
 

1 
 

Section 5 – Curve Fitting 
 
Quite often we are presented with data in the form of discrete values, and the need arises to find 
appropriate values between these discrete points   Two general approaches exist, depending on 
the source of the data.  If the discrete data are assumed to posses error (such as the results of 
physical experiments), functions are fit to the data to minimize the overall error but not 
necessarily pass through any of the points.  A popular approach that we will explore is least 
squares regression.  If the data is assumed to be precise, such as that obtained from tables of 
physical properties or mathematical functions, we fit a curve to pass through each point, a 
process called interpolation. 
 
 
5.1 Least-Squares Regression 
 
Consider the case fitting a polynomial to a set of imperfect data, the curve to have the form 
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The error associated with each data point (xi, yi) is 
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To minimize the error of the entire problem, minimize the sum of the squares of the errors, or 
residuals.  To do this, take the derivative with respect to each coefficient 
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which can be rearranged to give  
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The standard error of the estimate, Sy/x (the error in a predicted value of y given a value of x) is 
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where n is the number of data points and m is the order of the polynomial fit.  The sum of 
squares around the mean for the dependent variable y is 
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The coefficient of determination is a measure of how much of the variation in the data is 
explained by the model, that is, how well the data fits the statistical model: 
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The correlation coefficient is r and measures the strength of the association between the 
variables. 
 
Pseudocode – Polynomial Regression, assembly of normal equations 
  
 ‘ Order of polynomial to be fit: m 

‘ Number of data points: n 
‘ If n<m+1, regression not possible, if n>=m+1 regr ession possible 
 
DOFOR i = 1, m + 1 
 DOFOR j = 1, i 
  k = i + j  -2 
  sum = 0 
  DOFOR L = 1, n 
   Sum = sum +x(L) ^ k 
  END DO 
  a(i,j) = sum 
  a(j,i) = sum 

  END DO 
  sum = 0 
  DOFOR L = 1, n 
   sum = sum + y(L) * x(L) ^ (i-1) 
  END DO 
  a(i, m+2) = sum 
 END DO 

 
 
5.1.1 Linear Regression (m=1) 
 
For the case when the order of the fit m = 1, the above equations reduce to 
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Solving for the regression coefficients gives  
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It is assumed here that (1) x has a fixed value, is not random and has no error, (2) y values are 
random and all have the same variance, and (3) the y values for a given x are normally 
distributed. 
 
5.1.2 Linearizations of Non-Linear Relationships 
 
Exponential model xey 1

1
βα=  

Take the natural logarithm of both sides of the equations to yield the linear 
equation: xy 11lnln βα +=  
 
 
Power model 2

2
βα xy =  

Take the base-10 logarithm of both sides of the equations to yield the linear 
equation: xy logloglog 22 βα +=  
 
 

Saturation Growth Rate model 
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Invert the model to yield the linear equation: 
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In all of the models above, use linear regression to evaluate the regression constants, solve for 
the model parameters and use in the original model for predictive purposes. 
 
 
5.1.3 Multiple Linear Regression 
 
Consider the case where y is a function is m independent variables: 
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Again, the “best” fit is determined by squaring the residuals 
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and differentiating with respect to the unknown coefficients 
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with standard error  
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5.1.4 Power Equation of the General Form 
 
When modeling systems of the type  
 

ma
m

aaa xxxxay K321
3210=  

 
take the natural logarithm of both sides to yield 
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which can be fit with multiple linear regression. 
 
 
5.1.5 Solution Techniques 
 
The least squares equations are symmetric and are often not well conditioned.  They can be 
solved by Gauss Elimination, by Crout or Cholesky decomposition methods, or by matrix 
inversion.  If the best order of polynomial fit is sought, Cholesky’s method can be used 
efficiently to build and solve the equations. 
 
All solutions must be examined to observe the actual fit to the data.  Relying solely on 
correlation coefficients to determine the appropriateness of the curve fit is not recommended. 
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5.1.6 Non-Linear Regression – Gauss-Newton Method 
 
Consider a model of the form 
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where xi is a non-linear function of parameters a0, a1, … am.  Expand this function in a Taylor 
series around the parameters.  For example, for 2 parameters a0 and a1 
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which linearizes the model with respect to the parameters.  Therefore,  
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or in matrix form 
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where n is the number of data points and  
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Apply the least squares theory to result in the normal equations 
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These equations are solved for A

r
∆ , the change in the parameters, and 
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The procedure is repeated until the relative error  
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falls below an acceptable criterion.  Shortcomings of this method are that it may converge slowly, 
it may oscillate (sometimes wildly) or it may not converge at all. 
 
 
5.2 Interpolation 
 
Interpolation is the estimation of intermediate values between precisely-known data points.  The 
most common methods are polynomial interpolation and splines. 
 
5.2.1 Newton’s Divided-Difference Interpolating Polynomials 
 
Consider an nth-order polynomial to be fit to n+1 data points, of the form 
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To evaluate the coefficients b, begin by setting x = x0, which gives 
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Setting x = x1 gives 
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which is the first divided difference.  Similarly for x = x2, etc.: 
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These calculations can be efficiently organized in a table, for example, for 3 data points: 
 

i xi f(xi) First divided 
differences 

Second divided  
differences 

Third divided 
differences 

0 x0 f(x0) f[x1, x0] f[x2, x1, x0] f[x3, x2, x1, x0] 
1 x1 f(x1) f[x2, x1] f[x3, x2, x2]  
2 x2 f(x2) f[x3, x2]   
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3 x3 f(x3)    
 
The first entries in the divided difference columns are the coefficients b0, b1, b2, etc. 
 
The data points need not be equally spaced, nor do they have to be in any particular order.  If one 
has a choice of data points, it is always best to choose them to bracket and lie close to the region 
where the intermediate estimates will be required. 
 
The error associated with Newton’s divided-difference interpolating polynomial can be estimated, 
with an additional data point, as  
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that is, the error of the prediction can be estimated by examining the effect of adding another 
data point to the interpolation. 
 
5.2.2 Lagrange Interpolating Polynomials 
 
Newton’s divided-difference interpolating polynomials can be reformulated to avoid the 
computation of the divided differences: 
 

∏

∑

≠
=

=

−
−

=

=

n

ij
j ji

j
i

i

n

i
in

xx

xx
xL

where

xfxLxf

0

0

)(

     

)()()(

 

 
so that for n=1 and n=2, 
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In practice, Newton’s polynomial is useful because it offers insight to the behavior of formulas 
of different orders, and the error estimate can be incorporated fairly easily.  Therefore, Newton’s 
method is good for exploratory computations.  For single-use applications, the Newton and 
Lagrange methods offer similar performance, although Lagrange is easier to program and does 
not require the computation and storage of the divided differences.  Lagrange is the preferred 
method if the order of the interpolating polynomial is known beforehand. 
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Inverse interpolation – This is the problem of finding a value x for a given value of f(x).  It is 
simply a root-finding problem, solved by the methods of Section 2. 
 
Extrapolation  – This is the process of estimating function values outside of the range of the 
given data.  It is always risky and prone to large errors. 
 
 
5.2.3 Spline Interpolation 
 
Instead of fitting high-order interpolating polynomials to larges sets of data, we can fit lower-
order polynomials, or spline functions, to subsets of the data points.  Generally, spline functions 
avoid the wild swings associated with high-order polynomials while still passing through each of 
the precisely-known data points. 
 
Linear Splines 
 
Connect the data points with straight lines, as 
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Note that the derivatives of linear splines are not continuous at the data points. 
 
Quadratic Splines 
 
We would like the spline functions to have continuous derivatives at the points where the spline 
functions meet, called knots.  To insure that m derivatives are continuous, splines of at least m+1 
order are required.  For the first derivative to be continuous, fit quadratic functions of the form  
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to n+1 data points having n intervals, resulting in a system of 3n unknowns to determine.  The 
requirements on the spline functions are 
 

1. The function values of adjacent spline functions must be equal at the interior knots: 
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for i = 2, 3, … n.  This results in 2n-2 equations. 
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2. The first and last splines must pass through the end points.   
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This condition results in 2 equations. 
 

3. The first derivatives at the interior knots must be equal for adjacent splines.   
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for i = 2, 3, … n.  This is another n-1 conditions. 
 

4. Assume that the second derivative at x0 is zero, so that a1 = 0 
 
The resulting system of 3n equations in 3n unknowns can be solved for the unknown spline 
function coefficients. 
 
Cubic Splines 
 
The most useful of the spline interpolations is the cubic spline, where we fit cubic equations of 
the form 
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between knots.  For n+1 data points there are n intervals and 4n constraints: 
 

1. The function values must be equal at the interior knots (2n-2 conditions) 
2. The first and last spline functions must pass through the end points (2 conditions) 
3. The first derivatives must be equal at the interior knots (n-1 conditions) 
4. The second derivatives must be equal at the interior knots (n-1 conditions) 
5. Assume that the second derivatives at the end points are zero (2 conditions) 

 
Applying these conditions results in, for each interval: 
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The unknown second derivatives can be solved by applying  
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to each of the interior knots, resulting in n-1 equations for the n-1 unknowns (recall that the 
second derivatives at the ends are assumed to be zero).  Note that this is a tridiagonal system and 
can be solved very efficiently through Thomas’ Algorithm. 
 
5.3 Fourier Approximation 
 
A periodic function is one for which  
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where the constant T is called the period and is the smallest value for which the relationship 
holds.  Examples include square and sawtooth waves; the simplest are sinusoidal functions.  
Sinusoids can be expressed as sine or cosine functions, with the general form 
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where A0 is the mean value, C1 is the amplitude, 0ω is the angular frequency or how often the 

cycles occur and θ is the phase shift.  Recall that 0ω = 2πf, where f = 1/T is the frequency of the 

periodic function.  This form can also be written as  
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where A1 = C1 cosθ, B1 = -C1 sinθ so that θ = tan-1(-B1/A1) and 2
1

2
11 BAC += .  The relationship 

can also be written in the form 
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where δ = θ + π/2. 
 
 
5.3.1 Fourier Approximation 
 
Consider the case of fitting data to a linear least-squares model of the form 
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To determine the constants A0, A1 and B1 that minimize the square of the residuals 
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One can write the normal equations for this system, which for N equispaced intervals ∆t reduce 
to 
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Extending this result to the general model 
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This is seldom done for regression (N > 2m + 1), but rather for interpolation or collocation (N = 
2m + 1) 
 
5.3.2 Continuous Fourier Series 
 
Fourier showed that an arbitrary periodic function can be represented by an infinite series of 
sinusoids of harmonically related frequencies.  For a function with period T,  
 

[ ]∑
∞

=

++=

+++++=

1
000

020201010

)sin()cos()(

or   

)2sin()2cos()sin()cos()(

k
kk tkbtkaatf

tbtatbtaatf

ωω

ωωωω K

 

 



 

12 
 

where 0ω = 2π/T is the fundamental frequency and the integer multiples of 0ω are harmonics.  

The coefficients above can be computed as  
 

K 2, 1,     

)sin()()/2(

)cos()()/2(

)()/1(

0

0

0

0

0

0

=













=

=

=

∫

∫

∫

k

dtkfTb

dtkfTa

dfTa

T

k

T

k

T

τωτ

τωτ

ττ

 

 
This series can also be expressed in terms of exponential functions as 
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Time and Frequency Domains 
In the time domain all of the frequency components are superimposed on the same 
amplitude/time scale.  In the frequency domain the component sinusoids are decomposed and 
represented as amplitudes and phase angles as functions of frequency. 
 
 
5.3.3 Fourier Integral and Transform 
 
Non-periodic or non-recurring signals exhibit a continuous rather than discrete frequency 
spectrum.  Allow the exponential form of the Fourier Series to have a period that approaches 
infinity, then 
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Fourier Series is applied to continuous, periodic time functions and yields frequency domain 
magnitudes at discrete frequencies, while the Fourier Transform is applied to continuous (not 
necessarily periodic) time domain functions to yield a continuous frequency domain function. 
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5.3.4 Discrete Fourier Transform (DFT) 
 
Most often we obtain functions by finite sets of discrete values.  Consider a function known on 
an interval from 0 to t in N equally spaced subintervals with width ∆t = T/N.  Subscript n will 
designate times at which samples are taken, so that fn is a sample of f(t) taken at time tn.  The data 
points are taken at n =0, 1, 2, … N-1.  For such a sample a discrete Fourier Transform can be 
written as  
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To perform the calculations, use Euler’s Identity aiae ia sincos ±=±  
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The computational effort of this transform pair is proportional to N2, which increases rapidly as 
the number of samples increases. 
 
Fast Fourier Transform - The calculations of the DFT can be separated into even and odd 
expressions, and can be reduced to calculations of N/2 length sequences.  This leads to a halving 
of the computational effort each time it is done.  If the data consists of N intervals, where N is a 
power of 2, then this reduction can be carried to the individual terms of the series, resulting in a 
computational effort of the entire transform of Nlog2N, a huge savings. 
 
When performing an FFT, the amount of data that is included and the rate at which it was 
sampled determine both the frequency resolution and the maximum frequency at which reliable 
results can be calculated. 
 
The maximum frequency is determined by the sampling rate, ∆t.  Nyquist said that functions 
need to be sampled at least twice the highest frequency of interest, or else the resulting FFT is 
subject to aliasing.  Alternatively, the highest frequency components that can be relied on 
correspond to the half the sampling rate.  So if the sampling rate is ∆t, the highest frequency in 
Hz that can be relied on is fmax = 1/(2∆t) = (N/2)/(N∆t), where N is the number of data points 
taken at the sampling rate and N∆t is the total time of the input data.  A simple way to avoid 
aliasing is to report only the first half of the FFT spectrum and to double the values of the 
magnitudes of the frequency components. 
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The frequency resolution is directly related to the total time data, fo = 1/N∆t.  The FFT returns 
frequencies in terms of an index.  Dividing the index integer by N∆t gives the corresponding 
frequency directly in Hz. 
 
 
Pseudocode – Fast Fourier Transform  
 

' The actual FFT itself, real-valued data stored in  x 
m = LOG(N)/LOG(2) 
N2 = N 
DOFOR k=1, m 
 N1 = N2 
 N2 = N2/2 
 angle = 0 
 arg = 2*PI/N1 
 DOFOR j = 0, N2-1 
  c = cos(angle) 
  s = -sin(angle) 
  DOFOR i = j, N-1, N1 
   kk = i + N2 
   xt = x(i) - x(kk) 
   x(i) = x(i) - y(kk) 
   yt = y(i) - y(kk) 
   y(i) = y(i) + y(kk) 
   x(kk) = xt*c - yt*s 
   y(kk) = yt*c + xt*s 
  END DO 
  angle = (j+1)*arg 
 END DO 
END DO 
' Bit-reversal to unscramble the coefficients 
j = 0 
DOFOR i = 0, N-2 
 IF (i<J) THEN 
  xt = x(j) 
  x(j) = x(i) 
  x(i) = xt 
  yt = y(j) 
  y(j) = y(i) 
  y(i) = yt 
 END IF 
 k = N/2 
 DO  
  IF (k >= j+1) EXIT 
  j = j-k 
  k = k/2 
 END DO 
 j = j+k 
END DO 
DOFOR i = 0, N-1 
 x(i) = x(i)/N 
 y(i) = y(i)/N 
END DO  


