretization

Discretization involves dividing the solution domanto finite elements The intersection points
of the lines that make up the element are caltedkes and the sides themselves are catiedal
lines(in one or two dimensions) aondal planegin three dimensions).

Element Equations

An approximate solution for the PDE must be obtaifoe the element. First choose an
appropriate function with unknown coefficients fgpeoximate the solution, then evaluate the
coefficients to approximate the solution in an wyati manner.

Because they are easy to manipulate, polynomialsféen used as approximating functions. As
an example, for the one-dimensional case, the sshplternative is a first-order polynomial:
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Whereu(x) is the dependent variabl,anda; are constants andis the independent variable.
The function must pass through the values(gj at the end points of the elemenkaandx;
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Solving these equations gives
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Collecting terms, these equations can be written as
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The functionu is called arapproximation or shape functipandN; andN. are interpolating
functions. In this exampleis the first order Lagrange interpolating polynamand provides
the means to calculate any value betwa@®) andu(x) between the nodes. To complete any
formulation, derivatives and integrals of the shapetions are needed:
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Once the interpolation function is chosen, the #qoa governing the behavior of the element
are developed, that is, the equation is fit tosthleition of the underlying differential equation.
Several methods are used depending on the comptehxte differential equation, such as the
direct method, the method of weighted residualsthadsariational approach, each of which is
closely related to curve-fitting.

The resulting equations will often consist of addinear algebraic equations that can be
expressed in matrix form
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Wherek is the element property or stiffness mattxs a column vector of unknowns at the
nodes andF is a column vector of the effects of externaluefices applied at the nodes. These
equations may be non-linear, but for the vast nitgjof practical problems linear systems
suffice.

Assembly

After the individual element equations are detesdjrthey must be linked together or assembled
to characterize the overall behavior of the systdims is done in a manner that requires the
solutions for contiguous elements to match sotti@tinknown values (and sometimes their
derivatives) at the common nodes are equivalestyring continuous overall solutions. When

all of the element equations are assembled, thay floe global oassemblage equations
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Boundary Conditions

The assemblage equations are modified to accouthésystem boundary conditions. Dirichlet
conditions remove known values from the list of mons and modify the right-hand side.
Gradient boundary conditions impose additional trairgts on the solution at two or more
nodes. The result is a different, often slighédguced, set of equations
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Solution

The solution of the equations above can be obtamt#dmany techniques. In particular, if
many different sets of external influences areg@pplied to the same system, LU
decomposition methods are an efficient choicghdfequations can be configured to produce a
banded matrix, highly efficient schemes have besameldped to provide quick and accurate
solutions.

Post-processing

Once the nodal values are found, the results cgmdsented in tabular or graphical form. In
addition, secondary variables (such as heat flumechanical strain or stress) can be calculated
and displayed.

Even though the steps above are very general aifeegommon to all implementations of the

finite element method. Specific examples and mnois, and much more detail, are left to other
courses.
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