
1 
 

Section 6 - Numerical Integration and Differentiation 
 
Two general types of integrations are solved numerically, ones where the function is presented as 
tabulated data or as a complicated function. 
 
6.1 Newton-Cotes Formulas 
 
The Newton-Cotes formulas are based on a strategy of replacing the complicated function or 
tabulated data with an easy-to-integrate approximating function 
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Closed and open forms of the Newton-Cotes are available.  Closed form are those in which the 
data points at the beginning and end of the limits of integration are known while open forms are 
employed when the integration limits extend beyond the range of data, similar to extrapolation. 
 
6.1.1 The Trapezoidal Rule 
 
The Trapezoidal Rule is the first of the Newton-Cotes formulas, connecting each adjacent pair of 
data points by a straight line: 
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which has error 3))((12
1 abfEt   where  is between a and b.  This formula is exact for 

linear functions (the error vanishes if 0f , therefore first order functions are computed 
exactly), but introduces significant error for higher order functions f(x). 
 
Multiple-Application Trapezoidal Rule 
One straightforward way to improve accuracy is to divide the integration interval [a,b] into a 
number of segments and apply the rule to each.  Let h = (b-a)/n where n = number of equal-
width segments between n+1 data points.  Therefore, 
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the error Et  decreases by a factor of 4. 
 
6.1.2 Simpson’s Rules 
 
One can increase the accuracy of the approximation by applying the multiple-application 
Trapezoidal Rule many times, slicing the data finer and finer.  This can result, however, in the 
need for more tabulated data or more function evaluations and lead to more round-off error due 
to more calculations.  As an alternative, Simpson used higher-order functions to approximate the 
integral. 
 
Simpson’s 1/3 Rule 
Approximate the function between x0 and x2, with intermediate point x1, with a second-order 
Lagrange polynomial 
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with error 5)4( )(90
1 hfEt  .  Note that this rule is accurate to 3rd-order even though the 

function was approximated with a 2nd order polynomial.  This rule can be applied to an even 
number of multiple segments 
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Simpson’s 3/8 Rule 
If one fits a 3rd order Lagrange polynomial to 4 data points (3 intervals) and integrates, 
Simpson’s 3/8 Rule results: 
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factor of 16.  This error is similar to that of Simpson’s 1/3 Rule.  Simpson’s 1/3 Rule is 
preferred, but the 3/8 Rule is useful when the number of intervals is odd.  In that case, apply the 
3/8 Rule to the three intervals at the end (or the beginning) of the tabulated data and an even 
number of intervals remain to be evaluated with the 1/3 Rule. 
 
6.1.3 Higher-Order Newton-Cotes Formulas 
 
There are many higher-order (and seldom used) Newton-Cotes formulas, for example Boole’s 
Rule: 
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6.1.4 Integration with Unequal Segments 
 
To integrate across tabulated data that is not evenly spaced, there are couple of strategies to try, 
for example: 
 

1. Use the Trapezoidal Rule throughout, accepting the errors 
2. If 3 adjacent segments have the same width, use Simpson’s 3/8 Rule 

If 2 adjacent segments have the same width, use Simpson’s 1/3 Rule 
If the next segment is not the same width as the one following, use the Trapezodial Rule 

 
6.1.5 Open Integration Formulas 
 
Open integration formulas are most often used to evaluate improper integrals, to be discussed 
later, and in multistep methods of solving ordinary differential equations.  Here we will simply 
list them for future reference: 
 
2 segments n, 1 point (the midpoint method), truncation error )()3/1( )2(3 fhEt   
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4 segments n, 3 points, truncation error )()45/14( )4(5 fhEt   
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6.1.6 Multiple Integrals 
 
Multiple integrals are evaluated in exactly the same manner as single integrals.  For example 
 

    b
a

d
c

d
c

b
a dxdyyxfdydxyxfI ),(),(  

 
Evaluate the inside integral at discrete values, then evaluate the next integral using the values 
obtained in the first step. 
 
Pseudocode – Trapezoidal Rule, Single integral 

SUB SingleTrap(ax, bx, xints, result) 
    intx = 0 
    FOR ix = 0, xints 
        x = ax + (bx - ax) * ix / xints 
        IF (ix = 0 OR ix = xints) THEN  
            intx = intx + f(x)  ' trapezoidal rule 
        ELSE 
            intx = intx + 2 * f(x) 
        END IF 
    END FOR 
    result = intx * (bx - ax) / (2 * xints) 
END SUB 
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Pseudocode – Trapezoidal Rule, Double integral 
SUB DoubleTrap(ax, bx, xints, ay, by, yints, result) 
 inty = 0 
 FOR iy = o, yints ‘ the integration in y 
  y = ay + (by – ay) * iy / yints 

intx = 0 
     FOR ix = 0, xints ‘ the integration in x 
         x = ax + (bx - ax) * ix / xints 
         IF (ix = 0 OR ix = xints) THEN  
             intx = intx + f(x, y) 
         ELSE 
             intx = intx + 2 * f(x, y) 
         END IF 
     END FOR 
     intx = intx * (bx - ax) / (2 * xints) 
 IF (iy = 0 OR iy = yints) THEN 
  inty = inty + intx 
 ELSE 
  inty = inty + 2 * intx 
 END IF 
END FOR 
result = inty * (by – ay) / (2 * yints) 

END SUB 
 
Pseudocode – Trapezoidal Rule, Triple integral 

SUB TripleTrap(ax, bx, xints, ay, by, yints, az, bz, zints, result) 
 intz = 0 
 FOR iz = 0, zints ‘ the integration in z 
  z = az + (bz – az) * iz / zints 

 inty = 0 
 FOR iy = 0, yints ‘ the integration in y 
  y = ay + (by – ay) * iy / yints 

intx = 0 
     FOR ix = 0, xints ‘ the integration in x 
         x = ax + (bx - ax) * ix / xints 
         IF (ix = 0 OR ix = xints) THEN  
             intx = intx + f(x, y, z) 
         ELSE 
             intx = intx + 2 * f(x, y, z) 
         END IF 
     END FOR 
     intx = intx * (bx - ax) / (2 * xints) 
 IF (iy = 0 OR iy = yints) THEN 
  inty = inty + intx 
 ELSE 
  inty = inty + 2 * intx 
 END IF 
END FOR 
inty = inty * (by – ay) / (2 * yints) 
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IF (iz = 0 OR iz = zints) THEN 
 intz = intz + inty 
ELSE 
 intz = intz + 2 * inty 
END IF 

  END FOR 
result = intz * (bz – az) / (2 * zints) 

END SUB 
 
6.2 Integration of Equations 
 
If we are faced with the task of numerically integrating a function instead of a table of values, we 
can exploit the fact that we can generate as many function evaluations as we need to obtain 
acceptable accuracy. 
 
6.2.1 Newton-Cotes Algorithms for Equations 
 
Pseudocodes are given that take advantage of function calls instead of tabulated values.  The 
basic limitation of these formulas is that to improve accuracy more and more segments must be 
added, eventually leading to unacceptable round-off errors.  In those cases, either use higher-
order formulas or a better strategy. 
 
6.2.2 Romberg Integration 
 
Richardson Extrapolation 
 
Recall that, for a multiple application trapezoidal rule,  
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Where I is the exact value of the integral, I(h) is the approximation of the integral as a function 
of segment width h = (b-a)/n and E(h) is the error associated with the approximation.  If two 
separate estimates are done at segment widths h1 and h2, then 
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The error associated with this new estimate is O(h4).  Therefore, we have combined two 
trapezoidal rule estimates of O(h2) to yield a new estimate of O(h4).  If the interval is halved (that 
is, h2 = h1/2) then this becomes 
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In a similar manner, two estimates of O(h4) can be combined to yield an estimate of O(h6): 
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where m = more accurate and l = less accurate, and two estimates at O(h6) can be combined to 
yield an estimate of O(h8): 
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Romberg Integration Algorithm 
 
The results above can be generalized to  
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where Ij+1,k-1 and Ij,k-1 are the more/less accurate integrals, respectively, and Ij,k is the improved 
integral.  The index k is the level of integration (k=1 is the original trapezoidal rule, k=2= O(h4), 
k=3= O(h6), etc) and j distinguishes between more (j+1) and less (j) accurate estimates.  It is 
possible to successfully apply this strategy to certain tabulated data of the proper form. 
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6.2.3 Gauss Quadrature 
 
A characteristic of the Newton-Cotes formulas is that they rely on fixed-values of the function.  
A strategy that starts by determining the best place for these function evaluations is the basis for 
a class of techniques called Gauss Quadrature. 
 
To see how these formulas are developed, consider the case of approximating the integral of a 3rd 
order function between -1 and 1.  We want to determine the points x0 and x1 to evaluate the 
function, and the coefficients c0 and c1, so that the approximation  
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Solving these equations yields the parameters x0, x1, c0 and c1. 
 
In general, the functions are evaluated at the roots of the Legendre polynomials of the 1st kind.  
Legendre polynomials are an orthogonal set of polynomials which are solutions of the 
differential equation 
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The first several Legendre polynomials of the 1st kind are 
 



9 
 

)35315693429)(16/1()(
)5105315231)(16/1()(

)157063)(8/1()(
)33035)(8/1()(

)35)(2/1()(
)13)(2/1()(

357
7

246
6

35
5

24
4

3
3

2
2

xxxxxP
xxxxP

xxxxP
xxxP

xxxP
xxP










 

 
The coefficients are  

rk
kr

kk PuuPr
uc  of roots are  e      wher)()1(

)1(2
2

1
2

2


  

 
Points Weighting Factors Function Arguments Truncation 

Error 
2 c0 = 1.000000000000000 

c1 = 1.000000000000000 
x0 = -0.57735 02691 89626 
x1 = 0.57735 02691 89626 )()4( f  

3 c0 = 0.55555 55555 55556 
c1 = 0.88888 88888 88889 
c2 = 0.55555 55555 55556 

x0 = -0.77459 66692 41483 
x1 = 0.0 
x2 = 0.77459 66692 41483 

)()6( f  

4 c0 = 0.34785 48451 37454 
c1 = 0.65214 51548 62546 
c2 = 0.65214 51548 62546 
c3 = 0.34785 48451 37454 

x0 = -0.86113 63115 94053 
x1 = -0.33998 10435 84856 
x2 = 0.33998 10435 84856 
x3 = 0.86113 63115 94053 

)()8( f  

5 c0 = 0.23692 68850 56189 
c1 = 0.47862 86704 99366 
c2 = 0.56888 88888 88889 
c3 = 0.47862 86704 99366 
c4 = 0.23692 68850 56189 

x0 = -0.90617 98459 38664 
x1 = -0.53846 93101 05683 
x2 = 0.0 
x3 = 0.53846 93101 05683 
x4 = 0.90617 98459 38664 

)()10( f  

6 c0 = 0.17132 44923 79170 
c1 = 0.36076 15730 48139 
c2 = 0.46791 39345 72691 
c3 = 0.46791 39345 72691 
c4 = 0.36076 15730 48139 
c5 = 0.17132 44923 79170 

x0 = -0.93246 95142 03152 
x1 = -0.66120 93864 66265 
x2 = -0.23861 91860 83197 
x3 = 0.23861 91860 83197 
x4 = 0.66120 93864 66265 
x5 = 0.93246 95142 03152 
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Gauss Quadrature provides a highly efficient way to obtain very accurate results with minimum 
function evaluations.  This method can also be used in a multiple-application approach. 
 
6.2.4 Improper Integrals 
 
If faced with evaluating an improper integral whose lower limit is -∞ or whose upper limit is ∞, 
the following identity allows for a convenient transformation of variable and works whenever the 
function tends to zero at least as fast as 1/x2: 
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Note the restriction.  This can be used if a = ∞ and b is positive, or a = -∞ and b is negative.  For 
the case when a = -∞ and b = ∞, implement the integral in two steps: 
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where A is sufficiently large so the function is approaching zero at least as fast as 1/x2. 
 
To avoid evaluating a function at one of the limits, use one of the open forms of the Newton-Cotes 
formulas given in the Section 6.1.5. 
 
6.3 Numerical Differentiation 
 
Numerical differentiation was introduced when we began our exploration of numerical methods as an 
example of the Taylor series.  There are three general types of divided difference differentiation 
approximations: forward, backward and central: 
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Backward: 
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Central: 
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Corresponding equations for the second derivatives are 
 
Forward: 
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Backward: 
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Central: 
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6.3.1 Richardson Extrapolation 
 
Similar to what we saw for integration, we can use two estimates to compute a third, more 
accurate, approximation.  If the two estimates are computed with step sizes h1 and h2, where 
h2=h1/2, then  
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As for integration, this can be applied iteratively using the Romberg algorithm until the result 
achieves an acceptable error criterion. 
 
6.3.2 Derivatives of Unequally-Spaced Data 
 
Experimental or field data that is collected at equal intervals can be differentiated using 
interpolation.  For example, fit a second-order Lagrange interpolating polynomial to each set of 
three adjacent points, then differentiate the result analytically to find 
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which has the same error as a central divided difference. 
 
6.3.3 Derivatives and Integrals for Data with Errors 
 
Due to its subtractive nature, numerical differentiation magnifies errors that are present in raw 
data.  One way to treat noisy data is to first perform a low-order polynomial regression on the 
data, then perform the subsequent analysis on the fitted curves. 
 
Always remember that numerical differentiation tends to be unstable, amplifying errors while 
numerical integration is forgiving and tends to smooth out errors in the data.  Since integration is 
additive, random positive and negative small errors tend to cancel out, while differentiation tends 
to make such errors worse. 


