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Section 4 – Optimization 
 
In finding roots, we searched for points where a function crossed the horizontal axis, where its 
value was zero.  In optimization, we look for the maximum or minimum values of a function, 
where 0)( =′ xf  (recall that if 0)( <′′ xf at that point it is a maximum, if 0)( >′′ xf  it is a 
minimum).  Additionally, there are often constraints placed on the solution that restrict the 
domain.  A general optimization, or mathematical programming, problem can be stated as 

 
Find x which minimizes or maximizes f(x) subject to 
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If )x(

r
f  and the constraints are all linear, we have a problem in linear programming.  If )x(

r
f  is 

quadratic and the constraints are linear, it is a case of quadratic programming.  If )x(
r

f  is not 
linear and not quadratic, and/or the constraints are not all linear, the problem is one of nonlinear 
programming. 
 
If constraints are not included the problem is termed unconstrained, if they are it is a problem in 
constrained optimization.  The number of degrees of freedom is n – p – m.  Generally, to obtain a 
solution p + m ≤ n.  If p + m > n, then the system is over-constrained. 
 
One-dimensional problems involve functions of a single variable, and involve climbing hills and 
valleys to find minima and/or maxima.  Multidimensional problems involve two or more 
independent variables.   
 
The process of finding a maximum is essentially the same as finding a minimum, since a value 
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4.1 One-Dimensional Unconstrained Optimization 
 
All of these types of problems can be cast as follows:  Find the maximum (or minimum) of a 
function f(x) of one variable.  The difficult part will be to assure ourselves that we have found the 
global maximum.  In general, these problems can be divided into bracketed and open methods. 
 
4.1.1 Golden-Search Method 
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This is a simple, general purpose search technique for a single variable, similar to the bisection 
method for finding roots.  We start with bounds xl and xu that bracket a maximum.  To narrow 
the range, we need to pick an intermediate point to see if a maximum occurs between the bounds, 
and a fourth point to determine in which part of the interval the maximum occurs (that is, within 
the lower or upper three points).  The selection of these intermediate points is critical to 
efficiency by minimizing the function evaluations. 
 
With respect to the figure shown, let 
  

l0 = l1 + l2 
 
and 
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which is the Golden Ratio.  With 
these ratios, the method proceeds as 
follows: 
 

Starting with xl and xu, d = 
2

15 −
( xu - xl) and x1 = xl + d, x2 = xu - d. 

If f(x1) > f(x2), then the maximum is within [x2, xu], so that for the next step 
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If f(x2) > f(x1), then the maximum is within [xl, x1], so that for the next step 
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The size of the interval shrinks by 61.8%., and only one more function evaluation is needed, with 
every iteration.  The relative error in each step is 
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4.1.2 Quadratic Interpolation 
 
Consider a function f(x) and three points x0 < x1 < x2 that bracket an optima of f(x).  Fit a 
parabola through the points [x0, f(x0)], [x1, f(x1)] and [x2, f(x2)] and solve for where the first 
derivative of that parabola is zero.  The maxima of that parabola is at x3 
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If x3 is between points x0 and x1, then x1, new = x3 and x2, new = x1, old and if x3 is between points x1 
and x2 then x0, new = x1, old  and x1, new = x3.  The method repeats until the relative error 
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falls below a specified tolerance. 
 
4.1.3 Newton’s Method 
 
This is an open method that finds the optimum of f(x) by defining a new function g(x)=df(x)/dx 
and finding its zeros: 
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This result can also be found by taking the second-order Taylor expansion of f(x) and setting the 
first derivative equal to zero.  This is very similar to the Newton-Raphson method of finding 
roots, with the advantages of quadratic convergence and the disadvantages of the possibility of 
divergence and the need of an analytic function.  As this method progresses, one needs to check 
the sign of the second derivative to make sure convergence is to the proper maxima. 
 
4.1.4 Hybrid Methods 
 
Several methods exist that combine the convergence characteristics of bracketing methods when 
far away from a maxima with the speed and accuracy of an open method when close to the 
maxima. 
 
4.2 Multidimensional Unconstrained Optimization 
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Techniques of finding the maxima or minima of multidimensional functions are divided into two 
general types, those that require derivatives (gradient techniques) or not (direct methods). 
 
4.2.1 Direct Methods 
 
Random Search 
This is a brute-force method where the function is evaluated at randomly selected values of the 
independent variables.  If enough points are chosen, the optimum will be found.  This technique 
works on discontinuous and non-differentiable functions and even on difficult undulating 
functions, and previous attempts can be taken into account to refine the search.  Random search 
techniques are closely related to Monte Carlo methods. 
 
Univariate Method and Pattern Searches 
Change one variable at a time to improve the 
approximation while all the other variables are 
held constant.  This reduces the problem to a 
series of one-dimensional searches.  If we keep 
track of the general direction of the path, we can 
find trajectories that shoot directly to the 
maximum – pattern searches. 
 
Powell’s Method finds two points in a pattern 
direction by performing two one-
dimensional searches in the same direction 
but with different starting points.  The line 
formed by the two ends is directed towards 
the maximum along a conjugate direction. 
 
 
 
 
 
 
 
4.2.2 Gradient Methods 
 
In these methods, explicit use of the derivatives is employed to generate algorithms to locate the 
optima. 
 

The directional derivative of a function f(x,y) is θθ sincos),(
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The gradient is in the direction of steepest ascent: 
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This direction is the steepest, that is, on the most direct route, to the maximum.  When it 
becomes zero, a local optimum has been reached. 
 
The second derivative, or Hessian, tells us if we’ve reached a local maximum or minimum: 
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Three cases exist: 

•••• If |H| > 0 and 0/ 22 >∂∂ xf , then f(x,y) is a local minimum in x. 

•••• If |H| > 0 and 0/ 22 <∂∂ xf , then f(x,y) is a local maximum in x. 

•••• If |H| < 0, then f(x,y) is a saddle point. 
 
If the function to be maximized is not accessible, use finite differences to estimate the derivatives: 
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Note that this is generally not a preferred method, simply due to the number of function 
evaluations that must be performed. 
 
Steepest Ascent Method 
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At each step, determine the best direction (gradient) and the best distance in that direction.  
Following the gradient with an arbitrary step size gives the method of steepest ascent.  If the 
function f(x,y) is transformed into a function in h along the gradient using the following 
substitution: 
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then one can solve for the maximum step h along that path – method of optimal steepest ascent.  
The method of steepest ascent is linearly convergent and tends to move slowly along long, 
narrow ridges. 
 
Advanced Gradient Approaches 
 
The Fletcher-Reeves conjugate gradient algorithm combines Powell’s method of finding 
conjugate search directions and modifies the steepest ascent method to require that successive 
gradient search directions. 
 
Newton’s Method starts with the second-order Taylor series for )(xf
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where Hi is the Hessian matrix.  At the minimum,  
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If Hi is non-singular, then  
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which converges quadratically near the optimum, much faster than the method of steepest ascent.  
Note that analytical derivatives are needed for this method so it is not particularly useful for large 
numbers of variables.  This method may also diverge. 
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The Marquadt Method uses the steepest ascent method when far away from the optimum and 
Newton’s method when near.  Modify the diagonal of the Hessian matrix as  
 

IHH iii α+=
r

 

 
 
Where iα  is a positive constant and I is the identity matrix. At the start of the procedure, iα  is 

assumed to be large and IH ii )/1(1 α=−
r

 which reduces to the method of steepest ascent.  As the 

iterations proceed, 0→iα  and the method gradually becomes Newton’s method. 
 
4.3 Constrained Optimization 
 
We will restrict our discussion of constrained optimization to linear programming (or linear 
scheduling).  The basic problem of linear programming is to maximize 
 

nnxcxcxcZ +++= ...2211  
 
where xj is the magnitude of the jth activity and cj is the payoff for each unit of the jth activity 
undertaken.  Z is the total payoff.  The constraints on the solution can be written in general as  
 

ininii bxaxaxa ≤+++ ...2211  
 
where aij is the amount of the ith resource consumed for each unit of the jth activity and bi is the 
amount of the ith resource available.  In addition, all activities must be positive, that is, xi ≥0. 
 
Graphical Solutions 
 
Graphical solutions are limited to two or three dimensions, but are perhaps the most efficient 
way to solve low-level problems.  Plot the constraints as lines (all are linear), and if the problem 
is properly described they form a feasible solution space.  Plot the objective function for a 
particular value of Z, and then adjust until the maximum value of Z is found within the feasible 
solution space. 
 
Constraints that limit the feasible solution space are called binding; non-binding constraints do 
not limit the solution.  For any given linear programming problem four possibilities exist: 

 
1. Unique solution – the objective function has a maximum at a single point. 
2. Alternate solutions – if the objective function is parallel to a binding constraint, 

many solutions may be possible. 
3. No feasible solution – unsolvable problem, a result of either errors in setting up the 

problem or over-constraining the solution. 
4. Unbounded problem – under-constrained system, open-ended solution space. 
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If a unique solution exists, it always occurs at a point where two or more constraints intersect 
(why?), called extreme points.  Not all extreme points are feasible, so not all of them have to be 
examined to find the optimal solution. 
 
The Simplex Method 
 
In order to begin to develop a procedure for solving linear programming problems, define slack 
variables that measure how much of a constrained resource is available.  If one slack variable is 
defined for each resource, the constraints can now be written as equations: 
 

iininii bSxaxaxa =++++ ...2211  

 
If Si > 0, there is a surplus of resource i, and if Si < 0 we have exceeded the allowable supply of 
resource i. 
 
The system now has more variables than equations, and is under-specified.  There are n 
structural (original) variables and m surplus (slack) variables, resulting in n + m total variables.  
The difference between the number of variables and the number of equations is the number of 
variables that must be equal to zero in order to have a unique solution at a feasible extreme point. 
 
For m linear equations with n unknowns, set n-m variables equal to zero and solve the m 
equations for the remaining unknowns.  The m variables that are solved for are called basic 
variables; those that are set to zero are called non-basic variables.  If all the basic variables are 
non-negative upon solution, the point found is a basic feasible solution. The optimum solution 
will be one of these points. 
 
However, to test all of the extreme points for m equations and n unknowns one must solve  
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systems of m equations.  A problem consisting of 10 equations and 16 unknowns requires the 
solution of 8008 sets of 10x10 equations.  In addition, many of these points may be infeasible. 
 
The Simplex method avoids these problems by starting with a basic feasible solution (often, all 
the structural variables are simply set equal to zero), then moves through a sequence of other 
basic feasible solutions that improve the value of the objective function.  Once the optimum is 
found, the method stops. 
 
First, start at a simple basic solution, one that perhaps sets all of the structural variables to zero.  
Then increase the value of a non-basic variable so that Z increases (called the entering variable) 
and set one of the current basic variables to zero (called the leaving variable).  The entering 
variable can be any of the variables that has a negative coefficient, usually the one with the 
largest negative coefficient is chosen since it leads to the largest increase in Z.   The leaving 
variable is chosen from the set of current basic variables by calculating the values at which the 
constraint lines intersect the constraint corresponding to the leaving variable.  Calculate the 
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remaining coefficients by solving the remaining system of equations.  The method continues 
until no negative coefficients remain. 
 
Example:  A natural gas refinery receives a fixed amount, 77 m3, of raw gas per week.  The raw 
gas is processed into two grades, regular and premium.  Only one grade of gas can be processed 
at a time.  The facility can make 7 m3/ton of regular gas and 11 m3/ton of premium gas.  The 
facility is available for 80 hours per week.  Storage capacity is limited to 9 tons of regular and 6 
tons of premium gas.  Regular takes 10 hours/ton to refine and makes a profit of $150/ton.  
Premium takes 8 hours/ton to refine and makes a profit of $175/ton.  Maximize the profits for 
this operation. 
 

Maximize Z = 150x1 + 175x2  (profit) 
Subject to 
7x1 + 11x2 ≤ 77  (raw material constraint, 1) 
10x1 + 8x2 ≤ 80  (time constraint, 2) 
x1 ≤ 9    (regular storage constraint, 3) 
x2 ≤ 6    (premium storage constraint, 4) 

 x1, x2 ≥ 0 

 
 
Introduce slack variables for each of the constraints and rewrite these equations in the form: 
 

Z = 150x1 + 175x2 - 0 S1 - 0 S2 -0 S3 -0 S4  = 0 
7x1 + 11x2 + S1 = 77 
10x1 + 8x2 + S2 = 80 
x1 + S3 = 9 
x2 + S4 = 6   

 
Let x1 = x2 = 0 and solve the remaining set of equations 
 

Z = - 0 S1 - 0 S2 -0 S3 -0 S4  = 0 
S1 = 77 

x1 

x2 

x2 > 0  

x1 > 0  

1  

2  

3  

4  

  
A  

B  

C 

D 

E 



 

4 - 10 
 

S2 = 80 
S3 = 9 
S4 = 6   

 
to find Z = 0, S1 = 77, S2 = 80, S3 = 9, S4 = 6 (point A in the figure above) 
 
Examining the payoff equation, the largest change in Z will come with a change in x2, this is the 
entering variable in this step.  Calculate the slope of each constraint equation above with respect 
to x2: 
 
 x2 = 77/11 = 7 

x2 = 80/8 = 10 
 x2 = 6/1 = 6   
 
and choose as the leaving variable the constraint associated with the smallest non-negative value, 
S4 = 0 (x1 is still zero) so that the set of equations becomes 
 

Z = 150x1 - 0 S1 - 0 S2 -0 S3 -0 S4  = 175(6) = $1050 
7x1 + S1 = 77 – 11(6) = 11 
10x1 + S2 = 80 – 8(6) = 32 
x1 + S3 = 9 

 x2 = 6 
 
This is point E (x1 = 0, x2 = 6) in the figure above.  Now the largest change in Z will come from a 
change in x1, so this is the entering variable in this step.  To find the leaving variable, calculate 
the slopes of the constraint equations with respect to x1: 
 
 x1 = 11/7 smallest non-negative value 
 x1 = 32/10 
 x1 = 9 
 
which indicates that S1 should be the leaving variable.  Setting S1 = 0 gives 
 

Z = 0 S1 - 0 S2 - 0 S3 -0 S4  = 150(11/7) + 175(6) = $1285.71 
7x1 + S1 = 77 – 11(6) = 11 
S2 = 80 – 8(6) = -10(11/7) -8(6) = -63.71 
S3 = 9 – 11/7 = 7.429 

 
Which corresponds to point D (x1 = 11/7, x2 = 6)  in the figure.  The slack variable S2 cannot be 
negative, so take that as the next leaving variable S2 = 0.  Combined with S1 = 0 gives the system 
of equations 
 

Z = 150x1 + 175x2 - 0 S1 - 0 S2 -0 S3 -0 S4 
7x1 + 11x2 = 77 
10x1 + 8x2 = 80 
x1 + S3 = 9 
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x2 + S4 = 6   
 
Solving this set of equations gives 
 

x1 = 4.889 tons of regular gas 
x2 = 3.889 ton of premium gas 
S3 = 4.111 excess storage capacity of regular gas 

 S4 = 2.111 excess storage capacity of premium gas 
Z = $1414 profit 
S1 = S2 = 0, no excess capacity in either raw material or time 

 
Since all the variables are non-negative this must be the optimal solution, corresponding to point 
C of the graph above.  


