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Section 3 - Systems of Linear Algebraic Equations 
 
In this section, we will explore the solution of systems of equations of the type Ax = B, where A 
is the matrix of coefficients of the system of equations, is a vector of unknown variables and B is 
a vector of known quantities, the “right-hand-sides” of the system of equations.   
 
With equations of this type, three possibilities exist: the system can have a unique solution (A≠0), 
it can have no solution (A=0, B≠0), or it can have infinitely many (non-unique) solutions (A=0, 
B=0).  One of the tasks we will always have is to identify which of these cases we are dealing 
with as we attempt to solve the problem. 
 
3.1 Elimination Methods 
 
3.1.1 Gauss Elimination 
 
Consider the following system of equations: 
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Multiply the first row (the pivot row) by a21/a11 and subtract it from the second row, multiply the 
first equation by a31/a11 and subtract it from the third row, etc., to yield 
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The second row now becomes the pivot row and the method proceeds (forward elimination) until 
only one known remains and A is an upper triangular matrix: 
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To complete the solution of the system of equations, back-substitute to find 
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Operation count - Adding up the number of floating point operations (flops) gives 2n3/3 + O(n2) 
for the forward elimination and n2 + O(n) for the back substitution, and 2n3/3 + O(n2) for the 
entire naïve method.  Gauss Elimination, therefore, gets very costly as n increases, and most of 
the effort (and time) is in the elimination phase of the method. 
 
Improvements to, and considerations for, the naïve Gauss Elimination method: 
 

•••• Division by zero – Must avoid zeros as the diagonal entries of the pivot rows. 
•••• Round-off errors – Always check the final solution by substituting it into the original 

equations, although this is not always a good measure of the validity of the solution with 
poorly-conditioned systems. 

•••• Ill-conditioned systems – Systems that produce large changes in results with small 
changes in inputs, characterized by small determinants or nearly singular systems. 

•••• Scaling – Multiplying entire equations (rows) by constants to reduce subtractive 
cancellation (rarely done in practice). 

•••• Pivoting – Always done in practice.  Reorder the equations beginning with the pivot row 
so that the largest coefficient in that column is the one that is pivoted (partial pivoting).  
Pivoting can also be done with columns (full pivoting) to result in a diagonal matrix, but 
since it changes the order of the variables it is rarely done in practice.  Rarely does a 
commercial code actually interchange the rows since this takes time; instead an index 
vector keeps track of the location of the rows. 

 
Pseudocode – Gauss Elimination with partial pivoting and pivot scaling 
 

SUB Gauss(a, b, n, x, tol, er) 
 DIMENSION s(n) ' largest element in each row, for scaling 
 er = 0 
 DOFOR i = 1, n 
  s(i) = ABS(A(i,1)) 
  DOFOR j = 2, n 
   IF ABS(a(i,j)) > s(i) THEN s(i) = ABS(a(i,j)) 
  END DO 
 END DO 
 CALL Eliminate(a, s, n, b, tol, er) 
 IF er<> -1 THEN  
  CALL Substitute(a, n, b, x) 
 END IF 
END Gauss 
 
SUB Eliminate(a, s, n, b, tol, er) 
 DOFOR k = 1, n-1 
  CALL Pivot(a, b, s, n, k) 
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  IF ABS(a(k,k)/s(k))<tol THEN 
   er=-1 
   EXIT DO 
  END IF 
  DOFOR i = k+1, n 
   factor = a(i,k)/a(k,k) 
   DOFOR j = k+1, n 
    a(i,j) = a(i,j) - factor*a(k,j) 
   END DO 
   b(i) = b(i) - factor*b(k) 
  END DO 
 END DO 
 IF ABS(a(n,n)/s(n))<tol THEN er=-1 
END Eliminate 
 
SUB Pivot(a, b, s, n, k) 
 p = k 
 big = ABS(a(k,k)/s(k)) 
 DOFOR ii = k+1, n 
  dummy = ABS(a(ii,k)/s(ii)) 
  IF dummy > big THEN 
   big = dummy 
   p = ii 
  END IF 
 END DO 
 IF p <> k THEN 
  DOFOR jj = k, n ' swap the rows 
   dummy = a(p,jj) 
   a(p,jj) = a(k,jj) 
   a(k,jj) = dummy 
  END DO 
  dummy = b(p) ' swap the RHS 
  b(p) = b(k) 
  b(k) = dummy 
  dummy = s(p) ' swap the scale factors 
  s(p) = s(k) 
  s(k) = dummy 
 END IF 
END Pivot 
 
SUB Substitute(a, n, b, x) 
 x(n) = b(n) / a(n,n) 
 DOFOR i = n-1, 1, -1 
  sum = 0 
  DOFOR j = i+1, n 
   sum = sum + a(i,j)*x(j) 
  END DO 
  x(i) = (b(i) - sum) / a(i,i) 
 END DO 
END Substitute 

 
3.1.2 Gauss-Jordan 
 
The Gauss-Jordan method is a variation of Gauss Elimination where all of the matrix rows are 
reduced by the current row, not just the subsequent ones.  In addition, the current row is 
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normalized with respect to its diagonal element.  This results in the identity matrix and the right-
hand-side is equal to the solution vector after the method is complete.  However, the operation 
count is significantly higher than with Gauss Elimination (about 50% higher due to the larger 
number of elimination steps), so it is rarely used in practice. 
 
3.2 LU Decomposition and Matrix Inversion 
 
Gauss elimination is designed to solve equations of the type Ax = B.  Applying this method as 
described above becomes inefficient if there are several vectors B that must be evaluated.  Recall 
that Gauss Elimination consists of forward elimination and back substitution, and that the larger 
effort is in the forward elimination. 
 
LU decomposition methods separate the elimination step from the back substitution, by 
“decomposing” A into an upper triangular matrix (U) and a lower triangular matrix (L ), so that  
 

Ax - B = 0  → UX - D = 0 
Premultiply by L:   LUX – LD = Ax – B 
Therefore  LU = A , LD = B 
 

There are two distinct steps in LU decomposition: The first is the decomposition step where A is 
factored or decomposed into lower (L ) and upper (U) triangular matrices.  The second is the 
substitution step where L  and U are used to determine a solution for a particular right-hand-side 
vector B by generating an intermediate vector D by forward substitution and then back 
substituting to find x. 
 
3.2.1 LU Decomposition using Gauss Elimination 
 
Recall that Gauss Elimination results in an upper triangular matrix of the form 
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There is also a lower matrix developed in the process.  Recall that we multiplied the first row by 
f21 = a21/a11 and subtracted it from the second row, multiplied the first row by f31 = a31/a11 and 
subtracted it from the third row.  Finally, we multiply the second row by f32 = a’32/a’22 and 
subtract it from the third row.  We don’t have to do these operations on the right-hand-side B, we 
can save the values to manipulate it later.  Store the numbers in the decomposed matrix A: 
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To evaluate the vector corresponding to B, forward substitute to find the elements of D: 
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then back substitute to find 
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This method has the same number of operations as Gauss Elimination for one right-hand-side 
vector B.  If more than one right-hand-side vector B is to be evaluated, this LU decomposition 
method (referred to as Doolittle decomposition) is more efficient since it saves the effort and 
time of the forward elimination. 
 
Pseudocode – LU Decomposition using Gauss-Elimination, partial pivoting with order 
vector 
 

SUB LU_Decomp(a, b, n, x, tol, er) 
 DIMENSION s(n) ' largest element in each row, for pivot scaling 
 DIMENSION o(n) ' row order vector 
 er = 0 
 CALL LU_Decompose(a, n, tol, o, s, er) 
 IF er <> -1 THEN 
  CALL LU_Substitute(a,o,n,b,x) 
 END IF 
END LU_Decomp 
 
SUB LU_Decompose(a, n, tol, o, s, er) 
 DOFOR i = 1, n 
  o(i) = i 
  s(i) = ABS(a(i,1)) 
  DOFOR j = 2, n 
   IF ABS(a(i,j)) > s(i) THEN s(i) = ABS(a(i,j)) 
  END DO 
 END DO 
 DOFOR k = 1, n-1 
  CALL LU_Pivot(a, o, s, n, k) 
  IF ABS(a(o(k),k)/s(o(k))) < tol THEN 
   er = -1 
   PRINT a(o(k),k)/s(o(k)) 
   EXIT DO 
  END IF 
  DOFOR i = k+1, n 
   factor = a(o(i),k)/a(o(k),k) 
   a(o(i),k) = factor 
   DOFOR j = k+1, n 
    a(o(i),j) = a(o(i),j) - factor*a(o(k),j) 
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   END DO 
  END DO 
 END DO 
 IF ABS(a(o(k),k)/s(o(k)) < tol THEN 
  er = -1 
  PRINT a(o(k),k)/s(o(k)) 
 END IF 
END LU_Decompose 
 
SUB LU_Pivot(a, o, s, n, k) 
 p = k 
 big = ABS(a(o(k),k)/s(o(k))) 
 DOFOR ii = k+1, n 
  dummy = ABS(a(o(ii),k)/s(o(ii))) 
  IF dummy > big THEN 
   big = dummy 
   p = ii 
  END IF 
 END DO 
 dummy = o(p) ' swap the row order 
 o(p) = o(k) 
 o(k) = dummy 
END LU_Pivot 
 
SUB LU_Substitute(a, n, b, x) 
 DOFOR i = 2, n ' forward substitution on RHS 
  sum = b(o(i)) 
  DOFOR j = 1, i-1 
   sum = sum -a(o(i),j)*b(o(j)) 
  END DO 
  b(o(i)) = sum 
 END DO 
 x(n) = b(o(n)) / a(o(n),n) 
 DOFOR i = n-1, 1, -1 ' back substitution for solut ion 
  sum = 0 
  DOFOR j = i+1, n 
   sum = sum + a(o(i),j)*x(j) 
  END DO 
  x(i) = (b(o(i)) - sum) / a(o(i),i) 
 END DO 
END LU_Substitute 

 
 
3.2.2 Crout Decomposition 
 
Crout Decomposition results in an upper diagonal matrix with ones on the diagonal and a lower 
triangular matrix.  It works by simply sweeping through the matrix a single time: 
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This method is particularly efficient since the coefficients of A are used only once as they are 
replaced, and the LU matrices are stored in the original matrix.  Back substitution proceeds in a 
similar manner to that of Gauss Elimination LU decomposition, details are left to the student. 
 
Pseudocode – Crout decomposition 
 

SUB CroutDecomp(a,n) 
 DOFOR j = 2, n 
  a(1,j) = a(1,j) / a(1,1) 
 END DO 
 DOFOR j = 2, n-1 
  DOFOR i = j, n 
   sum = 0 
   DOFOR k = 1, j-1 
    sum = sum + a(i,k)*a(k,j) 
   END DO 
   a(i,j) = a(i,j) - sum 
  END DO 
  DOFOR k = j+1, n 
   sum = 0 
   DOFOR i = 1, j-1 
    sum = sum + a(j,i)*a(i,k) 
   END DO 
   a(j,k) = (a(j,k) - sum) / a(j,j) 
  END DO 
 END DO 
 sum = 0 
 DOFOR k = 1, n-1 
  sum = sum + a(n,k)*a(k,n) 
 END DO 
 a(n,n) = a(n,n) - sum 
END CroutDecomp 

 
3.2.3 Matrix Inverse 
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The most efficient way to determine the inverse of a matrix is to perform a LU decomposition, 
the successively find the columns of the inverse matrix by solving for the unit vectors  
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The matrix inverse is often used in stimulus-response studies. 
 
3.3 Error Analysis and System Condition 
 
A way to check an approximate solution is to substitute it into the original equations to see if the 
original right-hand-side results.  However, this can be misleading if the system is ill-conditioned, 
that is, nearly singular with very large elements for A-1.  A small residual R = B - A x  does not 
guarantee an accurate solution.  Only if the largest value of A-1 is on the order of unity can the 
system be considered well-conditioned.  Conversely, if A-1 contains elements much larger than 
unity we must conclude the system is ill-conditioned. 
 
The uniform matrix norm, or row-sum norm, is 
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and can be calculated as the largest sum of the absolute values of the elements for each row.  The 
condition number of A is 
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The condition number is always greater than or equal to one.  It can be shown that  
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that is, the relative error of the solution is as large as the relative error of the norm of A 
multiplied by the condition number.  If the coefficients of A are known to t digits, and the 
condition number of A = 10c, then the solution can only be valid to t-c digits. 
 
Iterative refinement – In some cases, one can reduce the round-off error by substituting the 
approximate solution into the original set of equations and solving for correction factors. 
 
3.4 Special Matrices 
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Some problem formulations result in banded matrices, which have elements equal to zero except 
for a band centered on the main diagonal.  These typically occur in the solution of differential 
equations.  Gauss Elimination and conventional LU decomposition methods can be used but are 
inefficient due to the many zeros.  Many algorithms have been developed to solve banded 
systems. 
 
3.4.1 Thomas Algorithm 
 
Tridiagonal systems, those with a band width of 3, are most often solved with the Thomas 
algorithm.  To make the algorithm particularly efficient, write the tridiagonal system as 
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With this reformulation, the pseudocode below is the complete Thomas algoritm 
 
Pseudocode – Thomas Algorithm 

 
Decomposition   
DOFOR k = 2, n      
 e(k) = e(k) / f(k-1)       
 f(k) = f(k) – e(k)*g(k-1)   
END DO         

 
Forward substitution 
DOFOR k=2, n  

r(k)=r(k) - e(k)*r(k-1)  
END DO 
 
Back substitution 
x(n) = r(n)/f(n)  
DOFOR k = n-1, 1, -1  

x(k) = (r(k) - g(k)*x(k+1)) / f(k)  
END DO 

 
 
3.4.2 Cholesky Decomposition 
 
A great number of engineering formulations results in symmetric, positive definite matrices.  For 
these types of systems, the Cholesky Decomposition method is very efficient in that only half of 
the operations, and storage capacity, are necessary since A = LL T, that is, U = LT: 
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The square root will not be a problem for a positive definite system (recall that for a positive 
definite system, XTAX  > 0 for all X ≠ 0). 
 
Pseudocode – Cholesky Decomposition 
 

DOFOR k = 1, n 
 DOFOR i = 1, k-1 
  sum = 0 
  DOFOR j = 1, i-1 
   sum = sum + a(ij)*a(kj) 
  END DO 
  a(ki)=(a(ki) – sum) / a(ii) 
 END DO 
 sum = 0 
 DOFOR j = 1, k-1 
  sum = sum + a(kj)*a(kj) 
 END DO 
 a(kk) = SQRT(a(kk) – sum) 
END DO 

 
3.5 Iterative Techniques 
 
Elimination techniques are the most popular way to solve systems of linear equations, but many 
iterative methods also exist.  Iterative methods are best applied to matrices that are large and 
sparse, where elimination methods waste time by storing and manipulating zeros. 
 
3.5.1 Gauss-Seidel 
 
Given a system Ax = B, solve each of the equations for the corresponding variable 
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Given an initial guess for the values of x, and sweep through the system of equations and 
calculate new values for the xi, always using the last calculated value of xi.  The technique is very 
similar to finding roots with fixed-point iteration.  Jacobi’s Iteration is a variation that calculates 
a complete set of xi before using the new values; it is not as popular as Gauss-Seidel but 
sometimes results in better performance. 
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In order for Gauss-Seidel to converge, the diagonal of each row must be greater than the sum of 
the sum of the rest of the elements of that row, that is,  
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This condition is sufficient but not necessary for convergence, that is, it will converge if it is 
satisfied but the solution may converge even if it is not satisfied. 
 
In order to enhance convergence, relaxation is often employed.  When a new xi is calculated, 
modify it by a weighted average of the old and new values 
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where 0 ≤ λ ≤ 2.  If 0 ≤ λ < 1 the system is under-relaxed, which damps out oscillations in the 
new values.  If 1 < λ ≤ 2 the system is over-relaxed, which speeds up convergence.  Determining 
the value of λ for a particular problem is a matter of trial and error. 
 
Pseudocode – Gauss-Seidel 
 

SUBROUTINE GaussSeidel(a, b, n, x, imax, es, lambda ) 
 DOFOR i = 1, n ' normalize equations wrt diagonal element 
  dummy = a(i,i) 
  DOFOR j = 1, n 
   a(i,j) = a(i,j)/dummy 
  END DO 
  b(i) = b(i)/dummy 
 END DO 
 DOFOR i = 1, n 
  sum = b(i) 
  DOFOR j = 1, n 
   IF i<>j THEN sum = sum - a(i,j)*x(j) 
  END DO 
  x(i) = sum 
 END DO 
 iter = 1 
 DO  
  sentinel = 1 
  DOFOR i = 1, n 
   old = x(i) 
   sum = b(i) 
   DOFOR i = 1, n 
    IF i<>j THEN sum = sum - a(i,j)*x(j) 
   END DO 
   x(i) = lambda*sum + (1 - lambda)*old 
   IF sentinel = 1 AND x(i)<>0 THEN 
    ea = ABS((x(i) - old)/x(i)) 
    IF ea > es THEN sentinel = 0 
   END IF 
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  END DO 
  iter = iter +1 
  IF sentinel = 1 OR (iter >= imax) EXIT 
 END DO 
END GaussSeidel 

 
 
 


