
Path Dependent Analysis of Logic Programs ∗

Lunjin Lu
Department of Computer Science and Engineering

Oakland University
Michigan 48309, USA

EMail: L2LU@oakland.edu
http://www.oakland.edu/∼L2LU

ABSTRACT
This paper presents an abstract semantics that uses infor-
mation about execution paths to improve precision of data
flow analyses of logic programs. We illustrate the abstract
semantics by abstracting execution paths using call strings
of fixed length and the last transfer of control. Abstract
domains that have been developed for logic program anal-
yses can be used with the new abstract semantics without
modification.

Keywords: Abstract interpretation, Context sensitive anal-
ysis, Call strings

1. INTRODUCTION
Abstract interpretation [8] is a program analysis methodol-
ogy for statically deriving run-time properties of programs.
The derived program properties are then used by other pro-
gram manipulation tools such as compilers and partial eval-
uators. Program analyses are viewed as program executions
over non-standard data domains. The idea is to define a col-
lecting semantics for a program which associates with each
program point the set of the states that are obtained when-
ever the execution reaches the point. Then an approxima-
tion of the collecting semantics is calculated by simulating
over a non-standard data domain (called the abstract do-
main) the computation of the collecting semantics over the
standard data domain (called the concrete domain).

There has been much research into abstract interpretation

∗Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PEPM ’02, Jan. 14-15, 2002 Portland, OR, USA c©2002
ACM ISBN 1-58113-455-X/02/01...$5.00

of logic programs [9]. A number of (generic) abstract seman-
tics, often called frameworks, schemes [3, 4, 18, 34, 31], have
been proposed for abstract interpretation of logic programs.
These abstract semantics have been specialized for the de-
tection of determinacy [10], data dependency analyses [11,
16], mode inference [11, 39], program transformation [35],
type inference [17], termination proof [41], etc. Since analy-
sis of logic programs is inherently interprocedural, it is nat-
ural to make use of information about the context of in-
vocations to improve analysis. In logic program analysis,
information about the context of a call has been exclusively
captured by recording information about the state in which
the call was made. No abstract semantics for logic programs
make use of call strings as context information. This paper
fills this gap by deriving an abstract semantics that is pa-
rameterized by both an abstraction of execution paths and
an abstraction of data.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly recalls on terminology in logic programming,
and introduces some notations used later in this paper. Sec-
tion 3 reformulates SLD with the left-to-right computation
rule in order to facilitate the derivation of a collecting se-
mantics. In the sequel, We will omit reference to the left-
to-right computation rule. Section 4 derives the collecting
semantics from the operational semantics. Section 5 derives
the abstract semantics from the collecting semantics, and
gives the sufficient conditions for the abstract semantics to
approximate safely the collecting semantics. In section 6, we
show how the abstract semantics can be specialized by two
examples. The first example uses call strings of length one
as context information and the second example uses the last
transfer of control as context information. Section 7 reviews
related work and section 8 concludes. Only definite pro-
grams are considered in this paper. However, the abstract
semantics can be readily generalized to analyze logic pro-
grams with negation and builtin predicates as in [3]. Proofs
are included in an appendix.

2. PRELIMINARIES
The reader is assumed to be familiar with the terminology
of logic programming [24] and that of abstract interpreta-
tion [8].

Let Σ be a set of function symbols, Π a set of predicate sym-
bols and VAR a denumerable set of variables. Let U ⊆ VAR.
Term(Σ,U) denotes the set of terms that can be constructed
from Σ and U . Atom(Σ,Π,U) is the set of atoms that is con-

structible from Π and Term(Σ,U). Term
def
= Term(Σ,VAR)

and Atom
def
= Atom(Π,Σ,VAR). Let θ be a substitution.

Then dom(θ) denotes the domain of θ. The identity sub-
stitution is denoted by ε.

An equation is a formula of the form l = r where either
l, r ∈ Term or l, r ∈ Atom. The set of all equations is de-
noted as Eqn. For a set of equations E ∈ ℘(Eqn), mgu :
℘(Eqn) 7→ Sub ∪ {fail} returns either a most general unifier
for E if E is unifiable or fail otherwise, where Sub is the
set of idempotent substitutions. mgu({l = r}) is sometimes
written as mgu(l, r). The function composition operator ◦
is defined as f ◦ g def

= λx.f(g(x)). Let θ ◦ fail
def
= fail and

fail ◦ θ def
= fail for any θ ∈ Sub ∪ {fail}. We sometimes

use Church’s lambda notation for functions, so that a func-
tion f will be denoted by λx.f(x). Let A,B ∈ Atom, and
θ, ω ∈ Sub. Define

uf (A, θ,B, ω)
def
=

let ρ be a renaming such that
vars(ρ(θ(A))) ∩ vars(ω(B)) = ∅,

in
mgu(ρ(θ(A)), ω(B)) ◦ ω

(1)

A clause C is a formula of the form H ← A1, A2, · · · , An

where H ∈ Atom and Ai ∈ Atom for 1 ≤ i ≤ n. H is
called the head of the clause and A1, A2, · · · , An the body
of the clause. We designate C with n + 1 different pro-
gram points p1, p2, · · · pn+1 with point pj immediately be-
fore Aj for 1 ≤ j ≤ n and point pn+1 immediately after

An. entry(C)
def
= p1 is called the entry point of C and

exit(C)
def
= pn+1 the exit point of C. A goal is a formula of

the form ← A1, A2, · · · , An with Ai ∈ Atom for 1 ≤ i ≤ n.
A program is a set {Cı | ı ∈ =C} of clauses where =C is a
finite set of natural numbers. A query to a program is a goal
that initiates the execution of that program. We designate
a query with program points in the same way. There might
be infinite number of possible queries that a program is in-
tended to respond to. Let {GkΘpk | k ∈ =G} be the set of
all possible queries where =G is a finite set of natural num-
bers such that =G∩=C = ∅, Gk for k ∈ =G is a goal, Θpk is
a set of substitutions and pk = entry(Gk). Each Gkθk with

θk ∈ Θpk is a query. Let = def
= =C ∪ =G. Pi refers to Ci for

i ∈ =C and to Gi for i ∈ =G. Let p be a program point. We
write Ap to denote the atom to the right of p if p is not an
exit point. If p is in a clause, we also write Hp to denote the
head of the clause. Vp denotes the set of variables of interest
at point p. Vp is usually the set of variables occurring in the
clause in which p appears.

We denote by N the set of all program points designated
with Pi for all i ∈ =. We use p to denote the program
point to the left of p if p exists. Similarly, p+ denotes the
program point to the right of p if p+ exists. We shall use N 0

to denote the set of entry points of queries, N 1 the set of
entry points of clauses and N 2 the set of all other program
points.

Let p, q ∈ N , and q be the most recent program point that
SLD has reached. There are two possibilities that SLD will

reach p next. If q is the exit point of a clause then SLD can
reach p immediately only if that program clause has been
used to resolve with Ap . If q is not the exit point of a
clause and p is the entry point of another clause then SLD
may reach p immediately by invoking that clause. Note that
if q is the exit point of a query then SLD has succeeded and
will not visit any more program points. We use a graph
< N , E >, called program graph, to represent the relation
among program points p and q that “SLD will possibly visit
p immediately after it has visited q”. Formally, E is defined
as follows.

E def
=

⋃
1≤≤2

E

E1 def
=

{
(entry(C), q)

C ∈ P
uf (Aq, ε,Hentry(C), ε) 6= fail

}
E2 def

= {(p, exit(C)) | (entry(C), p) ∈ E1}

Edges in E1 correspond to procedure-entries, and edges in
E2 to procedure-exits. We have E1∩E2 = ∅. Note that (p, q)
is an edge from q to p.

Example 2.1. Consider the following logic program. The
meaning of member(X,L) is that X is a member of list L.
The meaning of both(X,L,K) is that X is a member of both
list L and list K.

C1 ≡ both(X,L,K)← ©1member(X,L), ©2
member(X,K) ©3

C2 ≡ member(X, [X|L])← ©4
C3 ≡ member(X, [H|L])← ©5member(X,L) ©6
G4 ≡ ← ©7 both(X,L1, L2) ©8

Suppose that the set of queries is described by {G4Θ7} with
Θ7 being the set of substitutions θ such that θ(X) is a vari-
able, and both θ(L) and θ(K) are ground terms. Then,
=C = {1, 2, 3} and =G = {4}. N contains 8 program
points. A1 = member(X,L) and A2 = member(X,K).
V1 = {X,L,K} and V7 = {X,L1, L2}. (5, 1) is an edge
in E1 and (2, 6) is an edge in E2. 2

A path is either Λ denoting the empty path or a sequence
of program points pnpn−1 · · · p1 such that (pi, pi−1) ∈ E for
2 ≤ i ≤ n and p1 ∈ N 0. Note that p1 is the starting point
of the path. We use δ, χ and φ to denote paths and ∆ to

denote the set of all paths. Let ∆(p)
def
= {pδ | pδ ∈ ∆}.

Then ∆(p) is the set of paths leading to p (including p).

We define closed path segments as follows.

• δ is a closed path segment for Ap if δ = p+δ′p and δ′ is
a closed path segment for the body of a clause C and
(entry(C), p) ∈ E .

• δ is a closed path segment for the body Ap1 , · · · , Apn

of a clause if δ = δn · · · δ1 such that δi is a closed path
segment for Api for each 1 ≤ i ≤ n. Note that δ = Λ
when n = 0.

R(1)
If

(
(p, q) ∈ E1

∧ θ = uf (Aq, σ,Hp, ε) 6= fail

)
then (qδ′, σ)S

P
; (pqδ′, θ)(qδ′, σ)S

R(2)
If

(
(p, q) ∈ E2

∧ θ = uf (Hq, σ, Ap , ω) 6= fail

)
then (qδ′p δ′′, σ)(p δ′′, ω)S

P
; (pqδ′p δ′′, θ)S

Figure 1: Transition rules

Let ∆c be the set of the closed path segments for the atoms
in the program and the bodies of the clauses in the program.

3. OPERATIONAL SEMANTICS
We use a variant of SLD resolution via the left to right
computation rule (VSLD in abbreviation) as the operational
semantics. VSLD differs from SLD in several ways. Firstly,
a goal in VSLD is associated with its derivation path from
the query. Secondly, when VSLD derives a new goal from
the current goal and a clause, it renames the leftmost atom
in the goal instead of the clause. This is to ensure that
the domain of the substitution that will be applied to the
body of the clause contains variables in the clause instead of
their renamed counterparts. Thirdly, when a sub-refutation
is finished, an extra renaming and an extra unification are
needed for VSLD to calculate the substitution immediately
after the sub-refutation whilst these extra operations are not
needed in SLD.

A state in VSLD is a stack that is a sequence of stack items
ending in a special symbol $ denoting the empty stack. A
stack item is of the form (δ, θ) where δ ∈ ∆ and θ ∈ Sub.
The set of all possible stacks is then

S = (∆× Sub)∗ × {$}

where ·∗ is the Kleene closure operator.

VSLD is given by transition rules in Figure 1. Rule (1)
performs a procedure-entry and rule(2) does a procedure-exit.
The set S0 ⊆ S of initial states is determined by the set of
queries to the program.

S0
def
= {(p, θ)$ | p ∈ N 0 ∧ θ ∈ Θp}

The operational semantics of the program is defined as the
set of descendant states of a set S0 of initial states below

where
P
;∗ is the reflexive and transitive closure of

P
;.

[[P]]
def
= {s | ∃s0 ∈ S0.(s0

P
;∗ s)}

Lemma 3.1. VSLD is equivalent to SLD in the sense that,
given the same goal and the same program, VSLD reaches a
program point iff SLD reaches the same program point, and
the instantiation of the variables in the clause of the program
point by VSLD is equivalent (modulo renaming) to that by
SLD. 2

4. COLLECTING SEMANTICS
This section presents the collecting semantics. The collect-
ing semantics first abstracts away the sequential relation
between stack items of a stack and then classifies the stack
items according to program points. It associates each point
p with a mapping from a path δ ending at p to a set Θ of
substitutions. Each point p ∈ N is thus associated with a
member in ∆(p) 7→ ℘(Sub). < ℘(Sub),⊆, ∅,∪ > is a com-
plete lattice. Therefore, the domain D] of the collecting
semantics is the Cartesian product of the component do-
mains ∆(p) 7→ ℘(Sub) for all p ∈ N . Let X] ∈ D]. We use
X](p) to denote the component in X] that corresponds to
point p. Let X], Y] ∈ D] and define

X] v] Y] def
= ∀p ∈ N .∀δ ∈ ∆(p).(X](p)(δ) ⊆ Y](p)(δ))

Then < D],v],⊥],t] > is a complete lattice with X] t]

Y] = λp ∈ N .λδ ∈ ∆(p).(X](p)(δ) ∪ Y](p)(δ)) and ⊥] =
λp ∈ N .λδ ∈ ∆(p).∅.

The approximation of a set of stacks by an element in D]

is modeled by the following function γ] ∈ D] 7→ D where
suf (δ) is the set of all suffixes of δ and suf (Φ) =

⋃
φ∈Φ suf (φ)

for Φ ⊆ ∆.

γ](X]) = (2)(pnδn, θn) · · · (p1δ1, θ1)$

∀1 ≤ i ≤ n.
(θi ∈ X](pi)(piδi))
∧
∀1 ≤ j < n.
(pjδj ∈ suf (pj+1δj+1))


γ] is monotonic and γ](D]) is a Moore family.

The collecting semantics is

[[P]]] = lfpF]
P

where F]
P : D] 7→ D] is

F]
P (X])(p)(δ)

def
=

Θp if (p ∈ N 0) ∧ (δ = p) (3)

uf](Aq, X
](q)(qδ′), Hp, {ε})

if (p ∈ N 1) ∧ (δ = pqδ′) (4)

uf](Hq, X
](q)(qδ′p δ′′), Ap , X

](p)(p δ′′))

if p ∈ N 2 ∧ δ = pqδ′p δ′′ (5)

and

uf](A,Θ, B,Ω)
def
= {uf (A, θ,B, ω) 6= fail | θ ∈ Θ ∧ ω ∈ Ω}

(6)

for A,B ∈ Atom and Θ,Ω ∈ ℘(Sub). F]
P is a monotonic

function on < D],v]>. The correctness of F]
P is given by

the following lemma.

Lemma 4.1. [[P]] ⊆ γ]([[P]]]). 2

5. ABSTRACT SEMANTICS
The collecting semantics [[P]]] is a safe approximation of the
operational semantics and can be used as a basis for program
analysis. [[P]]](p) is a mapping from a path ending at p

to a set of substitutions. In order to obtain information
effectively, further approximations are needed.

5.1 Abstracting paths
Paths of arbitrary length need be described by elements from
a finite set ∆[. Elements in ∆[are path descriptions. Let
β : ∆ 7→ ∆[maps a path into its description. We require
that

C0: β : ∆ 7→ ∆[is surjective, and if β(qδ) = β(qδ′) and
(p, q) ∈ E then β(pqδ) = β(pqδ′)

C0 ensures that each path description in ∆[describes a non-
empty set of paths and each execution step preserves the
path equivalence induced by β. Define β−1 : ∆[7→ ℘(∆)

as β−1(δ̄)
def
= {δ | β(δ) = δ̄}. For any δ̄ ∈ ∆[, {β(pδ) | δ ∈

β−1(δ̄)∧pδ ∈ ∆} is either {χ̄} for some χ̄ ∈ ∆[or ∅. We use
p • δ̄ to denote χ̄ in the former case. We shall use φ̄� χ̄ to
denote the condition that at least one path described by φ̄
is an extension of a path described by χ̄ with a closed path

segment, i.e., φ̄ � χ̄
def
= ∃φ ∈ β−1(φ̄).∃χ ∈ β−1(χ̄).∃δ ∈

∆c.(χ = δφ).

5.2 Abstracting data
When program is analyzed, the set of substitutions associ-
ated with a path ending at p is approximated by an abstract
substitution associated with p. We follow [7] to parame-
terize abstract domains with finite sets of variables instead
of having a single abstract domain for abstract substitu-
tions associated with different program points or construct-
ing abstract domains for different program points in differ-
ent ways. Let ASubV be the domain of abstract substitu-
tions for V and γV ∈ ASubV 7→ ℘(Sub) the function that

gives meaning to an abstract substitution. Then [[P]]](p)

is described by a function from ∆[(p) to ASubVp where

∆[(p) = {β(pδ) | pδ ∈ ∆} is the set of the descriptions
of the paths ending at p. We require that, for any finite
V ⊆ VAR,

C1: < ASubV ,vV ,⊥V ,tV > is a complete lattice where
vV is a partial order on ASubV , ⊥V the infimum and
tV the least upper bound operator; and

C2: γV ∈ ASubV 7→ ℘(Sub) is monotonic and γV(ASubV)
is a Moore family.

The domain D[of F [
P is constructed in the same way as

the domain D] of F]
P . Each member X[in D[is a vector

that is indexed by program points. X[(p) is an element in

∆[(p) 7→ ASubVp . Let X[, Y [∈ D[. Define

X[v[Y [def
= ∀p ∈ N .∀δ̄ ∈ ∆[(p).(X[(p)(δ̄) vVp

Y [(p)(δ̄))

< D[,v[,⊥[,t[> is a complete lattice with

⊥[= λp ∈ N .λδ̄ ∈ ∆[(p).⊥Vp

X[t[Y [= λp ∈ N .λδ̄ ∈ ∆[(p).(X[(p)(δ̄) tVp Y
[(p)(δ̄))

The concretization function γ[: D[7→ D] is defined in terms
of γVp and β. For every X[∈ D[,

γ[(X[)
def
= λp ∈ N .λδ ∈ ∆(p).γVp(X[(p)(β(δ))) (7)

It follows from C2 that γ[is monotonic and γ[(D[) is a
Moore family.

5.3 Abstract Semantics
The abstract semantics is obtained as follows. A set Θ ∈
℘(Sub) of substitutions is replaced by an abstract substitu-
tion in ASubV where V is the set of variables of interest.
uf] that is applied to two sets of substitutions described by
θ[∈ ASubU and σ[∈ ASubV respectively is replaced by
uf [

U,V that is applied to θ[and σ[. ∪ in the definition of

F]
P (X])(p) is replaced by tVp . Let θ[

pk
∈ ASubVpk

be the

least abstract substitution such that Θpk ⊆ γVpk
(θ[

pk
) for

each k ∈ =G. Note that θ[
pk

instead of Θpk is given be-
fore the program is analyzed. Let εVp ∈ ASubVp , called an
abstract identity substitution in [3], be the least abstract
substitution such that ε ∈ γVp(εVp) for each p ∈ N 1. The
abstract semantics is

[[P]][= lfpF [
P

where F [
P : D[7→ D[is

F [
P (X[)(p)(δ̄)

def
=

θ[
p if (p ∈ N 0) ∧ (δ̄ = β(p)) (8)

tVp

{
uf [

Vq,Vp
(Aq, X

[(q)(χ̄), Hp, εVp)
(p, q) ∈ E1

δ̄ = p • χ̄

}
if p ∈ N 1 (9)

tVp

uf [
Vq,Vp

(Hq, X
[(q)(χ̄), Ap , X

[(p)(φ̄))
(p, q) ∈ E2

δ̄ = p • χ̄
φ̄� χ̄


if p ∈ N 2 (10)

F [
P is a monotonic function on < D[,v[>. The following

theorem establishes sufficient conditions for lfpF [
P to approx-

imate correctly lfpF]
P .

Theorem 5.1. lfpF]
P v

] γ[(lfpF [
P) if C0-C4 hold where

C3: ε ∈ γV(εV).

C4: uf](A, γU (θ[), B, γV(σ[)) ⊆ γV ◦uf [
U,V(A, θ[, B, σ[) for

any finite U ,V ⊆ VAR, any θ[∈ ASubU , any σ[∈
ASubV , and any atoms A and B such that vars(A) ⊆
U and vars(B) ⊆ V.

2

We note that the conditions C1-C4 are exactly those re-
quired by the abstract semantics in [34, 25]. C1-C4 are con-
ditions on the abstraction of data while C0 is a condition on
the abstraction of paths. Once the abstraction β of paths is
given, the abstract semantics is instantiated into a special
form which can be used with an abstract domain satisfying
C1-C4. Since these two abstractions are independent of each

other, abstract domains that have been designed for logic
program analyses can be used with the abstract semantics
without modification.

6. EXAMPLES
We now show the abstract semantics can be instantiated for
different abstractions of paths. The simpliest abstraction of
paths is to simply ignore them. This can be achieved by

defining ∆[def
= N and β(pδ)

def
= p. Then ∆[(p) = {p} and

p • q = p if (p, q) ∈ E and p � q if (p, q) ∈ E2. In this case,
the abstract semantics degenerates to that in [34].

6.1 Call strings
Call strings have been used to enhance analysis of programs
of other programming paradigms [36]. The idea is to keep
track of calls on the execution stack - calls that are currently
being executed. This amounts to ignore all segments of the
execution path that correspond to those calls that has been
fully executed. Let call(pδ) be the result of removing all
closed path segment from δ. Since there might be stacks
of infinite size due to recursion, it is usual to keep track

of top k calls. This can be achieved by defining β(δ)
def
=

[call(δ)]k where [φ]k be the path resulting from truncating

φ at position k + 1. Then ∆[= {β(δ) | δ ∈ ∆}. If p ∈ N 1

and (p, q) ∈ E1 and χ̄ ∈ ∆[(q) then p • χ̄ = [pχ̄]k since

(p, q) ∈ E1 and χ̄ ∈ ∆[(q). Let (p, q) ∈ E2 and χ̄ ∈ ∆[(q).
We have that δ̄ = p• χ̄ iff χ̄ = [p δ̄]k and that φ̄� χ̄ implies

φ̄ = δ̄. Thus, F [
P is specialized into the following.

F [
P (X[)(p)(δ̄)

def
=

θ[
p if (p ∈ N 0) ∧ (δ̄ = Λ)

tVp

{
uf [

Vq,Vp
(Aq, X

[(q)(χ̄), Hp, εVp)
(p, q) ∈ E1

δ̄ = [pχ̄]k

}
if p ∈ N 1

tVp

{
uf [

Vq,Vp
(Hq, X

[(q)(χ̄), Ap , X
[(p)(δ̄))

(p, q) ∈ E2

χ̄ = [p δ̄]k

}
if p ∈ N 2

Example 6.1. Consider the program in 2.1 and call strings
of length 1. Below is the result of mode analysis [3, 12] us-
ing above abstract semantics. The instantiation modes used
are “free”, “ground” and “top”. A variable X is “free” in
a substitution θ if θ(X) is a variable. X is “ground” in θ if
θ(X) contains no variable. If the mode of X in θ is “top”
then θ(X) can be any term. The analysis also keeps track of
sharing [37] between variables to ensure correctness of anal-
ysis although no two variables in the same clause share in
this example.

$Goal :-

% toplevel-[X/free,L1/ground,L2/ground],[]

both(X,L1,L2)

% toplevel-[X/ground,L1/ground,L2/ground],[]

member(X,[X|L]).

% (both/3,1),1-[L/ground,X/ground],[]

% (both/3,1),2-[L/ground,X/ground],[]

% (member/2,2),1-[L/ground,X/ground],[]

member(X,[Y|L]) :-

% (both/3,1),1-[L/ground,X/free,Y/ground],[]

% (both/3,1),2-[L/ground,X/ground,Y/ground],[]

% (member/2,2),1-[L/ground,X/top,Y/ground],[]

member(X,L).

% (both/3,1),1-[L/ground,X/free,Y/ground],[]

% (both/3,1),2-[L/ground,X/ground,Y/ground],[]

% (member/2,2),1-[L/ground,X/top,Y/ground],[]

both(X,L,K) :-

% ($Goal/0,1),1-[X/free,L/ground,K/ground],[]

member(X,L),

% ($Goal/0,1),1-[X/ground,L/ground,K/ground],[]

member(X,K).

% ($Goal/0,1),1-[X/ground,L/ground,K/ground],[]

Each program point is annotated with a few comments. Each
comment consists of a program point (which is the call string
of length 1) and an abstract substitution. An abstract substi-
tution has two parts. The first part represents mode infor-
mation by assigning an instantiation mode to each variable
of interest. The second part represents sharing information.
A program point is represented by identifying the clause in
which it appears and its position in the clause. A clause
is identified by the name and arity of the predicate it de-
fines and its textual position in the sequences of clauses for
the predicate. For instance, ((member/2,2),1) stands for the
entry point of the second clause defining the predicate mem-
ber/2. A query is treated as a clause defining the predicate
$Goal/0. A dummy call string toplevel indicates that the
entry point of a query is reached by the language system.

The analysis result indicates that at the entry point of the
second clause for member/2, X is a free variable if the clause
is invoked at the point ((both/3,1),1) while X is a ground
term if the clause is invoked at the point ((both/3,1),2). This
information can be used to specialize member/2 into two dif-
ferent versions. Without keep tracking of path information,
the two modes of X from these two different invocations must
be merged resulting in the mode “top” which says nothing
about the instantiation mode of X. 2

6.2 Edges
Another useful abstraction of paths is to retain information
about which clause is used to satisfy a given atom and which
atom invokes a given clause. This corresponds to describing
a path by its second element. Thus, β(pqδ) = q and β(p) =

Λ. Note that p ∈ ∆ implies p ∈ N 0 and q ∈ ∆[(p) implies

(p, q) ∈ E . Thus, ∆[= N ∪ {Λ}. It can be easily verified

that C0 holds. We have p • χ̄ = q for any χ̄ ∈ ∆[(q). We

also have φ̄ � χ̄ if φ ∈ ∆[(p), χ̄ ∈ ∆[(q) and (p, q) ∈ E2.

Therefore, F [
P is specialized into the following.

F [
P (X[)(p)(q)

def
=

θ[
p if (p ∈ N 0) ∧ (q = Λ)

tVp{uf [
Vq,Vp

(Aq, X
[(q)(u), Hp, εVp) | (q, u) ∈ E}

if p ∈ N 1

tVp

{
uf [

Vq,Vp
(Hq, X

[(q)(u), Ap , X
[(p)(v))

(q, u) ∈ E
(p , v) ∈ E

}
if p ∈ N 2

If we add Λ to N and make an edge from Λ to each point
in N 0, then the above abstract semantics associates an ab-
stract substitution with each edge in the program graph.

Example 6.2. This example applies the above abstract
semantics to perform prescriptive type analysis [19, 1, 20, 6,
26, 22]. In a prescriptive type analysis, type definitions are
given as an analysis input. The following type definitions
are used.

nat ::= 0 | s(nat)
list(β) ::= [] | [β|list(β)]

Below is a buggy naive reverse program and the result of the
prescriptive type analysis of the program using the abstract
domain in [19]. The program is annotated as in the previ-
ous example. An abstract substitution is either vtbot or a
variable typing which is a mapping from a variable to a type.
vtbot denotes the empty set of substitutions. A variable typ-
ing θ[denotes the set of those substitutions that instantiate
each variable X in the domain of θ[into a term of the type
θ[(X). bot is the type denoting the empty set of terms and
top is the type denoting the set of all terms.

$Goal :-

% toplevel - [X/list(nat)]

nrev(X,Y).

% (nrev/2,1),1 - [X/list(bot),Y/list(bot)]

% (nrev/2,2),3 - [X/list(nat),Y/nat]

append([],L,L).

% (append/3,2),1 - vtbot

% (nrev/2,2),2 - [L/nat]

append([H|T],L,[H|TL]) :-

% (append/3,2),1 - vtbot

% (nrev/2,2),2 - vtbot

append(T,L,TL).

% (append/3,1),1 - vtbot

% (append/3,2),2 - vtbot

nrev([],[]).

% ($Goal/0,1),1 - []

% (nrev/2,2),1 - []

nrev([H|T],L) :-

% ($Goal/0,1),1 - [H/nat,T/list(nat)]

% (nrev/2,2),1 - [H/nat,T/list(nat)]

nrev(T,T1),

% (nrev/2,1),1 -

% [H/nat,T/list(bot),T1/list(bot)]

% (nrev/2,2),3 - [H/nat,T/list(nat),T1/nat]

append(T1,H,L). % SHOULD BE append(T1,[H],L).

% (append/3,1),1 -

% [H/nat,T/list(bot),L/nat,T1/list(bot)]

% (append/3,2),2 - vtbot

The first comment for the exit point of the query tells that
if the query is executed successfully with the first clause of
the nrev/2 then both X and Y are instantiated into empty
lists (of type list(bot)). This is expected. The second com-
ment says that if the query is executed successfully with the
second clause of the nrev/2 then X is instantiated into a list
of natural numbers and Y into a natural number. This in-
dicates that something is wrong with the second clause for
nrev/2. The second comment for the exit point of second
clause for nrev/2 says that the second clause for append/3
will fail when invoked by append(T1,H,L). The second com-
ment for the entry point of the second clause for append/3
says that the unification will fail when the clause is invoked
by append(T1,H,L), indicating an error. Another indication
of error is the second comment for the entry point of the first
clause for append/3. It says that L will be a natural num-
ber instead of a list of natural numbers when the clause is
invoked by append(T1,H,L). Using the information, the bug
can be easily located.

The following is the result of the prescriptive type analysis
by plugging the same abstract domain into the abstract se-
mantics in [34] which ignores path information. The result
is less precise than the above result. For instance, no type
information is given for Y at the exit point of the query.

$Goal :-

%[X/list(nat)],

nrev(X,Y),

%[X/list(nat)].

append([],L,L).

%[L/nat].

append([H|T],L,[H|TL]) :-

%[L/nat],

append(T,L,TL).

%[T/list(top),L/nat,TL/top].

nrev([],[])

%[].

nrev([H|T],L) :-

%[H/nat,T/list(nat)],

nrev(T,T1),

%[H/nat,T/list(nat),T1/top],

append(T1,H,L).

%[H/nat,T/list(nat),L/top,T1/list(top)].

Among other prescriptive type analyses of logic programs [1,
20, 6, 26, 22, 27], [27] is the most precise one. Using a
disjunction of variable typings as an abstract substitution,
[27] together with the abstract semantics in [34] infers that
at the exit point of the query, either both X and Y are empty
lists or X is of type list(nat) and Y of type nat. This in-
formation is precise so long as variables in the query are
concerned. However, it does not tell which variable typing
comes from which clause of nrev/2. 2

7. RELATED WORK
Context information has been widely used in data flow anal-
ysis. For programs with high order constructs such as func-
tional programs, information about contexts in which a pro-
cedure/function is applied may be obtained via a control
flow analysis [33, 23]. Since only Horn clause logic programs
are considered in our work, there is no need for a control flow
analysis.

Context information has also been used in data flow analy-
sis of logic programs. We now compare the abstract seman-
tics proposed in this paper with other abstract semantics
for logic programs. There are three approaches to abstract
interpretation of logic programs. A top-down abstract se-
mantics mimics a top-down evaluation strategy. A bottom-
up abstract semantics approximates a bottom-up evalua-
tion strategy. A fixed-point abstract semantics computes
the least fixed-point of a system of simultaneous recurrence
equations generated from the program.

7.1 Fixed-point abstract semantics
The abstract semantics in [31, 34] do not keep track of any
context information at all. As shown in section 6, [34] is a
special form of our abstract semantics. The abstract seman-
tics in [30] records context information at the entry point
of a program clause. Its abstract operators distinguish be-
tween different call instances. Since context information is
not recorded at other program points, abstract substitutions
originating from different clauses are merged together using
the least upper bound operator. Our abstract semantics
keeps track of more path information than [30] and there-
fore can infer more precise results. It also separates the
abstraction of paths from that of data.

The abstract semantics in [43] approximates a minimum
function graph semantics. A clause has as its denotation
a partial function mapping an abstract substitution to an-
other. Reachable versions of the predicates in the program
are then computed from the abstract semantics where each
reachable version of a predicate is a tuple of abstract sub-
stitutions one for each clause for the predicate. A compiler
based on [43] may generate an implementation for each
reachable version of the predicate. The correct version of
a predicate is selected for a call in a version of a clause
via an automaton whose states are reachable versions and
whose inputs are call edges in the program graph. Context
information is captured by reachable versions and the au-
tomaton. A set of paths is approximated by a regular set
of call strings. Information about closed path segments is
ignored that is useful as shown in example 6.2.

7.2 Bottom-up abstract interpretation
A bottom-up abstract semantics [2, 18, 5, 28, 29] approxi-
mates the success set of the program [40] using a bottom-up
evaluation strategy. In order to infer call patterns, they first
transform the program and then approximate the success set
of the transformed program. Since there is no existing pro-
gram transformation that encodes the execution path of the
program, a bottom-up abstract semantics cannot make use
of path information.

7.3 Top-down abstract interpretation

The abstract semantics in [3, 32, 42, 15] mimic SLD resolu-
tion. [32, 42, 15] differ from [3] only in their dealing with
recursive calls. The abstract semantics in [3] constructs an
abstract AND-OR graph that describes all the intermediate
proof trees for the queries satisfying a query description. An
AND-node is (labeled with) a clause head and its child OR-
nodes are (labeled with) the atoms in the body of the clause.
Every OR-node is adorned with its abstract call substitution
and its abstract success substitution.

Consider an OR-node A with abstract call substitution θ[in
a partially constructed abstract AND-OR graph. The ab-
stract semantics computes the abstract success substitution
of A as follows. For each clause H ← B1, · · · , Bm such that
H may match with θ(A) for some θ satisfying θ[, it adds to A
a child AND-nodeH that hasm child OR-nodes B1, · · · , Bm

and performs an abstract procedure-entry to obtain the ab-
stract call substitution θ[

in of B1. The abstract semantics
extends B1 recursively and extends Bj+1 using the abstract
success substitution of Bj as its abstract call substitution.
After the abstract success substitution θ[

out of the last OR-
node Bm has been computed for each matching clause, the
abstract success substitution η[of A is obtained by perform-
ing an abstract procedure-exit for each of these clauses and
computing an upper bound of the results.

Suppose that an OR-node A with abstract call substitution
θ[were to be extended. If A has an ancestor OR-node A′

with abstract call substitution η[such that A is a variant of
A and θ[is a variant of η[, the abstract semantics initializes
the abstract success substitution of A to the infimum ab-
stract substitution and proceeds until the abstract success
substitution of A′ is computed. It then recomputes the part
of the graph starting from the abstract success substitution
of A to that of A′ by using the abstract success substitu-
tion of A′ as that of A. This is repeated until the abstract
success substitution of A′ stablizes. The same mechanism is
also used to limit the size of the graph.

The context information captured in the abstract AND-OR
graph is different from that in our abstract semantics. For a
given program and an abstraction β of paths, our abstract
semantics is instantiated into a fixed system of simultaneous
recurrence equations. This is independent of the abstract
domain and the abstract call substitution for the query. The
shape of the abstract AND-OR graph depends on the ab-
stract call substitution for the query. It decides how much
context information is retained. Two variant atoms with
variant abstract call substitutions or two atoms with the
same predicate name and arity (when the depth of the ab-
stract AND-OR graph exceeds some limit) are identified.
This in a sense merges paths leading to different program
points since these two atoms may appear in different places
in the program. On the other hand, two paths leading to
the same program point that have the same abstraction may
be left un-merged. When the abstract success substitution
of an OR-node A is computed, results of the procedure-exit
operations are merged using an upper bound operator. This
loses information about the closed execution paths for A.

The abstract semantics in [20, 4] mimic the OLDT resolu-
tion [38]. The comparison between our abstract semantics
and an OLDT based abstract semantics is similar to that

between our abstract semantics and an abstract AND-OR
graph based abstract semantics.

8. SUMMARY
We have presented a fixed-point abstract semantics that is
parameterized by a domain of path descriptions and a do-
main of abstract substitutions. Two abstractions of paths
are used to exemplify the usefulness of the abstract seman-
tics in improving precision of an analysis. The abstract se-
mantics can be used with abstract domains that have been
developed without taking path information into account.

9. REFERENCES
[1] R. Barbuti and R. Giacobazzi. A bottom-up

polymorphic type inference in logic programming.
Science of computer programming, 19(3):133–181,
1992.

[2] R. Barbuti, R. Giacobazzi, and G. Levi. A general
framework for semantics-based bottom-up abstract
interpretation of logic programs. ACM Transactions
on Programming Languages and Systems,
15(1):133–181, 1993.

[3] M. Bruynooghe. A practical framework for the
abstract interpretation of logic progams. Journal of
Logic Programming, 10(2):91–124, 1991.

[4] B. Le Charlier and P. Van Hentenryck. Experimental
evaluation of a generic abstract interpretation
algorithm for prolog. The ACM Transaction on
Programming Languages and Systems, 16(1):35–101,
1994.

[5] M. Codish, D. Dams, and E. Yardani. Bottom-up
abstract interpretation of logic programs. Journal of
Theoretical Computer Science, 124:93–125, 1994.

[6] M. Codish and V. Lagoon. Type dependencies for
logic programs using ACI-unification. Journal of
Theoretical Computer Science, 238:131–159, 2000.

[7] A. Cortesi, G. Filé, and W. Winsborough. Optimal
groundness analysis using propositional logic. Journal
of Logic Programming, 27(2):137–168, 1996.

[8] P. Cousot and R. Cousot. Abstract interpretation: a
unified framework for static analysis of programs by
construction or approximation of fixpoints. In
Proc. POPL’77, pages 238–252. The ACM Press, 1977.

[9] P. Cousot and R. Cousot. Abstract interpretation and
application to logic programs. Journal of Logic
Programming, 13(1, 2, 3 and 4):103–179, 1992.

[10] S.K. Debray. Functional computations in logic
programs. ACM Transactions on Programming
Languages and Systems, 11(3):451–481, 1989.

[11] S.K. Debray. Static inference of modes and data
dependencies in logic programs. ACM Transactions on
Programming Languages and Systems, 11(3):418–450,
1989.

[12] S.K. Debray and D. S. Warren. Automatic mode
inference for logic programs. Journal of Logic
Programming, 5(3):207–230, 1988.

[13] P. Deransart, B. Lorho, and J. Ma luszynski, editors.
Proceedings of the First International Workshop on
Programming Language Implementation and Logic
Programming, Lecture Notes in Computer Science
348. Springer, 1988.

[14] K. Furukawa, editor. Proceedings of the Eighth
International Conference on Logic Programming. The
MIT Press, 1991.

[15] M. Hermenegildo, R. Warren, and S.K. Debray.
Global flow analysis as a practical compilation tool.
Journal of Logic Programming, 13(4):349–366, 1992.

[16] D. Jacobs and A. Langen. Static analysis of logic
programs for independent and parallelism. Journal of
Logic Programming, 13(1–4):291–314, 1992.

[17] G. Janssens and M. Bruynooghe. Deriving
descriptions of possible values of program variables by
means of abstract interpretation. Journal of Logic
Programming, 13(1–4):205–258, 1992.

[18] T. Kanamori. Abstract interpretation based on
Alexander Templates. Journal of Logic Programming,
15(1 & 2):31–54, 1993.

[19] T. Kanamori and K. Horiuchi. Type inference in
Prolog and its application. In A.K. Joshi, editor,
Proceedings of the Ninth International Joint
Conference on Artificial Intelligence, pages 704–707.
Morgan Kaufmann, 1985.

[20] T. Kanamori and T. Kawamura. Abstract
interpretation based on OLDT resolution. Journal of
Logic Programming, 15(1 & 2):1–30, 1993.

[21] R. A. Kowalski and K. A. Bowen, editors. Proceedings
of the Fifth International Conference and Symposium
on Logic Programming. The MIT Press, 1988.

[22] G. Levi and F. Spoto. An Experiment in Domain
Refinement: Type Domains and Type Representations
for Logic Programs. In C. Palamidessi, H. Glaser, and
K. Meinke, editors, Principles of Declarative
Programming, Lecture Notes in Computer Science
1490, pages 152–169. Springer-Verlag, 1998.

[23] T. Lindgren. Control flow analysis of Prolog. In J.W.
Lloyd, editor, Logic Programming, Proceedings of the
1995 International Symposium, pages 432–446. The
MIT Press, 1995.

[24] J.W. Lloyd. Foundations of Logic Programming.
Springer-Verlag, 1987.

[25] L. Lu. Abstract interpretation, bug detection and bug
diagnosis in normal logic programs. PhD thesis,
University of Birmingham, 1994.

[26] L. Lu. A polymorphic type analysis in logic programs
by abstract interpretation. Journal of Logic
Programming, 36(1):1–54, 1998.

[27] L. Lu. A precise type analysis of logic programs. In
M. Gabbrielli and F. Pfenning, editors, Proceedings of
the Second International ACM SIGPLAN Conference
on Principles and Practices of Declarative
Programming, pages 214–225. The ACM Press, 2000.

[28] K. Marriott and H. Søndergaard. Bottom-up abstract
interpretation of logic programs. In Kowalski and
Bowen [21], pages 733–748.

[29] K. Marriott and H. Søndergaard. Bottom-up dataflow
analysis of normal logic programs. Journal of Logic
Programming, 13(1–4):181–204, 1992.

[30] K. Marriott, H. Søndergaard, and N. D. Jones.
Denotational abstract interpretation of logic
programs. ACM Transactions on Programming
Languages and Systems, 16(3):607–648, 1994.

[31] C. Mellish. Abstract interpretation of Prolog
programs. In S. Abramsky and C. Hankin, editors,
Abstract interpretation of declarative languages, pages
181–198. Ellis Horwood Limited, 1987.

[32] K. Muthukumar and M. Hermenegildo. Compile-time
derivation of variable dependency using abstract
interpretation. Journal of Logic Programming,
13(1–4):315–347, 1992.

[33] F. Nielson and H. Riis Nielson. Infinitary control flow
analysis: a collecting semantics for closure analysis. In
Proc. POPL’97, pages 332–345. ACM Press, 1997.

[34] U. Nilsson. Towards a framework for the abstract
interpretation of logic programs. In Deransart et al.
[13], pages 68–82.

[35] D. De Schreye and M. Bruynooghe. An application of
abstract interpretation in source level program
transformation. In Deransart et al. [13], pages 35–57.

[36] M. Sharir and A. Pnueli. Two approaches to
interprocedural data flow analysis. In S.S. Muchnick
and N.D. Jones, editors, Program Flow Analysis,
pages 189–233. Prentice Hall International, 1981.

[37] H. Søndergaard. An application of abstract
interpretation of logic programs: occur check problem.
In B. Robinet and R. Wilhelm, editors, ESOP 86,
European Symposium on Programming, Lecture Notes
in Computer Science 213, pages 324–338. Springer,
1986.

[38] H. Tamaki and T. Sato. OLD resolution with
tabulation. In Proceedings of the Third International
Conference on Logic Programming, pages 84–98,
London, U.K., 1986.

[39] A. Taylor. Removal of dereferencing and trailing in
Prolog compilation. In G. Levi and M. Martelli,
editors, Proceedings of the Sixth International
Conference on Logic Programming, pages 48–60. The
MIT Press, 1989.

[40] M.H. van Emden and R.A. Kowalski. The semantics
of predicate logic as a programming language.
Artificial Intelligence, 23(10):733–742, 1976.

[41] K. Verschaetse and D. De Schreye. Deriving
termination proofs for logic programs, using abstract
procedures. In Furukawa [14], pages 301–315.

[42] A. Waern. An implementation technique for the
abstract interpretation of Prolog. In Kowalski and
Bowen [21], pages 700–710.

[43] W. Winsborough. Path-Dependent Reachability
Analysis for Multiple Specialization. In E. L. Lusk and
R. A. Overbeek, editors, Proceedings of the North
American Conference on Logic Programming, pages
133–153, Cleveland, Ohio, USA, 1989.

APPENDIX
A. PROOFS
A.1 AUXILIARY LEMMAS
This section contains auxiliary lemmas used in proofs. Let
rang(θ) be the range of a substitution θ. Let o1 ∼= o2 denote
the relation o1 = ρ(o2) for some renaming substitution ρ. ∼=
is an equivalence relation. We shall omit the parentheses in
the application of a substitution to a term and the function
composition operator ◦ in the composition of two substitu-
tions when the omission does not incur any ambiguity.

Lemma A.1. Let ρ be a renaming such that (vars(ρ(a))∪
vars(ρ(φ))) ∩ (vars(b) ∪ vars(ψ)) = ∅. If (ρ(φ))(ρ(a)) and
ψ(b) unify then ρ(a) and b unify.

Proof. Let a′ be ρ(a) and φ′ be ρ(φ). If φ′(a′) and ψ(b)
unify then there is a substitution θ such that θ(φ′(a′)) =
θ(ψ(b)). We have vars(a′) ∩ dom(ψ) = ∅ and rang(ψ) ∩
dom(φ′) = ∅ and vars(b)∩ dom(φ′) = ∅. Hence, θφ′ψ(a′) =
θφ′ψ(b). Therefore, ρ(a) and b unify.

Lemma A.2. Let A and B be two atoms, and ρ1 and ρ2

be two renamings such that

dom(ρ1) = dom(ρ2) ⊇ vars(B) (11)

rang(ρi) ∩ vars(A) = ∅ for i = 1, 2 (12)

Then

(a) A and ρ1B unify iff A and ρ2B unify.

(b) mgu(A, ρ1B) ↑ vars(A) ∼= mgu(A, ρ2B) ↑ vars(A).

(c) mgu(A, ρ1B)ρ1 ↑ dom(ρ1) ∼= mgu(A, ρ2B)ρ2 ↑ dom(ρ2).

Proof. Let

vars(A) = {X1, · · · , Xk}
dom(ρ1) = dom(ρ2) = {V1, · · · , Vl}

ρ1 = {V1/Y1, · · · , Vl/Yl}
ρ2 = {V1/Z1, · · · , Vl/Zl}
ρ3 = {Z1/Y1, · · · , Zl/Yl}
ρ4 = {Y1/Z1, · · · , Yl/Zl}
Y = {Y1, · · · , Yl}
Z = {Z1, · · · , Zl}
V = {V1, · · · , Vl}

We have

ρ1 = ρ3ρ2 ↑ V (13)

ρ2 = ρ4ρ1 ↑ V (14)

Suppose that A and ρ1B unify with the most general unifier

θ1 = {Xi1/xi1 , · · · , Xis/xis , Yj1/yj1 , · · · , Yjt/yjt} (15)

with 1 ≤ i1 ≤ · · · ≤ is ≤ k and 1 ≤ j1 ≤ · · · ≤ jt ≤ l. Define

yh
def
=

{
Yh If h 6∈ {j1, j2, · · · , jt}
yh If h ∈ {j1, j2, · · · , jt} (16)

By Eq. 15-16, we have

θ1ρ1 ↑ V = {V1/y1, · · · , Vl/yl} (17)

θ1ρ3A = θ1A = θ1ρ1B = θ1(ρ3ρ2 ↑ V)B = θ1ρ3ρ2B by
Eq. 11, 12, 13, 15 and 16. So, A and ρ2B unify with θ1ρ3

being one of their unifiers if θ1 = mgu(A, ρ1B).

Suppose A and ρ2B unify with most general unifier

θ2 = {Xu1/xu1 , · · · , Xup/xup , Zv1/zv1 , · · · , Zvq/zvq} (18)

with 1 ≤ u1 ≤ · · · ≤ up ≤ k and 1 ≤ v1 ≤ · · · ≤ vq ≤ l.
Define

zh
def
=

{
Zh If h 6∈ {v1, v2, · · · , vq}
zh If h ∈ {v1, v2, · · · , vq} (19)

By Eq. 18-19, we have

θ2ρ2 ↑ V = {V1/z1, · · · , Vl/zl} (20)

θ2ρ4A = θ2A = θ2ρ2B = θ2(ρ4ρ1 ↑ V)B = θ2ρ4ρ1B by equa-
tions 11-12, 14, and 18-19. So, A and ρ1B unify with θ2ρ4

being one of their unifiers if θ2 = mgu(A, ρ2B). Therefore,
(a) holds.

The following equations results from Eq. 15 and 18.

θ1ρ3 =

 {Xi1/xi1 , · · · , Xis/xis}
∪ {Yjo/yjo | 1 ≤ o ≤ t ∧ Yjo 6∈ Z}
∪ {Z1/y1, · · · , Zl/yl}

 (21)

θ2ρ4 =

 {Xu1/xu1 , · · · , Xup/xup}
∪ {Zvo/zvo | 1 ≤ o ≤ q ∧ Zvo 6∈ Y}
∪ {Y1/z1, · · · , Yl/zl}

 (22)

Since θ2ρ4 (θ1ρ3) is a unifier of A and ρ1B (ρ2B), there is
a substitution ζ1 (ζ2) such that θ2ρ4 = ζ1θ1 (θ1ρ3 = ζ2θ2).
By Eq. 15 and 22 (Eq. 18 and 21), we have

 {Xu1/xu1 , · · · , Xup/xup}
∪ {Zvo/zvo | 1 ≤ o ≤ q ∧ Zvo 6∈ Y}
∪ {Y1/z1, · · · , Yl/zl}

 = (23)

({Xi1/xi1 , · · · , Xis/xis} ∪ {Yj1/yj1 , · · · , Yjt/yjt})ζ1 {Xi1/xi1 , · · · , Xis/xis}
∪ {Yjo/yjo | 1 ≤ o ≤ t ∧ Yjo 6∈ Z}
∪ {Z1/y1, · · · , Zl/yl}

 = (24)

({Xu1/xu1 , · · · , Xup/xup} ∪ {Zv1/zv1 , · · · , Zvq/zvq})ζ2

By Eq. 23 and 24, {Xi1 , · · · , Xis} ⊆ {Xu1 , · · · , Xup} and
{Xu1 , · · · , Xup} ⊆ {Xi1 , · · · , Xis}. So, {Xi1 , · · · , Xis} =
{Xu1 , · · · , Xup}. We have s = p and io = uo for 1 ≤ o ≤ s.
We also have xio = ζ2(xio) and xio = ζ1(xio). So, xio

∼= xio

for 1 ≤ o ≤ s. Therefore, (b) holds.

By Eq. 23,

Yh/zh ∈ ζ1 If h 6∈ {j1, · · · , jt}
zh = ζ1(yh) If h ∈ {j1, · · · , jt}

By Eq. 16, yh = Yh for h 6∈ {j1, · · · , jt} and hence zh =
ζ1(yh) for h 6∈ {j1, · · · , jt}. So, for all 1 ≤ h ≤ l,

zh = ζ1(yh) (25)

It can be proved in a similar way from Eq. 24 and 19 that

yh = ζ2(zh) (26)

By Eq. 17, 20, 25 and 26, θ1ρ1 ↑ V ∼= θ2ρ2 ↑ V. Therefore,
(c) holds.

Corollary A.3. Let A and B be two atoms and ρ be
a renaming such that dom(ρ) ⊇ vars(B). If vars(A) ∩
vars(B) = ∅ and vars(A) ∩ vars(ρB) = ∅ then A and B
unify iff A and ρB unify, and

mgu(A,B) ↑ vars(B) ∼= (mgu(A, ρB) ρ) ↑ vars(B)

Proof. The proof results immediately from lemma A.1.(a)
and (c) by letting ρ2 = ρ and ρ1 be a renaming such that
ρ1X = X for each X ∈ vars(B).

Corollary A.4. Let A and B be two atoms, ρa and ρb

be renamings. If

dom(ρa) ⊇ vars(A)

dom(ρb) ⊇ vars(B)

vars(ρaA) ∩ vars(B) = ∅
vars(ρbB) ∩ vars(A) = ∅

then ρaA and B unify iff A and ρbB unify, and

(mgu(ρaA,B) ρa) ↑ dom(ρa) ∼= mgu(A, ρbB) ↑ vars(A)

Proof. We only prove the if part since the only if part is
dual. Let ρ′b be a renaming such that dom(ρ′b) = dom(ρb),
vars(ρ′bB) ∩ vars(A) = ∅ and vars(ρaA) ∩ vars(ρ′bB) = ∅.

Suppose that A and ρbB unify. By lemma A.1.(a), A and
ρ′bB unify, and mgu(A, ρ′bB) ↑ vars(A) ∼= mgu(A, ρbB) ↑
vars(A) by lemma A.1.(b). By corollary A.3, ρaA and ρ′bB
unify, and

mgu(ρaA, ρ
′
bB) ρa ↑ vars(A) ∼= mgu(A, ρ′bB) ↑ vars(A)

So, mgu(ρaA, ρ
′
bB) ρa ↑ vars(A) ∼= mgu(A, ρbB) ↑ vars(A).

By corollary A.3, ρaA and B unify,

mgu(ρaA,B) ↑ vars(ρaA) ∼= mgu(ρaA, ρ
′
bB) ↑ vars(ρaA)

that implies

mgu(ρaA,B) ρa ↑ vars(A) ∼= mgu(ρaA, ρ
′
bB)ρa ↑ vars(A)

So, mgu(ρaA,B)ρa ↑ vars(A) ∼= mgu(A, ρbB) ↑ vars(A).
It now suffices to prove

mgu(ρaA,B) ρa ↑ dom(ρa) ∼= mgu(ρaA,B) ρa ↑ vars(A)

Let ρ1
a = ρa ↑ vars(A) and ρ2

a = ρa ↑ (dom(ρa)− vars(A)).
We have ρa = ρ1

a ∪ ρ2
a,

mgu(ρaA,B) ρa ↑ dom(ρa)

= mgu((ρ1
a ∪ ρ2

a)A,B) (ρ1
a ∪ ρ2

a) ↑ dom(ρa)
= mgu(ρ1

aA,B)ρ1
a ↑ vars(A) ∪ ρ2

a

and

mgu(ρaA,B)ρa ↑ vars(A)

= mgu(A(ρ1
a ∪ ρ2

a), B)(ρ1
a ∪ ρ2

a) ↑ vars(A)
= mgu(ρ1

aA,B)ρ1
a ↑ vars(A)

We also have rang(mgu(ρ1
aA,B)ρ1

a ↑ vars(A))∩dom(ρ2
a) =

∅ and dom(ρ2
a) ∩ vars(A) = ∅. So,

(mgu(ρaA,B)ρa ↑ vars(A))ρ2
a

= (mgu(ρ1
aA,B)ρ1

a ↑ vars(A))ρ2
a

= mgu(ρ1
aA,B)ρ1

a ↑ vars(A) ∪ ρ2
a

= mgu(ρaA,B)ρa ↑ dom(ρa)

Therefore, mgu(ρaA,B)ρa ↑ dom(ρa) ∼= mgu(ρaA,B)ρa ↑
vars(A) since ρ2

a is a renaming.

Lemma A.5. Let θ1 and θ2 be two substitutions and V a
set of variables.

θ2θ1 ↑ V = θ2(θ1 ↑ V) ↑ V

Proof. Let (X/t) ∈ θ2θ1 ↑ V. Then X ∈ V. Either X ∈
dom(θ1) or X 6∈ dom(θ1) ∧ X ∈ dom(θ2). If X ∈ dom(θ1)
then there is t1 such that ((X/t1) ∈ θ1 ∧ t = θ2(t1)). Since
X ∈ V, (X/t1) ∈ θ1 ↑ V and hence X/θ2(t1) = (X/t) ∈
θ2(θ1 ↑ V) ↑ V. Otherwise, X ∈ dom(θ2), (X/t) ∈ θ2 and
(X/t) ∈ θ2 (θ1 ↑ V) ↑ V.

Let (X/t) ∈ θ2(θ1 ↑ V) ↑ V. Then X ∈ V. Either X ∈
dom(θ1 ↑ V) or X 6∈ θ1 ↑ V∧X ∈ dom(θ2). If X ∈ dom(θ1 ↑
V) then there is t2 such that ((X/t2) ∈ θ1 ↑ V ∧ t = θ2(t2)).
(X/t2) ∈ θ1 and (X/t) ∈ θ2θ1. So, (X/t) ∈ θ2θ1 ↑ V.
Otherwise, (X/t) ∈ θ2 and X 6∈ dom(θ1) ∩ V. So, (X/t) ∈
θ2θ1 ↑ V.

A.2 PROOF OF LEMMA 3.1
The proof has two parts. The first part corresponds to
procedure-entry and the second part to procedure-exit.

Consider procedure entry first. Let τq(ρC(Aq)G) be a goal
in SLD where Aq is an atom in the body of a clause C and ρC

the renaming substitution applied to C, VC = vars(C) and
(qδ′, σq)S the current VSLD state. Let C′ = (H ← B) be
an arbitrary clause with p = entry(C′) and VC′ = vars(C′).
We prove that if σq ↑ VC

∼= τqρC ↑ VC then τp(ρC′(B)τq(G))

is derived from τq(ρC(Aq)G) using clause C′ iff (qδ′, σq)S
P
;

(pqδ′, σp)(qδ′, σq)S and σp ↑ VC′ ∼= τpρC′ ↑ VC′ where ρC′

is the renaming applied to C′ in SLD.

Let σq ↑ VC
∼= τqρC ↑ VC . Then there is a renaming ζ such

that

ζ(σq ↑ VC) = τqρC ↑ VC (27)

We have that τp(ρC′(B)τq(G)) is derived from τq(ρC(Aq)G)

using clause C′ iff (qδ′, σq)S
P
; (pqδ′, σp)(qδ′, σq)S by corol-

lary A.4. Suppose that τp(ρC′(B)τq(G)) is derived from
τq(ρC(Aq)G) using clause C′. Then

τqρCAq

= (τqρC ↑ VC)Aq (˙.˙ vars(Aq) ⊆ VC)
= (ζ(σq ↑ VC))Aq (˙.˙ Eq. 27)
= ζσqAq (˙.˙ vars(Aq) ⊆ VC) (28)

and

τpρC′ ↑ VC′

= mgu(ρC′H, τqρCAq) ρC′ ↑ VC′

= mgu(ρC′H, ζσqAq) ρC′ ↑ VC′ (˙.˙ Eq. 28) (29)

Let ζ be the inverse of ζ and ψ be a renaming.

σp ↑ VC′

= mgu(H,ψσqAq) ↑ VC′

= mgu(H,ψζζσqAq) ↑ VC′ (˙.˙ ζζ is identity)

= mgu(H, (ψζ)(ζσqAq)) ↑ VC′

= mgu(H, (ψζ)(ζσqAq)) ↑ vars(H)
(30)

σp ↑ VC′ ∼= τpρC′ ↑ VC′ by corollary A.4 and Eq. 29-30.
This completes the first part of the proof.

We now consider procedure exit. Let r = exit(C′), the
current VSLD state be (rδ′′pqδ′, σr)(qδ′, σq)S and the cur-

rent goal in SLD be τr(G). Let (rδ′′pqδ′, σr)(qδ′, σq)S
P
;

(q+rδ′′pqδ′, σq+)S. We prove that if σr ↑ VC′ ∼= τrρC′ ↑ VC′

then σq+ ↑ VC
∼= τrρC ↑ VC . Let ζ′ be a renaming such

that σr ↑ VC′ = ζ′(τrρC′ ↑ VC′) and ζ′ be the inverse of ζ′.
σr ↑ VC′ = ζ′τrρC′ ↑ VC′ . Let φ′ be a renaming and θ be
the computed answer to τp(ρC′(B)). We have, τr = θτp and

φ′σrH
= φ′ζ′τrρC′H
= φ′ζ′θητqρC′H
= φ′ζ′θηρC′H (˙.˙ vars(ρC′C′) ∩ vars(ρCC) = ∅)
= φ′ζ′θητqρCAq

(31)
where η = mgu(ρC′H, τqρCAq). By Eq. 27,

σq ↑ VC = ζτqρC ↑ VC (32)

So,

σqAq

= (ζτqρC ↑ VC)Aq (˙.˙ Eq. 32)

= ζτqρCAq (˙.˙ vars(Aq) ⊆ VC) (33)

Therefore, letting A = τqρCAq,

σq+ ↑ VC

= mgu(ζA, φ′ζ′θηA) ζτqρC ↑ VC

= (mgu(ζA, φ′ζ′θηA)ζ ↑ vars(A))τqρC ↑ VC (˙.˙ A.5)
∼= (mgu(A,φ′ζ′θηA) ↑ vars(A))τqρC ↑ VC (˙.˙ A.3)
= mgu(A,φ′ζ′θηA)τqρC ↑ VC (˙.˙ A.5)
= φ′ζ′θητqρC ↑ VC
∼= θητqρC ↑ VC

= τrρC ↑ VC

A.3 PROOF OF LEMMA 4.1
We first characterize [[P]] as the fixed-point of the following
function.

FP (X)
def
=

⋃
0≤≤2

F 
P (X) (34)

F 0
P (X)

def
= {(p, θ)$ | p ∈ N 0 ∧ θ ∈ Θp} (35)

F 1
P (X)

def
=(pqδ′, σ)(qδ′, θ)S

(p, q) ∈ E1 ∧ (qδ′, θ)S ∈ X
∧

σ = uf (Aq, θ,Hp, ε) 6= fail

(36)

F 2
P (X)

def
=(pqδ′p δ′′, σ)S

(p, q) ∈ E2

∧
(qδ′p δ′′, θ)(p δ′′, ω)S ∈ X

∧
σ = uf (Hq, θ, Ap , ω) 6= fail

 (37)

The domain D of FP is ℘(S). < D,⊆> is a complete lattice
and FP is monotonic on < D,⊆>. It is easy to see [[P]] =
lfpFP .

It is now sufficient to prove that FP ↑ k ⊆ γ](F]
P ↑ k) for

any ordinal k. The proof is done by transfinite induction.

Basis. FP ↑ 0 = ∅ = γ](⊥]) = γ](F]
P ↑ 0).

Induction. Let FP ↑ k′ ⊆ γ](F]
P ↑ k

′) for any k′ < k. If

k is a limit ordinal then F]
P ↑ k = t]{F]

P ↑ k
′ | k′ < k}.

Therefore, γ](F]
P ↑ k) ⊇ γ](F]

P ↑ k
′) for any k′ < k by Eq. 2.

By the induction hypothesis, γ](F]
P ↑ k) ⊇ FP ↑ k′ for any

k′ < k. So, FP ↑ k ⊆ γ](F]
P ↑ k).

Let k not be a limit ordinal. Let S′ ∈ FP ↑ k. There is
0 ≤  ≤ 2 such that S′ ∈ F 

P (FP ↑ (k − 1)) by Eq. 34 and
Eq. 2.

Let  = 0. By Eq. 35, S′ = (p, θ)$ and θ ∈ Θp. So, by Eq. 3

and Eq. 2, S′ ∈ γ](F]
P ↑ k).

Let  = 1. By Eq. 36, S′ = (pqδ′, σ)(qδ′, θ)S such that
(p, q) ∈ E1, (qδ′, θ)S ∈ FP ↑ (k−1) and σ = uf (Aq, θ,Hp, ε) 6=
fail. We have (qδ′, θ)S ∈ γ](F]

P ↑ (k − 1)) by the induction

hypothesis. S′ ∈ γ](F]
P ↑ k) by Eq. 4 and Eq. 2 and the

monotonicity of F]
P .

Let  = 2. By Eq. 37, S′ = (pqδ′p δ′′, σ)S and there is an ω
such that (p, q) ∈ E2,

(qδ′p δ′′, θ)(p δ′′, ω)S ∈ FP ↑ (k − 1)

σ = uf (Hq, θ, Ap , ω) 6= fail

(qδ′p δ′′, θ)(p δ′′, ω)S ∈ γ](F]
P ↑ (k − 1)) by the induction

hypothesis. Therefore, S′ ∈ γ](F]
P ↑ k) by Eq. 5 and Eq. 2

and the monotonicity of F]
P .

Therefore, FP ↑ k ⊆ γ](F]
P ↑ k) for any ordinal k.

A.4 PROOF OF THEOREM 5.1
(C4) implies that F [

P is monotonic and therefore lfpF [
P ex-

ists. It suffices to prove that, for any X[∈ D[, F]
P ◦

γ[(X[) v] γ[◦ F [
P (X[).

Let σ ∈ [F]
P ◦ γ

[(X[)](p)(δ). We need to prove

σ ∈ [γ[◦ F [
P (X[)](p)(δ)

We have p ∈ N  for some 0 ≤  ≤ 2.

Let  = 0. By Eq. 3, σ ∈ γVp(θ[
p) and δ = p. By Eq. 8,

σ ∈ γVp([F [
P (X[)](p)(β(δ))). Thus, σ ∈ [γ[◦ F [

P (X[)](p)(δ)
by Eq. 7.

Let  = 1. By Eq. 4, there is q ∈ N and δ′ ∈ ∆ such
that δ = pqδ′ and σ ∈ uf](Aq, [γ

[(X[)](q)(qδ′), Hp, {ε}). By
Eq. 4 and Eq. 7, C3 and the monotonicity of function uf]

in its fourth argument,

σ ∈ uf](Aq, γVq (X[(q)(β(qδ′))), Hp, γVp(εVp))

⊆ γVp ◦ uf [
Vq,Vp

(Aq, X
[(q)(β(qδ′)), Hp, εVp)

So, by Eq. 7 and Eq. 9 and the monotonicity of γVp ,

σ ∈ γVp([F [
P (X[)](p)(β(pqδ′))

⊆ γVp([F [
P (X[)](p)(β(pqδ′))

= [γ[◦ F [
P (X[)](p)(pqδ′)

= [γ[◦ F [
P (X[)](p)(δ)

Let  = 2. There are q ∈ N and δ′, δ′′ ∈ ∆ such that
δ = pqδ′p δ′′ and

σ ∈ uf](Hq, [γ
[(X[)](q)(qδ′p δ′′), Ap , [γ

[(X[)](p)(p δ′′))

by Eq. 5. We have β(p δ′′) � β(qδ′p δ′′). By Eq. 7 and
Eq. 10,

σ ∈ uf](Hq, γVq (X[(q)(β(qδ′p δ′′))),

Ap , γVp (X[(p)(β(p δ′′))))

⊆ γVp ◦ uf [
Vq,Vp

(Hq, X
[(q)(β(qδ′p δ′′)),

Ap , X
[(p)(β(p δ′′)))

= γVp ◦ uf [
Vq,Vp

(Hq, X
[(q)(β(qδ′p δ′′)),

Ap , X
[(p)(β(p δ′′)))

= γVp([F [
P (X[)](p)(β(δ)))

= [γ[◦ F [
P (X[)](p)(β(δ))

since Vp = Vp

