
1

Section 7 – Ordinary Differential Equations

Differential equations play an important role in engineering since the descriptions of many
physical phenomena are best formulated in terms of their rates of change. Differential equations
that involve one independent variable are called ordinary differential equations; those that
involve more than one are called partial differential equations. Differential equations are
classified with respect to their order. Second-order equations, for example, include second
derivatives. For example, the position of a mass-spring-damper system is given by the second-
order equation

02
2  kxdt

dxcdt
xdm

Higher-order differential equations can be reduced to a system of first-order differential
equations. For example, let v = dx/dt and dv/dt = d2x/dt2, so the second-order equation above
can be replaced with an equivalent system of 2 first-order differential equations

vdt
dx

m
kxcv

dt
dv





Therefore, we will first focus on the solution of first-order differential equations, and later
discuss the solutions of systems of them.

Consider the first-order ordinary differential equation

),(yxfdx
dy 

One way to calculate the value of y at a new position x would be

xslopeyy ii )(1

This concept will be the basis of the first class of solution techniques to examine.

2

7.1 Euler’s Method

The first derivative gives a direct estimate of the slope:

hyxfyy ii),(1 

Where h = Δx and f(x,y) is evaluated at the current point (xi,yi). This is Euler’s (or the Euler-
Cauchy or point-slope) method .

Two main sources of error take place when solving ordinary differential equations, truncation
and round-off error. Truncation error results from the approximation of y. This in turn has two
parts, a local truncation error from each step and a propagated truncation error that
accumulates and is carried through the calculation. The sum of the two is the global truncation
error.

The local truncation error in Euler’s method is O(h2). This can be decreased by taking smaller
steps, and the calculation will be error-free if the function f(x,y) is linear. Thus, Euler’s method is
a first-order technique, and the global error is O(h).

Pseudocode – General ODE, Euler’s Method

a) Main or Driver program
SUB ODE_Driver(y, xi, xf, dx, xout)
‘ y = initial value, dependent variable
‘ xi = initial value, independent variable
‘ xf = final value, independent variable
‘ dx = calculation step
‘ xout = output interval

x = xi
m = 0
xpm = x
ypm = y
DO
 xend = x + xout
 IF (xend > xf) THEN xend = xf
 h = dx
 CALL Integrator(x, y, h, xend)
 m = m + 1
 xpm = x
 ypm = y
 DISPLAY x, y RESULTS
 IF (x >= xf) EXIT
END DO

END SUB

3

b) Integrator - to take one output step
SUB Integrator(x, y, h, xend)
 DO
 IF (xend – x < h) THEN h = xend – x
 CALL Euler(x, y, h, ynew)
 y = ynew
 IF (x >= xend) EXIT
 END DO

 END SUB

c) Euler’s Method for a Single ODE
SUB Euler(x, y, h, ynew)
 ynew = y + dydx(x, y) * h
 x = x + h
END SUB

d) Routine to evaluate the derivative
FUNCTION dydx(x, y)
 dydx = f(x, y)
END FUNCTION

7.1.1 Improvements to Euler’s Method

The fundamental problem with Euler’s method is that the derivative at the beginning of the
interval is used to estimate the slope across the entire interval. Improvements to Euler’s method
focus on obtaining a more accurate representation of the average slope across the interval.

Huen’s Method

Use the slope at the beginning of the interval f(xi,yi) to find an initial estimate for y at the end of
the interval (the predictor)

hyxfyy iii
o
i),(1 

Use this result to calculate the slope at the end of the interval

hyxfyy iiii),(0

11
'

1  

Average these two estimates to yield a better estimate of the average slope across the interval
(the corrector)
  ),(),(2 111

o
iiiiii yxfyxfhyy  

4

The corrector can be iterated (although it does not have to be) to obtain an even more refined
estimate for yi+1. With small step sizes this iteration can quickly converge and yield better
results.

If the derivative is a function of only the independent variable, dy/dx = f(x), then the predictor
and corrector steps can be combined to yield

hxfxfyy ii
ii 2

)()(1
1




This is equivalent to the trapezoidal rule of numerical integration. The local error is therefore
O(h3) with global error O(h2), a second-order method.

Midpoint or Improved Polygon Method

Euler’s method can be used to predict the value of y at the midpoint of the interval

2/),(2/1 hyxfyy iiii 

The slope at the midpoint of the interval is then

),(2/12/12/1   iii yxfy

And can be used to represent the average slope across the interval

hyxfyy iiii),(2/12/11  

Note that this method does not involve a predictor/corrector and thus cannot be iterated to
achieve better accuracy. This method is equivalent to the open 1-point Newton-Cotes integration
formula, and had local error of O(h3) with global error O(h2).

5

7.2 Runge-Kutta Methods

These are a class of techniques that achieve high accuracy without the use of high order
derivatives. All are of the general form

hhyxyy iiii),,(1 

Where the increment function  is of the form

),(

),(
),(

),(

11,122,111,1

22212123
11112

1
2211

hkqhkqhkqyhpxfk

hkqhkqyhpxfk
hkqyhpxfk

yxfk
kakaka

nnnnninin

ii
ii

ii
nn

 













The coefficients a, p and q are determined by setting yi+1 equal to terms in a Taylor expansion.
The first-order (n=1) Runge-Kutta method reduces immediately to Euler’s method.

7.2.1 Second-Order Runge-Kutta Methods

Using the Taylor expansion and n=2, the second-order Runge-Kutta methods have the following
form:

),(
),(

)(

11112
1

22111

hkqyhpxfk
yxfk

hkakayy

ii
ii

ii






So that a1 + a2 = 1, a2p1 = ½ and a2q11 = ½. All of the second-order Runge-Kutta methods have
local error O(h3) and global error O(h2).

Heun’s Method with a single corrector (a2 = ½)

),(
),(

)2/2/(

12
1

211

hkyhxfk
yxfk

hkkyy

ii
ii

ii






6

Midpoint Method (a2 = 1)

)2/,2/(
),(

12
1

21

hkyhxfk
yxfk

hkyy

ii
ii

ii






Ralston’s Method (a2 = 2/3, minimum bound on the truncation error)

)4/3,4/3(
),(

)3/23/(

12
1

211

hkyhxfk
yxfk

hkkyy

ii
ii

ii






7.2.2 Third-Order Runge-Kutta Method

The third-order Runge-Kutta method has local error O(h4) and global error O(h3):

)2,(
)2

1,2
1(
),(

)4(6
1

213

12

1

3211

hkhkyhxfk
hkyhxfk

yxfk
hkkkyy

ii

ii

ii

ii







If the slope is a function of only the independent variable, f(x,y) = f(x), this method reduces to the
Simpon’s 1/3 Rule.

7.2.3 Fourth-Order Runge-Kutta Method

The fourth-order Runge-Kutta has local error O(h5) and global error O(h4) and is by far the most
popular of the R-K methods:

7

),(
)2

1,2
1(

)2
1,2

1(
),(

)22(6
1

34

23

12

1

43211

hkyhxfk
hkyhxfk
hkyhxfk

yxfk
hkkkkyy

ii

ii

ii

ii

ii








This method also reduces to the Simpson’s 1/3 Rule if the slope is a function of only the
independent variable, f(x,y) = f(x). Higher-order Runge-Kutta methods exist, but due to
programming complexity and accuracy requirements they are seldom used.

Pseudocode – 4th Order Runge-Kutta, Single ODE

SUB RK4(x, y, h, ynew)
 k1 = dydx(x, y)
 k2 = dydx(x + h/2, y + k1 * h/2)
 k3 = dydx(x + h/2, y + k2 * h/2)
 k4 = dydx(x + h, y + k3 * h)
 ynew = y + (k1 + 2 * k2 + 2 * k3 + k4) * h/6
 x = x + h
END SUB

7.3 Systems of Simultaneous Ordinary Differential Equations

),,,,(

),,,,(
),,,,(

21

2122

2111

nn
n

n

n

yyyxfdx
dy

yyyxfdx
dy

yyyxfdx
dy














Note that we will need n initial conditions to start the calculations. These systems of equations
are straight forward to implement, care must be taken to correctly calculate and apply the slopes
to the variables.

7.4 Adaptive Runge-Kutta Methods

8

Some ordinary differential equations have functions that change gradually over part of the
domain, allowing the use of large step sizes, and regions of rapid change which requires the use
of smaller, more precise, steps. Algorithms that adjust the step size as necessary are called
adaptive, and require an estimate of the local error at each step to apply adaptive step-size
control.

Two primary approaches exist. The first estimates the error as the difference in two predictions
using different step sizes. The second estimates the error as the differences using two different
orders of the Runge-Kutta method.

7.4.1 Adaptive Runge-Kutta, or Step-Halving, Method

This method involves taking each time step twice, once a single full step (y1) and again as two
half steps (y2). The difference between the two estimates is itself a measure of the local
truncation error:

12 yy 

Not only can this calculation be used for adaptive control of the step size, it can also be used to
correct the more precise estimate:

1522
 yy

And provide an improved local estimate of O(h5).

7.4.2 Runge-Kutta Fehlberg

This approach uses the difference between the fifth-order R-K and the fourth-order R-K methods
to estimate the error at each time step. These two methods are used because they happen to share
some calculations, and only six total function evaluations are required at each time step to
complete both methods. See the text for details.

7.4.3 Step Size Control

Once the local error has been estimated, one can decide to increase the step size if the local error
is small or decrease the step size if the local error exceeds a specified tolerance. One strategy is
given as

9



present
new

oldnew hh 


Where α = 0.2 if the step size is increased (Δpresent ≤ Δold) and α = 0.25 if the step size is
decreased (Δpresent > Δold). Δnew is usually related to a relative error level, or Δnew = εyscale, where ε
is an overall tolerance level and yscale = y to give fractional relative errors. Another reliable way
to do this is to set

dx
dyhyy scale 

A far simpler and more useful technique simply increases the step size as oldnew chh  when the
relative error is low and decreases the step size chh oldnew / when the error is large. Useful
values of c range generally between 1 (no step size control) and 4/3. It should be noted that
when the error at a given step is determined to be too large, that step should be recalculated with
a smaller step h until the error falls below the specified tolerance and the solution can proceed.

Pseudocode – Step halving + adaptive step size control

eps = 1e-6 ‘ acceptable error in step
CALL RK4(x, y, h, ynew) ‘ call method with one full step
x = x – h ‘ step back for second evaluation
CALL RK4(x, y, h/2, ynew1) ‘ call method with two half steps
CALL RK4(x, ynew1, h/2, ynew2)
delta = ABS(ynew2 – ynew) ‘ estimate relative error
IF delta > eps AND h > eps /100 ‘ error too large, redo
 x = x - h
 h = h * 0.8
ELSE ‘ error is acceptable
 y = ynew2 + (ynew2 – ynew)/15 ‘ apply correction
 if delta < (eps/10) THEN ‘ if error small enough, increase h
 h = h / 0.75 ‘ but not too much
 IF h > (xout / 10) THEN h = xout / 10
 END IF
END IF

7.5 Stiffness

“Stiff” systems are those that superimpose rapidly changing components and slowly varying
components at every time step. Most often, the rapidly changing components are transients that
die out quickly. The difficulty is that the rapidly varying parts require small time steps, and
since they are always present, adaptive step size control doesn’t work.

10

Instead of the explicit methods examined thus far, implicit methods sometimes work well.
Consider the backward or implicit Euler’s method, which evaluates the derivative at a future
time:

hdt
dyyy i

ii
1

1
 

If the homogeneous part of the slope is dy/dt = -ay, then

ah
yyhayyy i

iiii   1or 111

Which is unconditionally stable,  iyi as 0 . This method is 1st-order accurate.

However, implicit formulations grow in complexity as the order increases, and even more for
nonlinear ODEs. Gear devised a set of implicit formulations that have large stability limits based
on backward difference formulations. These are the most widely used methods to solve stiff
systems.

7.6 Multistep Methods

Multistep methods do not use information at a single point (xi, yi) to predict the dependent
variable at a future point yi+1. Instead, they use several previous points to determine a likely
trajectory for the next point.

7.6.1 The Non-Self-Starting Heun Method

Recall that Heun’s method uses Euler’s method as a predictor (a forward difference)

hyxfyy iii
o
i),(1 

And the trapezoidal rule as a corrector

hyxfyxfyy o
iiiiii 2

),(),(111 


The predictor is O(h2) while the corrector is O(h3), thus the predictor is the weak link in the
process, especially since the iterative corrector is dependent on the accuracy of this initial
prediction. To find a predictor that is O(h3), use the previous point yi-1 (a central difference)

11

hyxfyy iii

o
i 2),(11  

This is now O(h3) but uses a step size that is twice as large. Note that yi-1 is not available at the
beginning of the calculation, so this method is not self-starting.

In general

mjhyxfyxfyy
hyxfyy

j
ii

m
iim

i
j

i

m
ii

m
i

o
i

,,2,1 2
),(),(:corrector

2),(:predictor
1

1
1

11








The corrector is iterated m times, usually not enough to actually converge but only to improve
the prediction. Typically, m=2.

The truncation error per step can be estimated as

5
11

m
i

o
ic

yyE  

Which can be used to develop modifiers for the predictor and corrector:

)5
4 :modifierpredictor

5 :modifiercorrector

11

1111

o
i

m
i

o
i

o
i

o
i

m
im

i
m
i

y(yyy

yyyy







Note that the predictor modifier uses values from the previous step. The use of these modifiers is
optional but can speed up convergence.

Step Size Control
Constant step size – Easy to implement but choice must be made small enough for convergence
within m=2 iterations. Re-run the problem, halving the step size each time, until convergence is
reached.

Variable step size – Monitor the number of iterations for convergence of corrector and adjust h
so that m=2. Alternatively, double or halve the step size, maintaining the number of iterations to
converge the corrector.

7.6.2 Higher-Order Multistep Methods

12

Higher-order multistep methods are based on open and closed Newton-Cotes or Adams
integration formulas. Adams formulas use several points to estimate the integral only in the last
segment of the interval, leading to slightly more accuracy.

Milne’s Method

This method uses a 3-point Newton-Cotes open formula as a predictor

)22(3
4

2131
m

i
m

i
m

i
m
i

o
i fffhyy  

And a 3-point Newton-Cotes closed formula as a corrector

)4(3
1

1111
  j

i
m

i
m

i
m
i

j
i fffhyy

There are, however, stability problems with this corrector. Using a more stable corrector leads to
Hamming’s method:
  )2(398

1
1

1
121

m
i

m
i

j
i

m
i

m
i

j
i fyfhyyy  

With correctors

)(121
112 ;)(121

9
11

o
i

m
ic

o
i

m
ip yyEyyE  

Fourth-Order Adams Method

This method uses a 4th-order Adams-Bashford (open) formula as a predictor

)24
9

24
37

24
59

24
55(3211

m
i

m
i

m
i

m
i

m
i

j
i ffffhyy  

and a 4th-order Adams-Moulton (closed) formula as a corrector

)24
1

24
5

24
19

24
9(21

1
11

m
i

m
i

m
i

j
i

m
i

j
i ffffhyy  

with modifiers

13

)(270

19 ;)(270
251

11
o
i

m
ic

o
i

m
ip yyEyyE  

7.7 Boundary Value Problems

Up to now we have dealt with initial-value problems, where initial conditions specified at one
point are sufficient to determine the constants of integration and complete the solution.
Problems that specify conditions at extreme points or boundaries of the system are called
boundary-value problems. As an example, consider the heat balance in a long, thin rod

0)(2
2  TThdx
Td

a

Where h’ is the heat transfer coefficient that describes the rate of heat dissipation to the
surrounding air and Ta is the temperature of the surrounding air. To solve this problem, two
boundary conditions must be specified, for example the temperatures at the ends of the rod

21)()0(TLxTTxT 
For a 10-m rod with Ta = 20 C, T1 = 40 C, T2 = 200 C and h’ = 0.01/m2, the solution is

CeexT xx 204523.534523.73)(1.01.0  

7.7.1 The Shooting Method

This method treats a boundary-value problem as an equivalent initial-value problem. Specify all
the boundary conditions at x = 0 (T1 = 40 C and make an initial guess at dT/dx = z), then solve
the problem to find the temperature at x = L. If the solution does not match the boundary
condition at x = L, adjust the boundary condition at x = 0 and re-solve the problem.

If the problem is linear (as in this example), obtaining two solutions and interpolating between
them will supply the necessary boundary conditions at x = 0. If the problem is non-linear, for
example if the following, better, approximation for the heat transfer from the bar is used

x
y T1 T2

TA

L

14

0)(4
2

2  TThdx
Td

a

the shooting method can be cast as a general root-finding problem to determine the appropriate
starting values in order to arrive at the other boundary value(s). The shooting method is
straightforward but because of the need to repeatedly solve the problem it is not particularly
efficient.

7.7.2 Finite Difference Methods

Finite difference methods discretize the domain of the solution and transform the linear
differential equation into a set of simultaneous linear equations. For the heat transfer example
above, divide the rod into equal-length segments, 5 in the example here. The divided-difference
approximation is

2
11

2
2 2

x
TTT

dx
Td iii 

 

The differential equation then becomes

aiii

ia
iii

TxhTTxhT

TThx
TTT

2
1

2
1

2
11

)2(
or

0)(2










Appling this equation to the interior nodes of the rod (assuming that the temperature is known at
the ends x=0 and x=L) yields

5
2

4
2

3

2
43

2
2

2
32

2
1

0
2

21
2

)2(
)2(
)2(
)2(

TTxhTxhT
TxhTTxhT
TxhTTxhT

TTxhTTxh

a
a
a
a







The most common boundary condition is where the dependent variable is specified on the
boundary, as in the example above. To apply these fixed, or Dirichlet, boundary conditions,
replace the variables with their known values and eliminate the equation at that node.

x
y T1 T2 TA

i=0 i=1 i=2 i=3 i=4 i=5
L

15

One can also specify the derivative of the dependent variable at the boundary nodes. For
example, the heat flux dT/dx can be specified at x = 0 or x = L above. These gradient, or
Neumann, boundary conditions are also approximated with finite differences. For example, let
the boundary condition dT/dx be specified at i = 0 above. Taking a central difference
approximation at i = 0 gives

x
TT

dx
dT


 

2
11

0

Substituting this approximation into the finite difference equation for node i = 0 eliminates the
fictitious node at i = -1 and gives

0
2

10
2 22)2(dx

dTxTxhTTxh a 

The system of equations for the nodal temperatures then becomes

5
2

4
2

3

2
43

2
2

2
32

2
1

2
21

2
0

0
2

10
2

)2(
)2(
)2(
)2(

22)2(

TTxhTxhT
TxhTTxhT
TxhTTxhT
TxhTTxhT

dx
dTxTxhTTxh

a
a
a
a

a








These systems of equations can be solved for the unknown temperatures by any of the methods
discussed previously.

7.7.3 Eigenvalue Problems

Eigenvalue, or characteristic-value, problems are a class of boundary value problems common in
vibrations, elasticity and areas that deal with oscillating systems. These problems have the
general form
    0 XIA 

Where  are the eigenvalues and X are the associated eigenvectors.

16

Polynomial Method – Develop the set of equations    0 XIA  . Expand the determinant of
IA  , which will be a polynomial whose roots are  . Solve for the roots with either Müller’s

or Bairstow’s method, deflating in order to find all of the eigenvalues/eigenvectors (there will be
one for each row of A).

Power Method – Write the system as XAX  . For an initial guess, assume that  TX 1...1,1,1 , substitute and solve for a new set of X. Normalize with respect to the largest
value of X. Iterate until convergence. Upon convergence, the normalization factor will be the
largest eigenvalue, with eigenvector equal to X. If matrix A is symmetric, it can then be deflated
using Hotelling’s method, TXXAA 11112  , where A1 is the original matrix and 11 , X are the
largest eigenvalue/eigenvector pair. Proceed in this manner to find the largest several
eigenvalues. This method cannot usually be used to find all of the eigenvalues due to the
accumulation of significant round-off errors.

To find the smallest eigenvalue/eigenvector pairs, perform the power method on the inverse of A,
deflating in order to eliminate those already found.

Many more advanced techniques exist for finding eigenvalues.

