Section 4 — Optimization

In finding roots, we searched for points whereracfion crossed the horizontal axis, where its
value was zero. In optimization, we look for thexamum or minimum values of a function,
where f'(x) =0 (recall that if f "(x) <Oat that point it is a maximum, if "(x) >0 itis a
minimum). Additionally, there are often constraiplaced on the solution that restrict the
domain. A general optimization, orathematical programmingroblem can be stated as

Find x which minimizes or maximize$x) subject to
dX)<a i=12,..m
e(X)=b i=12..p

where
X is the design vector, of order
f (X) is the objective function

d, (X) are the inequality constraints
e (X) are the equality constraints
a ,b are constants

If f(X) and the constraints are all linear, we have alpmlinlinear programming If f(X) is
guadratic and the constraints are linear, it iase®fquadratic programming If f(X) is not

linear and not quadratic, and/or the constrairgshat all linear, the problem is onerainlinear
programming

If constraints are not included the problem is &drmconstrainedif they are it is a problem in
constrained optimizatianThe number oflegrees of freedom n —p —m. Generally, to obtain a
solutionp + m<n. If p + m > n then the system ®ver-constrained

One-dimensional problems involve functions of agkervariable, and involve climbing hills and
valleys to find minima and/or maxima. Multidimeoisal problems involve two or more
independent variables.

The process of finding a maximum is essentiallysés@e as finding a minimum, since a value
X" that maximizesf (X) minimizes— f (X).

4.1 One-Dimensional Unconstrained Optimization
All of these types of problems can be cast aswdloFind the maximum (or minimum) of a

functionf(x) of one variable. The difficult part will be tesure ourselves that we have found the
global maximum. In general, these problems cadi\aded into bracketed and open methods.

4.1.1 Golden-Search Method



This is a simple, general purpose search techri@juee single variable, similar to the bisection
method for finding roots. We start with boungsndx, that bracket a maximum. To narrow

the range, we need to pick an intermediate poise®if a maximum occurs between the bounds,
and a fourth point to determine in which part af thterval the maximum occurs (that is, within
the lower or upper three points). The selectiothege intermediate points is critical to

efficiency by minimizing the function evaluations.

With respect to the figure shown, let f(x)
lo=11+15
and
X
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which is theGolden Ratio With
these ratios, the method proceeds as
follows:
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Starting withx andx,, d = T( Xu-X) andxg =x +d, Xo =%, - d.

If f(x1) > f(x2), then the maximum is within, x ], so that for the next step

XI,new = X2,0Id

X2,new = Xl,old
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Xlnew = XI + 2 (Xu - XI )

f(XZ,new) = f(X]_,old)
If f(x2) >f(x1), then the maximum is withing[ x;], so that for the next step

Xunew = X1,0Id

XLnew = X2,o|d
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Xonew = Xy ~ 2

f (Xl,new) = f (X2,0Id )

(Xu _XI)

The size of the interval shrinks by 61.8%., and/amle more function evaluation is needed, with
every iteration. The relative error in each step i



4.1.2 Quadratic Interpolation

Consider a functiofi(x) and three pointg < x; <X, that bracket an optima &). Fit a
parabola through the point&[f(xo)], [X1, f(X1)] and [x,, f(x2)] and solve for where the first
derivative of that parabola is zero. The maximg¢hat parabola is ag

= (%) 06 =) + F)0G —x3) + F(X,)(% — %)
’ 2f(XO)(X1 _Xz) +2f(X1)(X2 _Xo) +2f(X2)(Xo _Xl)

If X3 is between pointg andxs, thenx;, new= X3 andxz, new= X1, oid @Nd ifX3 is between points;
andx; thenxo, new= X1, old @Ndxy, new= X3. The method repeats until the relative error

e = X3 = X301

a

X3
falls below a specified tolerance.

4.1.3 Newton’s Method

This is an open method that finds the optimurf()gfby defining a new functiog(x)=df(x)/dx
and finding its zeros:

This result can also be found by taking the secmndlé+r Taylor expansion &fx) and setting the
first derivative equal to zero. This is very siamito the Newton-Raphson method of finding
roots, with the advantages of quadratic convergandethe disadvantages of the possibility of
divergence and the need of an analytic functios.th#s method progresses, one needs to check
the sign of the second derivative to make sure egence is to the proper maxima.

4.1.4 Hybrid Methods
Several methods exist that combine the convergemaecteristics of bracketing methods when

far away from a maxima with the speed and accusheyn open method when close to the
maxima.

4.2 Multidimensional Unconstrained Optimization



Techniques of finding the maxima or minima of ndiliensional functions are divided into two
general types, those that require derivatives (gradechniques) or not (direct methods).

4.2.1 Direct Methods

Random Search

This is a brute-force method where the functioevaluated at randomly selected values of the
independent variables. If enough points are chakeroptimum will be found. This technique
works on discontinuous and non-differentiable fiored and even on difficult undulating
functions, and previous attempts can be takenaotount to refine the search. Random search
techniques are closely related to Monte Carlo nagho

Univariate Method and Pattern Searches
Change one variable at a time to improve the I —
approximation while all the other variables are 2
held constant. This reduces the problem to a
series of one-dimensional searches. If we keeq
track of the general direction of the path, we cafh |
find trajectories that shoot directly to the 3
maximum —pattern searches

-—

Powell’s Methodinds two points in a pattern
direction by performing two one-

dimensional searches in the same direction e

but with different starting points. The line e —.1
formed by the two ends is directed towards, ~ (U
the maximum along eonjugate direction A

4.2.2 Gradient Methods

In these methods, explicit use of the derivatigesmployed to generate algorithms to locate the
optima.

Thedirectional derivativeof a functionf(x,y) isg(x y) = g_f cosé + Z_f sind
X

y

Thegradientis in the direction of steepest ascent:
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This direction is the steepest, that is, on thetmdwsct route, to the maximum. When it
becomes zero, a local optimum has been reached.

The second derivative, btessian tells us if we've reached a local maximum or mmam:

, 0°f 0°f
|H|:62f 02 f _(asz _ et O 0y
x> dy® | 0xdy 9°f  o°f
0xdy oy’

Three cases exist:

If [H| >0 andd?f /ox* > Q thenf(x,y) is a local minimum irx

If [H| >0 andd®f /0x* < Qthenf(x,)) is a local maximum ix
If [H| <O, therf(x,y) is a saddle point.

If the function to be maximized is not accessiblke finite differences to estimate the derivatives:
of _ f(x+oxy)- f(x-oxy)
X

20K

of _ f(xy+dy)- f(xy-9)

oy 20y

0°f _ f(x+dxy)-2f(xy)+ f(x-9xYy)

oz (X)?

0*f _ f(xy+d)-2f(xy+ f(xy-9)

ay* (%)°

0°f _ f(x+xy+d) - f(x+xy-F) - f(x-Ky+y)+ f(x-xy-&)
Xy AOXy

Note that this is generally not a preferred metisodply due to the number of function
evaluations that must be performed.

Steepest Ascent Method



At each step, determine the best direction (grdpeend the best distance in that direction.
Following the gradient with an arbitrary step sigrees themethod of steepest ascettit the
functionf(x,y) is transformed into a function malong the gradient using the following
substitution:

x=x0+£h

0X

of
= +—h
Y=Y dy

of of

f(x,y) - gh)= f(x,+—h,y,+—h
(xy) - g(h) = f(x, Yo oy )

then one can solve for the maximum dtegdong that path method of optimal steepest ascent
The method of steepest ascent is linearly convémahtends to move slowly along long,
narrow ridges.

Advanced Gradient Approaches
TheFletcher-Reevesonjugate gradient algorithm combines Powell’shodtof finding
conjugate search directions and modifies the sgegseent method to require that successive

gradient search directions.

Newton’s Methodtarts with the second-order Taylor series fgk) nearX = X,

F(%) = £(%)+0fT(%)(X-%) == (X = %) H, (X~ %)

N~

whereH; is the Hessian matrix. At the minimum,

o) _ 0 for j=1,2,...n
0x

j
so that
Of =0f(x)+H,(X-%)=0
If H; is non-singular, then
X, =% —HOf

which converges quadratically near the optimum, hmfaster than the method of steepest ascent.
Note that analytical derivatives are needed fa thethod so it is not particularly useful for large
numbers of variables. This method may also diverge
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The Marquadt Methoduses the steepest ascent method when far awaytlimoptimum and
Newton’s method when near. Modify the diagonahef Hessian matrix as

H =H +al

Wherea, is a positive constant amds the identity matrix. At the start of the prooeel, a, is

assumed to be large amﬂ‘l = (@/a;)! which reduces to the method of steepest ascesithe\
iterations proceedy; — @nd the method gradually becomes Newton’s method.

4.3 Constrained Optimization

We will restrict our discussion of constrained opaation to linear programming (bnear
scheduling. The basic problem of linear programming is tximize

Z=CX +CX, +...+CX,

wherex; is the magnitude of thiéh activity andc; is thepayofffor each unit of thgth activity
undertaken.Z is the total payoff. The constraints on the sotutan be written in general as

a‘ilxl +a12X2 +"'+ainxn < bi

whereg; is the amount of thigh resource consumed for each unit ofjtheactivity and; is the
amount of theth resource available. In addition, all activitreast be positive, that i, >0.

Graphical Solutions

Graphical solutions are limited to two or three dimsions, but are perhaps the most efficient
way to solve low-level problems. Plot the consttaias lines (all are linear), and if the problem
is properly described they fornfeasible solution spacePlot the objective function for a
particular value o, and then adjust until the maximum value of Zoisrfd within the feasible
solution space.

Constraints that limit the feasible solution spape callecbinding non-binding constraints do
not limit the solution. For any given linear pragriming problem four possibilities exist:

1. Unique solution— the objective function has a maximum at a sipgiat.

2. Alternate solutions— if the objective function is parallel to a bindinonstraint,
many solutions may be possible.

3. No feasible solution- unsolvable problem, a result of either errorsadtiing up the
problem or over-constraining the solution.

4. Unbounded problem— under-constrained system, open-ended soluticzespa



If a unique solution exists, it always occurs gbat where two or more constraints intersect
(why?), calledextreme points Not all extreme points are feasible, so nobhthem have to be
examined to find the optimal solution.

The Simplex Method

In order to begin to develop a procedure for s@\Vinear programming problems, defislack
variablesthat measure how much of a constrained resoui@eaitable. If one slack variable is
defined for each resource, the constraints canb®written as equations:

A% + 3%t +a X, +§ =h

If § >0, there is a surplus of resourcand if§ < 0 we have exceeded the allowable supply of
resource.

The system now has more variables than equatiodssander-specified There ara

structural (original) variables amd surplus (slack) variables, resultingnrt mtotal variables.

The difference between the number of variablesthachumber of equations is the number of
variables that must be equal to zero in order telzaunique solution at a feasible extreme point.

For m linear equations witthunknowns, set-mvariables equal to zero and solve the
equations for the remaining unknowns. Theariables that are solved for are caltesic
variables those that are set to zero are cafled-basic variables If all the basic variables are
non-negative upon solution, the point found xaaic feasible solutiohe optimum solution
will be one of these points.

However, to test all of the extreme pointsfioequations and unknowns one must solve

I
CS]:L
m(n—m)!

systems ofm equations. A problem consisting of 10 equatiors E6 unknowns requires the
solution of 8008 sets of 10x10 equations. In adidjtmany of these points may be infeasible.

The Simplex method avoids these problems by stawith a basic feasible solution (often, all
the structural variables are simply set equal to)z¢hen moves through a sequence of other
basic feasible solutions that improve the valuthefobjective function. Once the optimum is
found, the method stops.

First, start at a simple basic solution, one tlehpps sets all of the structural variables to.zero
Then increase the value of a non-basic variabtbat increases (called trentering variablg
and set one of the current basic variables to @aited thdeaving variablg. The entering
variable can be any of the variables that has athegcoefficient, usually the one with the
largest negative coefficient is chosen since s the largest increasedn The leaving
variable is chosen from the set of current basi@bées by calculating the values at which the
constraint lines intersect the constraint corredpanto the leaving variable. Calculate the
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remaining coefficients by solving the remainingtsys of equations. The method continues
until no negative coefficients remain.

Example: A natural gas refinery receives a fixed amo#itnt, of raw gas per week. The raw
gas is processed into two grades, regular and premOnly one grade of gas can be processed
at a time. The facility can make 7fton of regular gas and 11*fion of premium gas. The
facility is available for 80 hours per week. Stggacapacity is limited to 9 tons of regular and 6
tons of premium gas. Regular takes 10 hours/taafioe and makes a profit of $150/ton.
Premium takes 8 hours/ton to refine and makes fit pfd175/ton. Maximize the profits for

this operation.

MaximizeZ = 150 + 175¢ (profit)

Subject to
X1+ 1 <77 (raw material constraint, 1)
10x; + 8 < 80 (time constraint, 2)
X1<9 (regular storage constraint, 3)
X2 <6 (premium storage constraint, 4)
X1, % >0
X2
S~o D M $ |
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Introduce slack variables for each of the constsaamd rewrite these equations in the form:

Z=1504+175%-05-0$-0$-0 =0
X+ 1+ S5 =77

10x; + 8+ $=80

X1+S=9

X +S5,=6

Let x; =x, = 0 and solve the remaining set of equations

Z=-05-0-0%-0% =0
S =77



o © ®

S
S
S
tofindZ=0,5=77,$%=80,5=9,5 = 6 (pointA in the figure above)

Examining the payoff equation, the largest chamgé will come with a change i, this is the

entering variable in this step. Calculate the slopeach constraint equation above with respect
to Xo:

X =77/111=7
X2 =80/8 =10
Xo = 6/1=6

and choose as the leaving variable the constragdcated with the smallest non-negative value,
S = 0 (kg is still zero) so that the set of equations be®me

Z=150;-05-0$-0%-05, =175(6) = $1050
Txi+S = 77— 11(6) = 11

10% + S,= 80 — 8(6) = 32

X1+S=9

X =6

This is pointE (x; = 0,% = 6) in the figure above. Now the largest chaimgé will come from a
change ik, so this is the entering variable in this step.filid the leaving variable, calculate
the slopes of the constraint equations with resymegt

xp = 11/7 smallest non-negative value
X1 = 32/10
X1 = 9

which indicates tha®, should be the leaving variable. Settig= O gives

Z=0S5-0S-0S%-0S = 150(11/7) + 175(6) = $1285.71
Tx +S =77 —11(6) = 11

S= 80 — 8(6) = -10(11/7) -8(6) = -63.71

S=9-11/7 = 7.429

Which corresponds to poibt (x; = 11/7,% = 6) in the figure. The slack varialgcannot be
negative, so take that as the next leaving varigbte0. Combined witts, = 0 gives the system
of equations

Z=1504+175:-05-0$-0$-0
1+ 1, =77

10x; + 8% =80

X1+S=9



Xo+S$ =6
Solving this set of equations gives

x; = 4.889 tons of regular gas

X = 3.889 ton of premium gas

$=4.111 excess storage capacity of regular gas

S, = 2.111 excess storage capacity of premium gas

Z = $1414 profit

S =S =0, no excess capacity in either raw materiainoe

Since all the variables are non-negative this rhaghe optimal solution, corresponding to point
C of the graph above.



