
1 
 

Section 7 – Ordinary Differential Equations 
 
Differential equations play an important role in engineering since the descriptions of many 
physical phenomena are best formulated in terms of their rates of change.  Differential equations 
that involve one independent variable are called ordinary differential equations; those that 
involve more than one are called partial differential equations.  Differential equations are 
classified with respect to their order.  Second-order equations, for example, include second 
derivatives.  For example, the position of a mass-spring-damper system is given by the second-
order equation 
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Higher-order differential equations can be reduced to a system of first-order differential 
equations.  For example, let v = dx/dt and dv/dt = d2x/dt2, so the second-order equation above 
can be replaced with an equivalent system of 2 first-order differential equations 
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Therefore, we will first focus on the solution of first-order differential equations, and later 
discuss the solutions of systems of them. 
 
Consider the first-order ordinary differential equation 
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One way to calculate the value of y at a new position x would be 
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This concept will be the basis of the first class of solution techniques to examine. 
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7.1 Euler’s Method 
 
The first derivative gives a direct estimate of the slope: 
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Where h = Δx and f(x,y) is evaluated at the current point (xi,yi).  This is Euler’s (or the Euler-
Cauchy or point-slope) method . 
 
Two main sources of error take place when solving ordinary differential equations, truncation 
and round-off error.  Truncation error results from the approximation of y. This in turn has two 
parts, a local truncation error from each step and a propagated truncation error that 
accumulates and is carried through the calculation.  The sum of the two is the global truncation 
error.   
 
The local truncation error in Euler’s method is O(h2).  This can be decreased by taking smaller 
steps, and the calculation will be error-free if the function f(x,y) is linear. Thus, Euler’s method is 
a first-order technique, and the global error is O(h). 
 
Pseudocode – General ODE, Euler’s Method 
 

a) Main or Driver program 
SUB ODE_Driver(y, xi, xf, dx, xout) 
‘ y = initial value, dependent variable 
‘ xi = initial value, independent variable 
‘ xf = final value, independent variable 
‘ dx = calculation step 
‘ xout = output interval 

x = xi 
m = 0 
xpm = x 
ypm = y 
DO 
 xend = x + xout 
 IF (xend > xf) THEN xend = xf 
 h = dx 
 CALL Integrator(x, y, h, xend) 
 m = m + 1 
 xpm = x 
 ypm = y 
 DISPLAY x, y RESULTS 
 IF (x >= xf) EXIT 
END DO 

END SUB 
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b) Integrator - to take one output step 
SUB Integrator(x, y, h, xend) 
 DO 
  IF (xend – x < h) THEN h = xend – x 
  CALL Euler(x, y, h, ynew) 
  y = ynew 
  IF (x >= xend) EXIT 
 END DO 

 END SUB 
 

c) Euler’s Method for a Single ODE 
SUB Euler(x, y, h, ynew) 
 ynew = y + dydx(x, y) * h 
 x = x + h 
END SUB 
 

d) Routine to evaluate the derivative 
FUNCTION dydx(x, y) 
 dydx = f(x, y) 
END FUNCTION 

 
7.1.1 Improvements to Euler’s Method 
 
The fundamental problem with Euler’s method is that the derivative at the beginning of the 
interval is used to estimate the slope across the entire interval.  Improvements to Euler’s method 
focus on obtaining a more accurate representation of the average slope across the interval. 
 
Huen’s Method 
 
Use the slope at the beginning of the interval f(xi,yi) to find an initial estimate for y at the end of 
the interval (the predictor) 
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Use this result to calculate the slope at the end of the interval 
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Average these two estimates to yield a better estimate of the average slope across the interval 
(the corrector) 
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The corrector can be iterated (although it does not have to be) to obtain an even more refined 
estimate for yi+1.  With small step sizes this iteration can quickly converge and yield better 
results. 
 
If the derivative is a function of only the independent variable, dy/dx = f(x), then the predictor 
and corrector steps can be combined to yield 
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This is equivalent to the trapezoidal rule of numerical integration.  The local error is therefore 
O(h3) with global error O(h2), a second-order method. 
 
Midpoint or Improved Polygon Method 
 
Euler’s method can be used to predict the value of y at the midpoint of the interval 
 

2/),(2/1 hyxfyy iiii   
 
The slope at the midpoint of the interval is then 
 

),( 2/12/12/1   iii yxfy  
 
And can be used to represent the average slope across the interval 
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Note that this method does not involve a predictor/corrector and thus cannot be iterated to 
achieve better accuracy.  This method is equivalent to the open 1-point Newton-Cotes integration 
formula, and had local error of O(h3) with global error O(h2). 
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7.2 Runge-Kutta Methods 
 
These are a class of techniques that achieve high accuracy without the use of high order 
derivatives.  All are of the general form 
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Where the increment function   is of the form 
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The coefficients a, p and q are determined by setting yi+1 equal to terms in a Taylor expansion.  
The first-order (n=1) Runge-Kutta method reduces immediately to Euler’s method. 
 
7.2.1 Second-Order Runge-Kutta Methods 
 
Using the Taylor expansion and n=2, the second-order Runge-Kutta methods have the following 
form: 
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So that a1 + a2 = 1, a2p1 = ½ and a2q11 = ½.  All of the second-order Runge-Kutta methods have 
local error O(h3) and global error O(h2). 
 
Heun’s Method with a single corrector (a2 = ½) 
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Midpoint Method (a2 = 1) 
 

)2/,2/(
),(

12
1

21

hkyhxfk
yxfk

hkyy

ii
ii

ii





 

 
Ralston’s Method (a2 = 2/3, minimum bound on the truncation error) 
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7.2.2 Third-Order Runge-Kutta Method 
 
The third-order Runge-Kutta method has local error O(h4) and global error O(h3): 
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If the slope is a function of only the independent variable, f(x,y) = f(x), this method reduces to the 
Simpon’s 1/3 Rule. 
 
 
7.2.3 Fourth-Order Runge-Kutta Method 
 
The fourth-order Runge-Kutta has local error O(h5) and global error O(h4) and is by far the most 
popular of the R-K methods: 
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This method also reduces to the Simpson’s 1/3 Rule if the slope is a function of only the 
independent variable, f(x,y) = f(x).  Higher-order Runge-Kutta methods exist, but due to 
programming complexity and accuracy requirements they are seldom used. 
 
Pseudocode – 4th Order Runge-Kutta, Single ODE 
 

SUB RK4(x, y, h, ynew) 
 k1 = dydx(x, y) 
 k2 = dydx(x + h/2, y + k1 * h/2) 
 k3 = dydx(x + h/2, y + k2 * h/2) 
 k4 = dydx(x + h, y + k3 * h) 
 ynew = y + (k1 + 2 * k2 + 2 * k3 + k4) * h/6 
 x = x + h 
END SUB 

 
7.3 Systems of Simultaneous Ordinary Differential Equations 
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Note that we will need n initial conditions to start the calculations.  These systems of equations 
are straight forward to implement, care must be taken to correctly calculate and apply the slopes 
to the variables. 
 
7.4 Adaptive Runge-Kutta Methods 
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Some ordinary differential equations have functions that change gradually over part of the 
domain, allowing the use of large step sizes, and regions of rapid change which requires the use 
of smaller, more precise, steps.  Algorithms that adjust the step size as necessary are called 
adaptive, and require an estimate of the local error at each step to apply adaptive step-size 
control. 
 
Two primary approaches exist.  The first estimates the error as the difference in two predictions 
using different step sizes.  The second estimates the error as the differences using two different 
orders of the Runge-Kutta method. 
 
 
7.4.1 Adaptive Runge-Kutta, or Step-Halving, Method 
 
This method involves taking each time step twice, once a single full step (y1) and again as two 
half steps (y2).  The difference between the two estimates is itself a measure of the local 
truncation error: 
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Not only can this calculation be used for adaptive control of the step size, it can also be used to 
correct the more precise estimate: 
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And provide an improved local estimate of O(h5). 
 
7.4.2 Runge-Kutta Fehlberg 
 
This approach uses the difference between the fifth-order R-K and the fourth-order R-K methods 
to estimate the error at each time step.  These two methods are used because they happen to share 
some calculations, and only six total function evaluations are required at each time step to 
complete both methods.  See the text for details. 
 
7.4.3 Step Size Control 
 
Once the local error has been estimated, one can decide to increase the step size if the local error 
is small or decrease the step size if the local error exceeds a specified tolerance.  One strategy is 
given as  
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Where α = 0.2 if the step size is increased (Δpresent ≤ Δold) and α = 0.25 if the step size is 
decreased (Δpresent > Δold). Δnew is usually related to a relative error level, or Δnew = εyscale, where ε 
is an overall tolerance level and yscale = y to give fractional relative errors.  Another reliable way 
to do this is to set  
 

dx
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A far simpler and more useful technique simply increases the step size as oldnew chh  when the 
relative error is low and decreases the step size chh oldnew / when the error is large.  Useful 
values of c range generally between 1 (no step size control) and 4/3.  It should be noted that 
when the error at a given step is determined to be too large, that step should be recalculated with 
a smaller step h until the error falls below the specified tolerance and the solution can proceed. 
 
Pseudocode – Step halving + adaptive step size control 

eps = 1e-6     ‘ acceptable error in step 
CALL RK4(x, y, h, ynew)   ‘ call method with one full step 
x = x – h       ‘ step back for second evaluation 
CALL RK4(x, y, h/2, ynew1)   ‘ call method with two half steps 
CALL RK4(x, ynew1, h/2, ynew2)  
delta = ABS(ynew2 – ynew)  ‘ estimate relative error 
IF delta > eps AND h > eps /100  ‘ error too large, redo 
 x = x - h 
 h = h * 0.8 
ELSE      ‘ error is acceptable 
 y = ynew2 + (ynew2 – ynew)/15 ‘ apply correction 
 if delta < (eps/10) THEN  ‘ if error small enough, increase h 
  h = h / 0.75  ‘ but not too much 
  IF h > (xout / 10) THEN h = xout / 10  
 END IF 
END IF 

 
7.5 Stiffness 
 
“Stiff” systems are those that superimpose rapidly changing components and slowly varying 
components at every time step.  Most often, the rapidly changing components are transients that 
die out quickly.  The difficulty is that the rapidly varying parts require small time steps, and 
since they are always present, adaptive step size control doesn’t work. 
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Instead of the explicit methods examined thus far, implicit methods sometimes work well.  
Consider the backward or implicit Euler’s method, which evaluates the derivative at a future 
time: 
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If the homogeneous part of the slope is dy/dt = -ay, then  
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Which is unconditionally stable,  iyi  as 0 .  This method is 1st-order accurate. 
 
However, implicit formulations grow in complexity as the order increases, and even more for 
nonlinear ODEs.  Gear devised a set of implicit formulations that have large stability limits based 
on backward difference formulations.  These are the most widely used methods to solve stiff 
systems. 
 
7.6 Multistep Methods 
 
Multistep methods do not use information at a single point (xi, yi) to predict the dependent 
variable at a future point yi+1.  Instead, they use several previous points to determine a likely 
trajectory for the next point. 
 
7.6.1 The Non-Self-Starting Heun Method 
 
Recall that Heun’s method uses Euler’s method as a predictor (a forward difference) 
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And the trapezoidal rule as a corrector 
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The predictor is O(h2) while the corrector is O(h3), thus the predictor is the weak link in the 
process, especially since the iterative corrector is dependent on the accuracy of this initial 
prediction.  To find a predictor that is O(h3), use the previous point yi-1 (a central difference) 
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This is now O(h3) but uses a step size that is twice as large.  Note that yi-1 is not available at the 
beginning of the calculation, so this method is not self-starting. 
 
In general 
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The corrector is iterated m times, usually not enough to actually converge but only to improve 
the prediction.  Typically, m=2. 
 
The truncation error per step can be estimated as  
 

5
11

m
i

o
ic

yyE    
 
Which can be used to develop modifiers for the predictor and corrector: 
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Note that the predictor modifier uses values from the previous step.  The use of these modifiers is 
optional but can speed up convergence. 
 
Step Size Control 
Constant step size – Easy to implement but choice must be made small enough for convergence 
within m=2 iterations.  Re-run the problem, halving the step size each time, until convergence is 
reached. 
 
Variable step size – Monitor the number of iterations for convergence of corrector and adjust h 
so that m=2.  Alternatively, double or halve the step size, maintaining the number of iterations to 
converge the corrector. 
 
7.6.2 Higher-Order Multistep Methods 
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Higher-order multistep methods are based on open and closed Newton-Cotes or Adams 
integration formulas.  Adams formulas use several points to estimate the integral only in the last 
segment of the interval, leading to slightly more accuracy. 
 
Milne’s Method 
 
This method uses a 3-point Newton-Cotes open formula as a predictor 
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And a 3-point Newton-Cotes closed formula as a corrector 
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There are, however, stability problems with this corrector.  Using a more stable corrector leads to 
Hamming’s method: 
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With correctors 
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Fourth-Order Adams Method 
 
This method uses a 4th-order Adams-Bashford (open) formula as a predictor 
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and a 4th-order Adams-Moulton (closed) formula as a corrector 
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with modifiers 
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7.7 Boundary Value Problems 
 
Up to now we have dealt with initial-value problems, where initial conditions specified at one 
point are sufficient to determine the constants of integration and complete the solution.  
Problems that specify conditions at extreme points or boundaries of the system are called 
boundary-value problems.  As an example, consider the heat balance in a long, thin rod 
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Where h’ is the heat transfer coefficient that describes the rate of heat dissipation to the 
surrounding air and Ta is the temperature of the surrounding air.  To solve this problem, two 
boundary conditions must be specified, for example the temperatures at the ends of the rod 
 

21 )(        )0( TLxTTxT   
For a 10-m rod with Ta = 20 C, T1 = 40 C, T2 = 200 C and h’ = 0.01/m2, the solution is  
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7.7.1 The Shooting Method 
 
This method treats a boundary-value problem as an equivalent initial-value problem.  Specify all 
the boundary conditions at x = 0 (T1 = 40 C and make an initial guess at dT/dx = z), then solve 
the problem to find the temperature at x = L.  If the solution does not match the boundary 
condition at x = L, adjust the boundary condition at x = 0 and re-solve the problem. 
 
If the problem is linear (as in this example), obtaining two solutions and interpolating between 
them will supply the necessary boundary conditions at x = 0.  If the problem is non-linear, for 
example if the following, better, approximation for the heat transfer from the bar is used 
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the shooting method can be cast as a general root-finding problem to determine the appropriate 
starting values in order to arrive at the other boundary value(s).  The shooting method is 
straightforward but because of the need to repeatedly solve the problem it is not particularly 
efficient. 
 
 
7.7.2 Finite Difference Methods 
 
Finite difference methods discretize the domain of the solution and transform the linear 
differential equation into a set of simultaneous linear equations.  For the heat transfer example 
above, divide the rod into equal-length segments, 5 in the example here.  The divided-difference 
approximation is  
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Appling this equation to the interior nodes of the rod (assuming that the temperature is known at 
the ends x=0 and x=L) yields 
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The most common boundary condition is where the dependent variable is specified on the 
boundary, as in the example above.  To apply these fixed, or Dirichlet, boundary conditions, 
replace the variables with their known values and eliminate the equation at that node.   
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One can also specify the derivative of the dependent variable at the boundary nodes.  For 
example, the heat flux dT/dx can be specified at x = 0 or x = L above.  These gradient, or 
Neumann, boundary conditions are also approximated with finite differences.  For example, let 
the boundary condition dT/dx be specified at i = 0 above.  Taking a central difference 
approximation at i = 0 gives 
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Substituting this approximation into the finite difference equation for node i = 0 eliminates the 
fictitious node at i = -1 and gives  
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The system of equations for the nodal temperatures then becomes  
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These systems of equations can be solved for the unknown temperatures by any of the methods 
discussed previously.   
 
 
7.7.3 Eigenvalue Problems 
 
Eigenvalue, or characteristic-value, problems are a class of boundary value problems common in 
vibrations, elasticity and areas that deal with oscillating systems.  These problems have the 
general form 
    0 XIA   
 
Where  are the eigenvalues and X are the associated eigenvectors. 
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Polynomial Method – Develop the set of equations    0 XIA  .  Expand the determinant of 
IA  , which will be a polynomial whose roots are  .  Solve for the roots with either Müller’s 

or Bairstow’s method, deflating in order to find all of the eigenvalues/eigenvectors (there will be 
one for each row of A). 
 
Power Method – Write the system as XAX  .  For an initial guess, assume that  TX 1...1,1,1 , substitute and solve for a new set of X.  Normalize with respect to the largest 
value of X.  Iterate until convergence. Upon convergence, the normalization factor will be the 
largest eigenvalue, with eigenvector equal to X.  If matrix A is symmetric, it can then be deflated 
using Hotelling’s method, TXXAA 11112  , where A1 is the original matrix and 11 , X are the 
largest eigenvalue/eigenvector pair.  Proceed in this manner to find the largest several 
eigenvalues.  This method cannot usually be used to find all of the eigenvalues due to the 
accumulation of significant round-off errors.  
 
To find the smallest eigenvalue/eigenvector pairs, perform the power method on the inverse of A, 
deflating in order to eliminate those already found. 
 
Many more advanced techniques exist for finding eigenvalues. 
 


