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Section 8 – Partial Differential Equations 
 
Partial differential equations are those that involve more than one independent variable.  
Because of their widespread application in engineering, we will concentrate on linear, second-
order partial differential equations of the form 
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where A, B and C are in general functions of x and y, and D can be a function of x, y, xu ∂∂ / and 

yu ∂∂ / . 

 
If  B2-4AC < 0, the equation is elliptic, such as the Laplace Equation 
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which describes a steady-state condition in two dimensions.  If B2-4AC = 0, the equation is 
parabolic, such as the heat conduction equation 
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If B2-4AC > 0 then the equation is hyperbolic, such as the wave equation 
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7.1 The Laplace Equation 
 
Consider a thin plate of thickness ∆z.  The temperature of the plate at any position (x, y) can be 
shown to be an instance of the Laplace equation 
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or with source/sink f(x, y) it is Poisson’s equation 
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The component of the heat flux vector in the i direction is given by Fourier’s Law 
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(where i is x or y) and describes the flow of heat in any direction, k is the coefficient of thermal 
diffusivity, ρ is the density, c is the heat capacity, T is the temperature, T = H/ρcV where H is 
heat and V is volume.  Also, ckk ρ=′ . 

 
The Laplace equation can be approximated through finite differences.  Compute the second 
derivatives as O(h2) 
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And Laplace’s equation becomes 
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If ∆x = ∆y, this is the Laplacian difference equation:  
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This can be applied at all of the interior nodes of the plate.  In addition, boundary conditions 
must be specified at all the boundary points in order to obtain a unique solution. 
 
If the temperature at a boundary point is known (Dirichlet boundary condition), then the 
temperature at that point is simply set to that value and moved to the right hand side of the 
equation.  If the derivative of the temperature, or the heat flux, is known (Neumann boundary 
condition), for example 
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So that, writing the Laplacian difference equation at T0,j gives 
 

0
,01,01,0,1

,01,01,0,1,1

242

or     

042

x

T
xTTTT

TTT
x

T
xTT

jjjj

jjjjj

∂
∂∆=−++

=−++








∂
∂∆−+

−+

−+

 

 
 
Finite-Difference Equations, ∆x =∆y 
Case 1: Interior node 
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Case 2: Node at internal corner with convection 
 

0)3(22    

)()(2

,

1,,11,,1

=∆+−∆+

+++

∞

−++−

ji

jijijiji

T
k

xh
T

k

xh

TTTT

 

 

Case 3: Node at plane surface with convection 
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Case 4: Node at external corner with convection 
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Case 5: Node at plane surface with uniform heat flux 
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In Case 3 and Case 5 above, to model adiabatic surfaces or surfaces of symmetry set h or q’’  
equal to zero. 
 

7.1.1 Solution Methods 
 
Most numerical solutions of the Laplace equation involve systems that are large – a 5x5 grid 
with Dirichlet boundary conditions yields 9 equations in 9 unknowns; a 10x10 grid yields 64 
equations.  A significant number of entries of the matrix are zero, making general methods 
inefficient for storage and solution.  Gauss-Seidel is popular (applied to Laplace’s equation, 
Gauss-Seidel is called the Liebmann method).  Convergence is assumed because of the strong 
diagonal dominance of the Laplace difference equation.  Over-relaxation is often used to 
accelerate convergence. 
 

7.1.2 Secondary Variables 
 
The primary variable for the Laplace equation is often not the quantity of interest.  Here we solve 
for temperature but often the heat flux is of more importance.  Once the temperature distribution 
is known the heat flux can be found at any point via central-difference approximations: 
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Care must be taken to consider the signs of qy and qx to find θ in the proper quadrant. 
 

7.1.3 Irregular Boundary Conditions 
 
This general technique of approximating partial differential equations is fairly straightforward 
for orthogonal grids and constant boundary conditions.  If the boundaries of the domain are 
curved, one can formulate the boundary conditions in terms of variable grid spacing that closely 
matches the shape of the boundary.  Derivative boundary conditions, in particular, are difficult to 
express over curved boundaries.  Often very fine grids are employed instead of writing the 
derivative conditions for curved boundaries. 
 

7.2 Parabolic Equations 
 
A common example of parabolic partial differential equations is the heat conduction equation 
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As with elliptic equations, finite difference approximations can be substituted for the partial 
derivatives.  However, now we have to account for changes in both space and time.  The spatial 
second derivative can be approximated as  
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The superscripts in this notation denote time.  This approximation has error O(∆x2).  The time 
derivative can be approximated with a forward difference (Euler’s method) 
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With error O(∆t).  Substituting into the heat conduction equation gives 
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where 2)/( xtk ∆∆=λ .  This equation can be applied to all of the interior nodes and provides an 

explicit way to compute the values at each node at a future time based on the present values at 
neighboring nodes. 
 
Convergence and Stability 
 
Convergence is defined as the condition where as ∆x and ∆t approach zero, the approximation 
becomes closer to the true solution.  Stability is defined as the condition where errors at any 
stage of the calculation are not amplified but rather are attenuated as the computation progresses.  

To ensure both, )2/()(or    2/1 2 kxt ∆≤∆≤λ .  However, using a time step this large often leads 

to oscillation, which can usually be avoided by the limitation 4/1≤λ .  To minimize the 
truncation error, it is best that 6/1≤λ .  Using a step size this small, however, greatly increases 
the computational burden. 
 
Derivative Boundary Conditions 
 
As for elliptic equations, imaginary points outside of the domain can be used with symmetry 
arguments to successfully model derivative boundary conditions, for example 
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Parabolic Equations in Two Dimensions 
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This equation gives the temperature distribution of the face of a heated plate.  Substitute finite 
difference approximations as above.  The convergence and stability condition is now 
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7.2.1 Implicit Methods 
 
Implicit methods approximate the spatial derivative at the future time l+1, with error O(∆x2) 
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So that  
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This equation applies to all interior nodes.  The first and last nodes must account for the 
boundary conditions.  If the temperature is given at the first and last nodes,  
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This gives m equations in m unknowns at each time step.  The equations are tridiagonal and 
symmetric, so they can be solved very efficiently.  Gradient boundary conditions, however, 
result in a banded set of equations that may not be tridiagonal nor symmetric. 
 
Crank-Nicholson Method 
 
The Crank-Nicholson method is an implicit method that is second-order accurate in both space 
and time.  In this method, the difference approximations are computed at the midpoint of each 
time interval.  To do this, first approximate the time derivative as usual 
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then calculate the spatial derivative at the midpoint by averaging the approximations at the 
beginning and end of the time increment 
 










∆
+−

+
∆

+−
=

∂
∂ +

−
++

+−+
2

1
1

11
1

2
11

2

2

)(

2

)(

2

2

1

x

TTT

x

TTT

x

T l
i

l
i

l
i

l
i

l
i

l
i  

 
to give  
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This equation applies to all of the interior nodes; boundary conditions take care of the first and 
last nodes.  Even though this formulation is more complicated than the simple implicit method, it 
is much more accurate in practice. 
 
Implicit Methods in Two Dimensions 
 
The Alternating Direction Implicit (ADI) method provides a way to solve parabolic equations in 
two dimensions using tridiagonal matrices for Dirichlet boundary conditions.  To do this, execute 
each time increment in two half-steps.  For the first half-step, approximate the heat conduction 
equation with ∂2T/∂x2 expressed explicitly and ∂2T/∂y2 written implicitly: 
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The second half-step is taken implicitly in ∂2T/∂x2 and explicitly in ∂2T/∂y2: 
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Both of these half-steps results in tridiagonal systems of equations for Dirichlet boundary 
conditions, and the solution process is efficient. 
 

7.3 Finite-Element Method 
 
In finite-difference methods, the domain is divided into a grid of discrete points called nodes, 
and the PDE is written for each node and its neighboring nodes.  While this pointwise approach 
is conceptually easy, it is difficult to apply to systems with irregular geometry or unusual 
boundary conditions. 
 
As opposed to finite-difference methods, finite-element methods divide the domain into 
similarly-shaped regions, or elements, and an approximate solution for the PDE is developed for 
each of the elements.  The total solution is generated by linking together, or assembling, the 
individual solutions, taking care to ensure continuity at the inter-element boundaries. 
 



9 

 

7.3.1 The General Approach 
 
The following steps are a general outline of the finite-element approach: 
 
Discretization 
 
Discretization involves dividing the solution domain into finite elements.  The intersection points 
of the lines that make up the element are called nodes, and the sides themselves are called nodal 
lines (in one or two dimensions) or nodal planes (in three dimensions). 
 
Element Equations 
 
An approximate solution for the PDE must be obtained for the element.  First choose an 
appropriate function with unknown coefficients to approximate the solution, then evaluate the 
coefficients to approximate the solution in an optimal manner. 
 
Because they are easy to manipulate, polynomials are often used as approximating functions.  As 
an example, for the one-dimensional case, the simplest alternative is a first-order polynomial: 
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Where u(x) is the dependent variable, a0 and a1 are constants and x is the independent variable.  
The function must pass through the values of u(x) at the end points of the element at x1 and x2 
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 Solving these equations gives 
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Collecting terms, these equations can be written as  
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The function u is called an approximation or shape function, and N1 and N2 are interpolating 
functions.  In this example u is the first order Lagrange interpolating polynomial, and provides 
the means to calculate any value between u(x1) and u(x2) between the nodes.  To complete any 
formulation, derivatives and integrals of the shape functions are needed: 
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Once the interpolation function is chosen, the equations governing the behavior of the element 
are developed, that is, the equation is fit to the solution of the underlying differential equation.  
Several methods are used depending on the complexity of the differential equation, such as the 
direct method, the method of weighted residuals and the variational approach, each of which is 
closely related to curve-fitting. 
 
The resulting equations will often consist of a set of linear algebraic equations that can be 
expressed in matrix form 
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Where k is the element property or stiffness matrix, u is a column vector of unknowns at the 
nodes and F is a column vector of the effects of external influences applied at the nodes.  These 
equations may be non-linear, but for the vast majority of practical problems linear systems 
suffice. 
 
Assembly 
 
After the individual element equations are determined, they must be linked together or assembled 
to characterize the overall behavior of the system.  This is done in a manner that requires the 
solutions for contiguous elements to match so that the unknown values (and sometimes their 
derivatives) at the common nodes are equivalent, insuring continuous overall solutions.  When 
all of the element equations are assembled, they form the global or assemblage equations 
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Boundary Conditions 
 
The assemblage equations are modified to account for the system boundary conditions.  Dirichlet 
conditions remove known values from the list of unknowns and modify the right-hand side.  
Gradient boundary conditions impose additional constraints on the solution at two or more 
nodes.  The result is a different, often slightly reduced, set of equations 
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Solution 
 
The solution of the equations above can be obtained with many techniques.  In particular, if 
many different sets of external influences are to be applied to the same system, LU 
decomposition methods are an efficient choice.  If the equations can be configured to produce a 
banded matrix, highly efficient schemes have been developed to provide quick and accurate 
solutions. 
 
Post-processing 
 
Once the nodal values are found, the results can be presented in tabular or graphical form.  In 
addition, secondary variables (such as heat flux, or mechanical strain or stress) can be calculated 
and displayed. 
 
Even though the steps above are very general, they are common to all implementations of the 
finite element method.  Specific examples and problems, and much more detail, are left to other 
courses. 


