
1

Section 6 - Numerical Integration and Differentiation

Two general types of integrations are solved numerically, ones where the function is presented as
tabulated data or as a complicated function.

6.1 Newton-Cotes Formulas

The Newton-Cotes formulas are based on a strategy of replacing the complicated function or
tabulated data with an easy-to-integrate approximating function

  b
a n

b
a dxxfdxxfI)()(

where

n
nn xaxaxaaxf  2

210)(

Closed and open forms of the Newton-Cotes are available. Closed form are those in which the
data points at the beginning and end of the limits of integration are known while open forms are
employed when the integration limits extend beyond the range of data, similar to extrapolation.

6.1.1 The Trapezoidal Rule

The Trapezoidal Rule is the first of the Newton-Cotes formulas, connecting each adjacent pair of
data points by a straight line:

2
)()()(

)()()()()(
bfafabI

dxaxab
afbfafdxxfI b

a
b
a





 
  

which has error 3))((12
1 abfEt   where  is between a and b. This formula is exact for

linear functions (the error vanishes if 0f , therefore first order functions are computed
exactly), but introduces significant error for higher order functions f(x).

Multiple-Application Trapezoidal Rule
One straightforward way to improve accuracy is to divide the integration interval [a,b] into a
number of segments and apply the rule to each. Let h = (b-a)/n where n = number of equal-
width segments between n+1 data points. Therefore,

2

2
)()(2)(

2
)()(2)()(

2
)()(

2
)()(

2
)()(

1

1
0

1

1
0

12110

 















n

i
ni

n

i
ni

nn

xfxfxf
h

xfxfxf
n

abI

xfxfhxfxfhxfxfhI 

Which has error fn

abfn
abE n

t   2
3

3
3

12
)()(12

)( . As the number of intervals n doubles,
the error Et decreases by a factor of 4.

6.1.2 Simpson’s Rules

One can increase the accuracy of the approximation by applying the multiple-application
Trapezoidal Rule many times, slicing the data finer and finer. This can result, however, in the
need for more tabulated data or more function evaluations and lead to more round-off error due
to more calculations. As an alternative, Simpson used higher-order functions to approximate the
integral.

Simpson’s 1/3 Rule
Approximate the function between x0 and x2, with intermediate point x1, with a second-order
Lagrange polynomial

 
6

)()(4)()(

2/)(where)()(4)(3

)())((
))(()())((

))(()())((
))((

210

210

2
0212

10
1

2101
20

0
2010

212

0

xfxfxfabI

abhxfxfxfhI

dxxfxxxx
xxxxxfxxxx

xxxxxfxxxx
xxxxI x

x












 

with error 5)4()(90
1 hfEt  . Note that this rule is accurate to 3rd-order even though the

function was approximated with a 2nd order polynomial. This rule can be applied to an even
number of multiple segments

)()(2)(4)(3
1

...6,4,2

1

...5,3,1
0 


   





 n
n

i
i

n

i
i xfxfxfxfhI

where n
abh)( and)4(

4
5

180
)(fn

abEt


3

Simpson’s 3/8 Rule
If one fits a 3rd order Lagrange polynomial to 4 data points (3 intervals) and integrates,
Simpson’s 3/8 Rule results:

 )()(3)(3)(8
3

3210 xfxfxfxfhI 

With 3
)(abh  and error)(6480

)()4(5 fabEt
 , so as n doubles the error decreases by a

factor of 16. This error is similar to that of Simpson’s 1/3 Rule. Simpson’s 1/3 Rule is
preferred, but the 3/8 Rule is useful when the number of intervals is odd. In that case, apply the
3/8 Rule to the three intervals at the end (or the beginning) of the tabulated data and an even
number of intervals remain to be evaluated with the 1/3 Rule.

6.1.3 Higher-Order Newton-Cotes Formulas

There are many higher-order (and seldom used) Newton-Cotes formulas, for example Boole’s
Rule:

 )(945
8 ,)(7)(32)(12)(32)(790

)()6(7
43210 fhExfxfxfxfxabI t 

6.1.4 Integration with Unequal Segments

To integrate across tabulated data that is not evenly spaced, there are couple of strategies to try,
for example:

1. Use the Trapezoidal Rule throughout, accepting the errors
2. If 3 adjacent segments have the same width, use Simpson’s 3/8 Rule

If 2 adjacent segments have the same width, use Simpson’s 1/3 Rule
If the next segment is not the same width as the one following, use the Trapezodial Rule

6.1.5 Open Integration Formulas

Open integration formulas are most often used to evaluate improper integrals, to be discussed
later, and in multistep methods of solving ordinary differential equations. Here we will simply
list them for future reference:

2 segments n, 1 point (the midpoint method), truncation error)()3/1()2(3 fhEt 

4

)()(1xfabI 
2 segments n, 2 points, truncation error)()4/3()2(3 fhEt 

2
)()()(21 xfxfabI 

4 segments n, 3 points, truncation error)()45/14()4(5 fhEt 

3
)(2)()(2)(321 xfxfxfabI 

5 segments n, 4 points, truncation error)()144/95()4(5 fhEt 

24
)(11)()()(11)(4321 xfxfxfxfabI 

6 segments n, 5 points, truncation error)()140/41()6(7 fhEt 

20
)(11)(14)(26)(14)(11)(54321 xfxfxfxfxfabI 

6.1.6 Multiple Integrals

Multiple integrals are evaluated in exactly the same manner as single integrals. For example

    b
a

d
c

d
c

b
a dxdyyxfdydxyxfI),(),(

Evaluate the inside integral at discrete values, then evaluate the next integral using the values
obtained in the first step.

Pseudocode – Trapezoidal Rule, Single integral

SUB SingleTrap(ax, bx, xints, result)
 intx = 0
 FOR ix = 0, xints
 x = ax + (bx - ax) * ix / xints
 IF (ix = 0 OR ix = xints) THEN
 intx = intx + f(x) ' trapezoidal rule
 ELSE
 intx = intx + 2 * f(x)
 END IF
 END FOR
 result = intx * (bx - ax) / (2 * xints)
END SUB

5

Pseudocode – Trapezoidal Rule, Double integral
SUB DoubleTrap(ax, bx, xints, ay, by, yints, result)
 inty = 0
 FOR iy = o, yints ‘ the integration in y
 y = ay + (by – ay) * iy / yints

intx = 0
 FOR ix = 0, xints ‘ the integration in x
 x = ax + (bx - ax) * ix / xints
 IF (ix = 0 OR ix = xints) THEN
 intx = intx + f(x, y)
 ELSE
 intx = intx + 2 * f(x, y)
 END IF
 END FOR
 intx = intx * (bx - ax) / (2 * xints)
 IF (iy = 0 OR iy = yints) THEN
 inty = inty + intx
 ELSE
 inty = inty + 2 * intx
 END IF
END FOR
result = inty * (by – ay) / (2 * yints)

END SUB

Pseudocode – Trapezoidal Rule, Triple integral

SUB TripleTrap(ax, bx, xints, ay, by, yints, az, bz, zints, result)
 intz = 0
 FOR iz = 0, zints ‘ the integration in z
 z = az + (bz – az) * iz / zints

 inty = 0
 FOR iy = 0, yints ‘ the integration in y
 y = ay + (by – ay) * iy / yints

intx = 0
 FOR ix = 0, xints ‘ the integration in x
 x = ax + (bx - ax) * ix / xints
 IF (ix = 0 OR ix = xints) THEN
 intx = intx + f(x, y, z)
 ELSE
 intx = intx + 2 * f(x, y, z)
 END IF
 END FOR
 intx = intx * (bx - ax) / (2 * xints)
 IF (iy = 0 OR iy = yints) THEN
 inty = inty + intx
 ELSE
 inty = inty + 2 * intx
 END IF
END FOR
inty = inty * (by – ay) / (2 * yints)

6

IF (iz = 0 OR iz = zints) THEN
 intz = intz + inty
ELSE
 intz = intz + 2 * inty
END IF

 END FOR
result = intz * (bz – az) / (2 * zints)

END SUB

6.2 Integration of Equations

If we are faced with the task of numerically integrating a function instead of a table of values, we
can exploit the fact that we can generate as many function evaluations as we need to obtain
acceptable accuracy.

6.2.1 Newton-Cotes Algorithms for Equations

Pseudocodes are given that take advantage of function calls instead of tabulated values. The
basic limitation of these formulas is that to improve accuracy more and more segments must be
added, eventually leading to unacceptable round-off errors. In those cases, either use higher-
order formulas or a better strategy.

6.2.2 Romberg Integration

Richardson Extrapolation

Recall that, for a multiple application trapezoidal rule,

)()(hEhII 

Where I is the exact value of the integral, I(h) is the approximation of the integral as a function
of segment width h = (b-a)/n and E(h) is the error associated with the approximation. If two
separate estimates are done at segment widths h1 and h2, then

)()()()(2211 hEhIhEhII 

Recall that the error in a multiple application trapezoidal rule is fhabE  2

12 . If we assume
that the average value of the second derivative is the same for both estimates, then

2
2121

2
2

2
121)/)(()(or /)(/)(hhhEhEhhhEhE 

7

so that
)()()/)(()(22

2
2121 hEhIhhhEhI 

or
2

21
212)/(1
)()()(hh

hIhIhE 


And

1)/(
)()()(2

21
122 

 hh
hIhIhII

The error associated with this new estimate is O(h4). Therefore, we have combined two
trapezoidal rule estimates of O(h2) to yield a new estimate of O(h4). If the interval is halved (that
is, h2 = h1/2) then this becomes

 
)(3

1)(3
4

)()(12
1)(

12

1222

hIhII
hIhIhII




In a similar manner, two estimates of O(h4) can be combined to yield an estimate of O(h6):

lm III 15
1

15
16 

where m = more accurate and l = less accurate, and two estimates at O(h6) can be combined to
yield an estimate of O(h8):

lm III 63
1

63
64 

Romberg Integration Algorithm

The results above can be generalized to

14
4

1
1,1,1

1
, 

 


k
kjkj

k
kj

III

where Ij+1,k-1 and Ij,k-1 are the more/less accurate integrals, respectively, and Ij,k is the improved
integral. The index k is the level of integration (k=1 is the original trapezoidal rule, k=2= O(h4),
k=3= O(h6), etc) and j distinguishes between more (j+1) and less (j) accurate estimates. It is
possible to successfully apply this strategy to certain tabulated data of the proper form.

8

6.2.3 Gauss Quadrature

A characteristic of the Newton-Cotes formulas is that they rely on fixed-values of the function.
A strategy that starts by determining the best place for these function evaluations is the basis for
a class of techniques called Gauss Quadrature.

To see how these formulas are developed, consider the case of approximating the integral of a 3rd
order function between -1 and 1. We want to determine the points x0 and x1 to evaluate the
function, and the coefficients c0 and c1, so that the approximation

)()(1100 xfcxfcI 

exactly represents a 3rd order curve. To find these 4 parameters we need 4 conditions:

0)()(
3/2)()(

0)()(
21)()(

1
1

3
1100

1
1

2
1100

1
11100

1
11100



















dxxxfcxfc
dxxxfcxfc

xdxxfcxfc
dxxfcxfc

Solving these equations yields the parameters x0, x1, c0 and c1.

In general, the functions are evaluated at the roots of the Legendre polynomials of the 1st kind.
Legendre polynomials are an orthogonal set of polynomials which are solutions of the
differential equation

 r
r

r
rr xdx

d
rxP

xyrrdx
dyxdx

ydx

)1(!2
1)(

11 0)1(2)1(
2

2
22




The first several Legendre polynomials of the 1st kind are

9

)35315693429)(16/1()(
)5105315231)(16/1()(

)157063)(8/1()(
)33035)(8/1()(

)35)(2/1()(
)13)(2/1()(

357
7

246
6

35
5

24
4

3
3

2
2

xxxxxP
xxxxP

xxxxP
xxxP

xxxP
xxP










The coefficients are

rk
kr

kk PuuPr
uc of roots are e wher)()1(

)1(2
2

1
2

2




Points Weighting Factors Function Arguments Truncation

Error
2 c0 = 1.000000000000000

c1 = 1.000000000000000
x0 = -0.57735 02691 89626
x1 = 0.57735 02691 89626)()4(f

3 c0 = 0.55555 55555 55556
c1 = 0.88888 88888 88889
c2 = 0.55555 55555 55556

x0 = -0.77459 66692 41483
x1 = 0.0
x2 = 0.77459 66692 41483

)()6(f

4 c0 = 0.34785 48451 37454
c1 = 0.65214 51548 62546
c2 = 0.65214 51548 62546
c3 = 0.34785 48451 37454

x0 = -0.86113 63115 94053
x1 = -0.33998 10435 84856
x2 = 0.33998 10435 84856
x3 = 0.86113 63115 94053

)()8(f

5 c0 = 0.23692 68850 56189
c1 = 0.47862 86704 99366
c2 = 0.56888 88888 88889
c3 = 0.47862 86704 99366
c4 = 0.23692 68850 56189

x0 = -0.90617 98459 38664
x1 = -0.53846 93101 05683
x2 = 0.0
x3 = 0.53846 93101 05683
x4 = 0.90617 98459 38664

)()10(f

6 c0 = 0.17132 44923 79170
c1 = 0.36076 15730 48139
c2 = 0.46791 39345 72691
c3 = 0.46791 39345 72691
c4 = 0.36076 15730 48139
c5 = 0.17132 44923 79170

x0 = -0.93246 95142 03152
x1 = -0.66120 93864 66265
x2 = -0.23861 91860 83197
x3 = 0.23861 91860 83197
x4 = 0.66120 93864 66265
x5 = 0.93246 95142 03152

)()12(f

Integrating b

a dxxf)(involves a change of variable

10

  Rxfcxfcxfcab

duuababfabdxxf
duabdxuababx

nn

b
a





 


 

)()()()(2
1

)(2
1)(2

1)(2
1)(

)(2
1 ,)(2

1)(2
1

1100

1
1



Gauss Quadrature provides a highly efficient way to obtain very accurate results with minimum
function evaluations. This method can also be used in a multiple-application approach.

6.2.4 Improper Integrals

If faced with evaluating an improper integral whose lower limit is -∞ or whose upper limit is ∞,
the following identity allows for a convenient transformation of variable and works whenever the
function tends to zero at least as fast as 1/x2:

0for)1(1)(/1
/1 2   abdttftdxxf b
a

b
a

Note the restriction. This can be used if a = ∞ and b is positive, or a = -∞ and b is negative. For
the case when a = -∞ and b = ∞, implement the integral in two steps:

 

  b

A
Ab dxxfdxxfdxxf)()()(

where A is sufficiently large so the function is approaching zero at least as fast as 1/x2.

To avoid evaluating a function at one of the limits, use one of the open forms of the Newton-Cotes
formulas given in the Section 6.1.5.

6.3 Numerical Differentiation

Numerical differentiation was introduced when we began our exploration of numerical methods as an
example of the Taylor series. There are three general types of divided difference differentiation
approximations: forward, backward and central:

Forward:

)(; 2
)(3)(4)()(

)(;)()()(
212

1

hOh
xfxfxfxf

hOh
xfxfxf

iii
i

ii
i








11

Backward:

)(; 2
)()(4)(3)(

)(;)()()(
221

1

hOh
xfxfxfxf

hOh
xfxfxf

iii
i

ii
i









Central:

)(; 12
)()(8)(8)()(

)(; 2
)()()(

42112

211

hOh
xfxfxfxfxf

hOh
xfxfxf

iiii
i

ii
i









Corresponding equations for the second derivatives are

Forward:

)(;)(2)(5)(4)()(
)(;)()(2)()(

2
2

123

2
12

hOh
xfxfxfxfxf

hOh
xfxfxfxf

iiii
i

iii
i








Backward:

)(;)()(4)(5)(2)(
)(;)()(2)()(

2
2

321

2
21

hOh
xfxfxfxfxf

hOh
xfxfxfxf

iiii
i

iii
i









Central:

)(; 12
)()(16)(30)(16)()(

)(;)()(2)()(
4

2
2112

2
2

11

hOh
xfxfxfxfxfxf

hOh
xfxfxfxf

iiiii
i

iii
i









6.3.1 Richardson Extrapolation

Similar to what we saw for integration, we can use two estimates to compute a third, more
accurate, approximation. If the two estimates are computed with step sizes h1 and h2, where
h2=h1/2, then

)(3
1)(3

4
12 hDhDD 

12

As for integration, this can be applied iteratively using the Romberg algorithm until the result
achieves an acceptable error criterion.

6.3.2 Derivatives of Unequally-Spaced Data

Experimental or field data that is collected at equal intervals can be differentiated using
interpolation. For example, fit a second-order Lagrange interpolating polynomial to each set of
three adjacent points, then differentiate the result analytically to find

))((
)2)((

))((
)2)((

))((
)2)(()(

111
11

11
11

111
11








 





xiii

iii
xiii

iii
xiii
iii

xxxx
xxxxf

xxxx
xxxxf

xxxx
xxxxfxf

which has the same error as a central divided difference.

6.3.3 Derivatives and Integrals for Data with Errors

Due to its subtractive nature, numerical differentiation magnifies errors that are present in raw
data. One way to treat noisy data is to first perform a low-order polynomial regression on the
data, then perform the subsequent analysis on the fitted curves.

Always remember that numerical differentiation tends to be unstable, amplifying errors while
numerical integration is forgiving and tends to smooth out errors in the data. Since integration is
additive, random positive and negative small errors tend to cancel out, while differentiation tends
to make such errors worse.

