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Section 1 – Introduction 
 
Numerical methods are techniques by which complex mathematical problems are formulated so 
that they can be solved with simple arithmetic operations.  There are many such methods, but 
they share one common characteristic: they always involve large amounts of tedious arithmetic 
operations, making them ideal for computer applications. 
 
Numerical methods differ from the more traditional, analytical approaches to mathematics.  
Analytical mathematics tend to focus on the solution techniques themselves, and not so much on 
the problem formulation or the interpretation of the results.  In addition, the number and types of 
applied mathematical problems encountered in applied fields such as engineering that have 
closed-form solutions are very limited.  Numerical methods focus on the problem formulation 
and the close interpretation of the results in order to validate both the model and the results 
themselves. 
 
In this course we will become familiar with numerical techniques covering the following topics:  Roots of equations  Systems of linear equations  Optimization  Curve fitting  Numerical differentiation and integration  Ordinary differential equations  Partial differential equations 
 
We will make extensive use of computer programming, using both Excel and Matlab as 
programming environments. 
 
 1.1 Approximations and Round-off Errors 
 
All numerical methods involve the approximation and round-off of numbers, and it will be 
extremely important for us to be able to quantify the effect these approximations have on the 
results of our calculations. 
 
The significant digits of a number are those that can be used with confidence, usually 
corresponding to a certain number of digits known precisely, plus one estimated digit. 
 
Accuracy refers to how closely a computed or measured value agrees with its true value.  
Precision is related to repeatability and refers to how closely individual computed or measured 
values agree with each other.  Often we will have to make decisions to accept lower levels of 
accuracy in order to efficiently solve problems.  The techniques we choose must be sufficiently 
accurate to meet the requirements of a particular problem and must be precise enough to meet the 
requirements of engineering design.  We will often use the term error to both inaccuracy and 
imprecision. 
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1.2 Definitions of Error 
 
There are two basic types of errors inherent in numerical methods.  Truncation errors are those 
that result when approximations are used to represent exact mathematical procedures.  Round-
off errors results when numbers with limited significant figures are used to represent exact 
numbers.  Both types of error can be formulated as: 
 

True value = approximation + error 
 
or  

Et = True value – approximation 
 
where Et is the true error.  The relative error is defined as 
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In the application of numerical methods, exact values are known when we have an analytical 
solution to compare.  Instead, we will normalize the error to the best available estimate of the 
true value, that is, the approximation itself: 
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In addition, we need to estimate the error without knowing the true value.  Certain numerical 
methods involve iterative calculations, where a calculation is made based on the results of a 
previous calculation to computer better and better approximations: 
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Errors can be either positive or negative.  Normally we are not concerned with the sign but 
whether it is smaller than some pre-specified percent tolerance, s.  Calculations are performed 
until the absolute value of the relative approximate error falls below the tolerance: 
 

sa    (1.2.4) 
 
To find a result that is correct to at least n significant digits: 
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1.3 Round-Off Errors 
 
Without going into too much detail, computers (and calculators) retain only a fixed number of 
significant figures during calculations.  This leads to what is known as round-off error.  The 
following aspects are always important to keep in mind when performing computer or calculator 
calculations: 
  There is a limited number of quantities that may be represented.  Only pre-defined types of 

numbers can be stored in computers, and each type has a defined range associated with it.  
Any attempt to use numbers outside of these ranges results in overflow errors.  There are only a finite number of quantities that can be represented within the range.  
Due the fact that computers use a fixed number of significant figures, the degree of precision 
is limited.  Clearly, irrational numbers cannot be precisely represented but most rational 
numbers also cannot be represented precisely either.  These types of errors are called 
quantizing errors.  The interval between numbers increases as the numbers grow in magnitude.  Floating-
point representations preserve significant digits, but this feature also means that quantizing 
errors are proportional to the magnitude of the number being represented. 

 
Even though round-off errors can be significant, most engineering calculations can be carried out 
with more than acceptable precision on most computers and calculators.  When precision is of 
the utmost importance, the use of extended precision quantities can greatly mitigate the effects of 
round-off errors and is recommended. 
 1.4 Truncation Errors and the Taylor Expansion 
 
The Taylor Series The Taylor Series is an important mathematical tool used to approximate the values of a 
function, and we will make extensive use of its properties. Recall from calculus that if a function 
f and its n+1 derivatives are continuous in the vicinity of a point xi, then its value at a nearby 
point xi+1 can be expressed as  
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where the remainder term accounts for the rest of the terms of the infinite series 
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The subscript n denotes that this is an nth-order approximation and  is a value that lies between 
point xi and point xi+1.  Note that this remainder is an exact representation of the error that would 
be a result of using a finite number of terms of the Taylor Series. 
 
We will often simplify the Taylor series to be defining a step size h = xi+1 - xi and writing Eq. 
(1.4.1) as  
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where the remainder (1.4.2) is now given as 
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In general, nth-order Taylor expansions are exact for nth-order polynomials.  For other 
differentiable and continuous functions, such as exponentials and transcendental functions, a 
finite number of terms does not exactly represent the function.  Each additional term adds some 
improvement to the approximation.  The assessment of how many terms to include in order to be 
“close enough” for a given problem is the essence of numerical analysis.   
 
Even though the Taylor Series will be the basis of a number of techniques we will study, its use 
has two important drawbacks.  First, the value of  is not known exactly, only that it is between 
the values xi and xi+1.  This means that we will rarely be able to precisely know the error in our 
approximations.  Secondly, since we will often not know the function that we are approximating 
(if we did, there would be no need to approximate it!), and its derivatives will also be unknown.  
However, the properties of the Taylor Series are very useful in estimating the errors associated 
with a numerical technique, particularly truncation errors. 
 
In any numerical technique, we have control over certain parameters of the analysis.  One of the 
most important is the step size h.  We can look at Eq. (1.4.2) as Rn = O(hn+1), which means that 
the truncation error is “of order” hn+1, that is, it is proportional to hn+1.  This gives us a guideline 
with which to change an analysis to increase accuracy and reduce error. 
 
As an example of how this is used in numerical analysis, estimate the first derivative of the 
function f in the vicinity of xi.  By Eq. (1.4.3) 
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solving for the first derivative gives 
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using Eq (1.4.2) gives   
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Therefore, the estimate of the first derivative has a truncation error of O(h), which means that the 
approximation is proportional to the step size h.  Consequently, if we halve the step size, we 
would expect to halve the truncation error.  This particular approximation for the first derivative 
is called the first forward difference. 
 
Numerical Differentiation The Taylor expansion of a function can be represented by: 
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The Taylor Series can also be expanded backwards to calculate a previous value based on a 
current value.   
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which can be used to show the first backward difference: 
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Subtracting E1 (1.4.6) from (1.4.5) and solving for the first derivative yields the centered 
difference approximation: 
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Note that this error term is proportional to h2, so that if we halve the step size, the error is 
quartered. 
 
Error Propagation Using the first-order Taylor Series, it can be shown the errors associated with common 
mathematical operations using inexact numbers u~  and v~ can be summarized as 
 

Operation  Estimated Error 
Addition )~~( vu   )~()~( vu   
Subtraction )~~( vu   )~()~( vu   
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Multiplication )~~( vu  )~(~)~(~ uvvu   
Division )~

~(v
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)~(~)~(~
v

uvvu   
Stability and Condition The condition of a mathematical problem is a measure of its sensitivity to changes in its input 
values.  A computation is numerically unstable if the uncertainty of the input values is grossly 
magnified by the numerical method. 
 
Using a first-order Taylor Series,  
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The relative error of f(x) is  
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The relative error of x is  
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The condition number is the ratio of these relative errors 
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and is a measure of how the uncertainty in x is magnified in f(x).  A value of 1 means that the 
function’s relative error matches the relative error in x.  A value greater than 1 means that the 
relative error is amplified; values less than one mean that the error is attenuated.  Functions with 
large condition numbers are said to be ill-conditioned. 
 1.5 Total Numerical Error 
 
The total numerical error is the summation of the truncation and round-off errors.  In general, 
the way to minimize round-off errors is to increase the number of significant figures used in the 
calculation.  Round-off error increases due to subtractive cancellation and as the number of 
calculations in an analysis becomes larger.  Truncation error can be reduced by decreasing the 
step size, which leads to increased numbers of calculations and an increase in round-off errors. 
 
Numerical errors can be controlled with certain general guidelines: 
  Avoid subtracting two nearly-equal numbers to avoid subtractive cancellation  Work with the smallest numbers first and progressively include the largest 
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 The use of numerical experiments and sensitivity analyses may provide insight to numerical 
strategies  Performing the analysis with different modeling and numerical techniques may provide 
more confidence in the final results. 

 
Blunders Gross errors, or blunders, are sometimes unavoidable.  Sources of blunders are mainly based in 
human imperfection and include errors of the modeling process and incorrect programming.  We 
will frequently mention techniques with which to avoid blunders and check our numerical 
calculations. 
 
Formulation Errors Formulation or modeling errors are due to incomplete mathematical models.  It is important to 
note that formulation errors cannot be resolved with increased numerical analysis.  Poorly 
conceived models cannot yield useful results, no matter how sophisticated the analysis 
techniques. 
 
Data Uncertainty All physical data is subject to variation and uncertainty, and always exhibits both inaccuracy and 
imprecision.  Where such variation is important to interpret the results in a meaningful way, the 
analysis must be carried out with data that is described in statistical terms, usually consisting of a 
central measure and the degree of spread about that central measure. 
 1.6 Example – Calculation of Archimedes’s Constant (π) 

 
π ≈ 22/7, ε < 1.3 x 10-3 
 
π ≈ 355/113, ε < 2.7 x 10-3 
 
Standard Gregory-Liebnitz series: 
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Telescoping Gregory-Liebnitz series:  
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