
Boolean Functions for Pair Sharing Analysis

Lunjin Lu and Xuan Li

Oakland University
Rochester, MI 48309, USA
{l2lu,x2li}@oakland.edu

Abstract. This paper presents an encoding scheme for pair sharing.
Pair sharing relations and abstract operations required for a pair shar-
ing analysis are encoded as Boolean functions and operations on Boolean
functions. Preliminary experimental results with a prototype implemen-
tation are presented.

1 Introduction

Sharing analysis is useful in specialising, optimising, compiling and parallelising
logic programs and thus sharing analysis is an important topic of both abstract
interpretation and logic programming. Sharing domains track possible sharing
between program variables since optimisations and transformations can typically
only be applied in the absence of sharing.

Sharing analyses make use of two abstract domains: set sharing [17] and pair
sharing [24]. Pair sharing captures sharing and linearity while set sharing cap-
tures sharing and groundness dependencies. Both set and pair sharing domains
have been widely studied. Most applications require pair sharing though this
information can be extracted from set sharing. Pair sharing has much simpler
domain structure and abstract operations, which renders a possibility for an ef-
ficient implementation of pair sharing. This paper explores this possibility. An
encoding scheme is presented that encodes pair sharing relations in Boolean func-
tions and abstract operations in operations on Boolean functions. To the best
of our knowledge, this is the first encoding of pair sharing relations in terms of
Boolean functions.

Encoding pair sharing in Boolean functions makes it easy to compose a pair
sharing analysis with other analyses. Many analyses for logic programs and con-
straint logic programs use Boolean functions to express dependencies between
program variables. In groundness analysis [11, 22, 15, 8, 1, 19, 14, 6], the formula
x ∧ (y ↔ z) describes a program state in which x is bound to a ground term,
and there is a dependency between y and z such that whenever y becomes
ground so does z and vice versa. Boolean functions have also been used to ex-
press other properties such as definiteness [3], finiteness [2], termination [13] and
set sharing [7]. Using Boolean functions as a uniform underlying representation
for pair sharing and those other properties provides a leverage for composing
a pair sharing analysis with those analyses using a standard domain compo-
sition technique [12] such as reduced product and functional dependency [10].

Encoding pair sharing in Boolean functions also enables implementors to benefit
from efficient data structures for Boolean functions such as binary decision dia-
grams (BDD in short) [4] that have been proven to have excellent performance
in practice.

The remainder of the paper is organised as follows. Section 2 contains basic
concepts in logic programming, abstract interpretation and Boolean functions.
Section 3 recalls the pair sharing domain and presents an encoding of pair shar-
ing relations in Boolean functions. Section 4 recalls operations on pair sharing
relations and encode these operations in operations on Boolean functions. The
correctness of the encoding is proved. Section 5 concludes with a discussion on
related work.

2 Preliminaries

This section recalls some basic concepts in logic programming and abstract in-
terpretation. The reader is referred to [20] and [9] for more detailed exposition.

Assume that there are a set Σ of function symbols and a denumerable set
V of variables. Let V(o) be the set of variables in the syntactic object o. Let
V ⊆ V. Term(V) denotes the set of terms that can be constructed from Σ and
V . An equation over V is a formula of the form t1 = t2 with t1, t2 ∈ Term(V).
Let EqnV denote the set of all equations over V and SubV the set of substitutions
θ such that V(θ) ⊆ V . Given E ∈ ℘(EqnV), mgu : ℘(EqnV) 7→ SubV ∪ {fail}
returns either a most general unifier for E if E is unifiable or fail otherwise. For
brevity, let mgu(t1, t2) = mgu({t1 = t2}). We will sometimes treat a substitution
as a set of equations. The function composition operation ◦ is defined as f ◦
g = λx.f(g(x)). Let P be the program to analyse and VP be the set of the
variables occurring in P . We will use a fixed renaming substitution Ψ such that
Ψ(VP)∩VP = ∅. Ψ , called a tagging substitution in [23], is used to rename both
concrete and abstract objects over VP . Let V‡

P = VP ∪ Ψ(VP).
Let p(s) be a call. We say that the program point left to p(s) is the call-site

of p(s) and that the program point right to p(s) is the return-site of p(s). Let
C be a clause. The leftmost program point associated with C is called the entry
point of C and the rightmost program point associated with C the exit point of
C.

Let 〈C,vC ,tC ,uC ,>C ,⊥C〉 be a complete lattice and S ⊆ C. S is a Moore
family iff >C ∈ S and s1 uC s2 ∈ S for any s1, s2 ∈ S. Let 〈A,vA〉 be a poset. A
function γ : A 7→ C is a concretization function iff γ is a monotone and γ(A) is a
Moore family. A concretization function from A to C induces a Galois connection
between A and C [9]. The induced adjoint, called an abstraction function, is
α(c) = uA{a ∈ A | c vC γ(a)}. In an analysis by abstract interpretation, there
are two semantics: concrete and abstract semantics. The concrete semantics on a
concrete domain 〈C,vC〉 is defined in terms of a number of concrete operations C
on C. The abstract semantics on an abstract domain 〈A,vA〉 is usually derived
from the concrete semantics such that there is an abstract operation A on A
corresponding to each concrete operation C on C. The correctness of the analysis

is guaranteed by requiring each abstract operation A safely approximates its
corresponding concrete operation C with respect to a concretization function γ
from A to C, i.e., C(γ(a1), · · · , γ(ak)) vC γ(A(a1, · · · , ak)) for all a1, · · · , ak ∈ A.

3 Encoding Sharing Relations

This section first recalls the pair sharing domain and then presents an encoding
of pair sharing relations in Boolean functions. The benefits of express pair shar-
ing relations in Boolean functions are twofold. Firstly, integration of pair shar-
ing analysis with groundness analysis [11, 22, 15, 8, 1, 19, 14, 6], set sharing anal-
ysis [7], definiteness analysis [3] and finiteness [2] is facilitated because Boolean
functions have been used to encode those properties. Secondly, encoding pair
sharing relations in Boolean functions make available to implementator efficient
data structures such as BDD.

3.1 Abstract Domain

A term t is linear iff it does not contain multiple occurrences of any variable. Let
the predicate linear(t) hold iff t is linear. Two terms s and t share a variable iff
V(s) ∩V(t) 6= ∅. Two variables x and y share under a substitution θ if θ(s) and
θ(t) share. The possible sharing and linearity of variables under a substitution θ
over a set V of variables are represented as a symmetric relation π ⊆ V ×V [24].
We follow [8] to parameterise abstract domains with finite sets of variables. Let
PSV be the set of symmetric relations over V . The abstract domain for sharing
and linearity, dubbed pair sharing, is 〈PSV ,⊆, ∅, V 2,∩,∪〉 which is a complete
lattice. A Galois connection between 〈PSV ,⊆〉 and 〈℘(Sub),⊆〉 is obtained as
follows [5].

αV : ℘(Sub) 7→ PSV

γV : PSV 7→ ℘(Sub)

αV (Θ) =
⋃
θ∈Θ

〈x, y〉 ∈ V × V
(x 6= y ∧V(θ(x)) ∩V(θ(y)) 6= ∅)

∨
(x = y ∧ ¬linear(θ(x)))


γV (π) =

⋃
{Θ ⊆ Sub | αV (Θ) ⊆ π}

Example 1. Let V = {x1, x2, x3}, π = {〈x1, x2〉, 〈x2, x1〉}, θ0 = {x1 7→ g(u), x2 7→
h(v)}, θ1 = {x1 7→ f(u, v), x2 7→ h(v, w)} and θ2 = {x2 7→ f(x3, u)}. We
have θ0 ∈ γV (π) since αV ({θ0}) = ∅ ⊆ π; and θ1 ∈ γV (π) since αV ({θ1}) =
{〈x1, x2〉, 〈x2, x1〉} = π. Also, αV ({θ2}) = {〈x2, x3〉, 〈x3, x2〉} 6⊆ π, hence, θ2 6∈
γV (π).

We will write (u ↔ v) ∈ π to stand for {〈u, v〉, 〈v, u〉} ⊆ π. If (u ↔ v) ∈ π

then (u ↔ v) is called a link in π. We will also use u
π↔ v to abbreviate (u ↔ v) ∈

π and u
π⇔ v to indicate (u = v∨u

π↔ v). Define X⊗Y = X×Y ∪Y ×X where
X × Y is the Cartesian product of X and Y . X ⊗ Y is used to generate a link

between each variable of X and each variable of Y . For instance {x} ⊗ {y, z} =
{x ↔ y, x ↔ z}.

In a pair sharing analysis, two instances of PSV will be used: PSVP
and

PSV‡
P
. PSVP

contains sharing relations that are associated with textual points
in the program while the sharing relations in PSV‡

P
are used as intermediate

results during the propagation of sharing across procedure boundaries.

3.2 Encoding Sharing Relations

We now present a scheme that encodes pair sharing relations in Boolean func-
tions. Since the class of Boolean functions is isomorphic to that of Boolean
formulae modulo logical equivalence, we will use Boolean functions and Boolean
formulae interchangeably.

Two variables in a sharing pair are encoded using disjoint sets of Boolean
variables. We first consider the encoding of the left component of the pair. Let
b be a Boolean variable. Both b and ¬b are Boolean literals. Let k = dlog2 |VP |e
where d·e is the ceiling function. Program variables in VP are encoded as min-
terms of k+1 Boolean variables b0, b1, · · · , bk with b0 always occurring positively.
Min-terms for different variables are different. Let L(x) be the code of the pro-
gram variable x as the left component of a sharing pair.

Example 2. For instance, let VP = {x1, x2, x3}. Then k = 2 and the variables in
VP may be encoded as follows: L(x1) = b0 ∧ b1 ∧ b2, L(x2) = b0 ∧ b1 ∧ b2 and
L(x3) = b0 ∧ b1 ∧ b2 where b1 and b2 are Boolean variables.

The code of a tagged program variable Ψ(x) is obtained from that of x by
changing b0 into b0. Thus, the code of Ψ(x) is the same as that of x except
that b0 occurs positively in the code of x and negatively in the code of Ψ(x).
L(Ψ(x)) = L(x)[b0/b0] where L(x)[b0/b0] results from replacing b0 in L(x) with
b0. Note that L(x) = L(Ψ(x))[b0/b0]. Continuing with example 2, we obtain
L(Ψ(x2)) = L(x2)[b0/b0] = b0 ∧ b1 ∧ b2.

The right component of a sharing pair is encoded as a Boolean formula
over c0, c1, · · · , ck and is defined R(x) = L(x)[b0/c0 · · · bk/ck] where {c0, · · · , ck}
is disjoint with {b0, · · · , bk}. Continuing with example 2, we have R(Ψ(x2)) =
L(Ψ(x2))[b0/c0, b1/c1, b2/c2] = (b0 ∧ b1 ∧ b2)[b0/c0, b1/c1, b2/c2] = c0 ∧ c1 ∧ c2.
Let π be a sharing relation and 〈x, y〉 ∈ π. The code of 〈x, y〉 is L(x)∧R(y). The
code of a sharing relation π is the disjunction of the codes of the pairs contained
in π: E(π) =

∨
〈x,y〉∈π L(x) ∧R(y).

Example 3. Continuing example 2. Let π = {〈x1, Ψ(x3)〉, 〈Ψ(x3), x1〉, 〈x2, x2〉}.
E(π) = b0∧b1∧b2∧c0∧c1∧c2 ∨ b0∧b1∧b2∧c0∧c1∧c2 ∨ b0∧b1∧b2∧c0∧c1∧c2.

Since the code L(x) ∧ R(y) of a pair 〈x, y〉 is a min-term of Boolean vari-
ables b0, · · · , bk, c0, · · · , ck, it has a unique model denoted by M(x, y). Con-
tinuing example 2, R(x2) = c0 ∧ c1 ∧ c2 and the min-term L(x1) ∧ R(x2) =
b0 ∧ b1 ∧ b2 ∧ c0 ∧ c1 ∧ c2 has the unique model M(x, y) = {b0 7→ true, b1 7→
false, b2 7→ false, c0 7→ true, c1 7→ false, c2 7→ true}.

Proposition 1. 〈x, y〉 ∈ π iff M(x, y) |= E(π) for any sharing relation π.

An immediate corollary of proposition 1 is that no two different sharing relations
have the same code, and hence a sharing relation can be extracted from its code.

4 Encoding Abstract Operations

This section first recalls abstract operations on pair sharing relations and then
encodes these abstract operations in operations on Boolean functions.

4.1 Abstract Operations

We first recall abstract operations that a sharing analysis uses, beginning with
simpler ones. The constant ∅ - the bottom element of 〈PSVP

,⊆〉 is the initial
sharing relation associated with each program point when the least fixpoint al-
gorithm commences. It also describes the sharing relation in the identity substi-
tution. The least upper bound operation ∪ on PSVP

is used to combine sharing
relations that come to a program point from different control-flow paths. The
equality test operation = on PSVP

is used to check if sharing information asso-
ciated with a program point need be propagated to other program points along
control-flow.

The abstract unification operation amgu : Term(V‡
P)× Term(V‡

P)× PSV‡
P
7→

PSV‡
P

unifies two terms s and t in a sharing relation π and returns a sharing
relation π′ such that mgu(θ(s), θ(t))◦θ is described by π′ whenever θ is described
by π. The following predicate χ : Term(V‡

P)×PSV‡
P
7→ {true, false} will be used

in the abstract unification operation: χ(t, π) = ¬linear(t) ∨ ((V(t))2 ∩ π 6= ∅).
The predicate χ(t, π) holds if θ(t) is non-linear in π for any θ ∈ γ(π) [5]. The
formula χ(t, π) = true is abbreviated as χ(t, π). The following definition of amgu
is derived from one given in [18].

amgu(s, t, π) ={〈x, y〉 ∈ π | x 6∈ V(s) ∧ y 6∈ V(s)} if V(t) = ∅
{〈x, y〉 ∈ π | x 6∈ V(t) ∧ y 6∈ V(t)} if V(s) = ∅
π ∪ link(s, t, π) ∪ (χ(t, π) � link(s, s, π)) ∪ (χ(s, π) � link(t, t, π)) otherwise

where link : Term(V‡
P) × Term(V‡

P) × PSV‡
P
7→ PSV‡

P
is defined link(s, t, π) =

{u ↔ v | x ∈ V(s) ∧ x
π⇔ u ∧ v

π⇔ y ∧ y ∈ V(t)} and � : {false, true} × PSV‡
P
7→

PSV‡
P

is defined B � π = (if B then π else ∅) . Observe that if s, t ∈ Term(VP)
and π ∈ PSVP

then amgu(s, t, π) ∈ PSVP
.

Example 4. Let s = Ψ(x3), t = [x1|x3] and π = {Ψ(x2) ↔ x1, Ψ(x2) ↔
x2, Ψ(x3) ↔ x1, Ψ(x3) ↔ x2, Ψ(x2) ↔ Ψ(x3)}. We have V(t) = {x1, x3} 6= ∅,
V(s) = {Ψ(x3)} 6= ∅, χ(s, π) = false, χ(t, π) = false. So,

amgu(s, t, π) = π ∪ link(s, t, π)

We have

π′ = link(s, t, π) =


x1 ↔ x1, x1 ↔ x2, x2 ↔ x3, x3 ↔ x1
Ψ(x2) ↔ x1, Ψ(x2) ↔ x2, Ψ(x2) ↔ x3,

Ψ(x2) ↔ Ψ(x2), Ψ(x2) ↔ Ψ(x3),
Ψ(x3) ↔ x1, Ψ(x3) ↔ x2, Ψ(x3) ↔ x3, Ψ(x3) ↔ Ψ(x3),


Note that π ⊆ π′. Thus, amgu(s, t, π) = π′.

Abstract procedure-entry operation entry : Term(VP)×PSVP
×Term(VP) 7→

PSVP
propagates sharing information at a call-site to the entry point of a

clause. Let π be the sharing relation at the call-site of a call p(s) and C ′ a
clause with head p(t). The sharing relation at the entry point of C ′ is obtained
by entry(s, π, t). Abstract procedure-exit operation exit : Term(VP) × PSVP

×
Term(VP)× PSVP

7→ PSVP
propagates sharing information at the exit point of

a clause to the return-site of a call. Let σ be the sharing relation at the call-site
of a call p(t) and C ′ a clause with head p(s) and π be sharing relation at the
exit point of C ′. The sharing relation at the return-site of p(t) is obtained by
exit(s, π, t, σ).

We first introduce two auxiliary operations before giving definitions for entry
and exit . The tagging operation Ψ : PSVP

7→ PSV‡
P

tags each variable in each
pair in its argument: Ψ(π) = {〈Ψ(x), Ψ(y)〉 | 〈x, y〉 ∈ π}. The tagging operation
is used as the first step in both entry and exit . The projection operation proj :
PSV‡

P
7→ PSVP

removes from its argument all the sharing links incident to
variables outside VP : proj (π) = π ∩ (VP ×VP). The projection operation is used
as the last step in both entry and exit . The following definitions are adapted
from [21]

entry(s, π, t) = proj ◦ amgu(mgu(Ψ(s), t), Ψ(π))
exit(s, π, t, σ) = proj ◦ amgu(mgu(Ψ(s), t), Ψ(π) ∪ σ)

where amgu : ℘(EqnV‡
P
)× PSV‡

P
7→ PSV‡

P
is by amgu(∅, π) = π and amgu({s =

t} ∪ E, π) = amgu(E, amgu(s, t, π)).1

Example 5. Let VP = {x1, x2, x3}, s0 = p(x2, x3) and t0 = p([x1|x2], [x1|x3])
and π0 = {x2 ↔ x3}. Then Ψ(s0) = p(Ψ(x2), Ψ(x3)), mgu(Ψ(s0), t0) = {Ψ(x2) =
[x1|x2], Ψ(x3) = [x1|x3]} and Ψ(π0) = {Ψ(x2) ↔ Ψ(x3)}. So,

entry(s0, π0, t0)
= proj ◦ amgu({Ψ(x2) = [x1|x2], Ψ(x3) = [x1|x3]}, {Ψ(x2) ↔ Ψ(x3)})
= proj ◦ amgu(Ψ(x3), [x1|x3], π1)

where

π1 = amgu(Ψ(x2), [x1|x2], {Ψ(x2) ↔ Ψ(x3)}))

=
{

(Ψ(x2) ↔ x1), (Ψ(x2) ↔ x2),
(Ψ(x3) ↔ x1), (Ψ(x3) ↔ x2), (Ψ(x2) ↔ Ψ(x3))

}
1 The operations entry and exit are applied only when mgu(Ψ(s), t) 6= fail .

and π1 is equal to π in example 4. By example 4, entry(s0, π0, t0) = proj (π′)
with π′ given therein. Therefore, entry(s0, π0, t0) = {x1 ↔ x1, x1 ↔ x2, x2 ↔
x3, x3 ↔ x1}.

4.2 Encoding Abstract Operations

The code of an operation O is denoted O] which is an operation over Boolean
functions.O] is a correct code ofO iff E◦O(π1, · · · , πm) = O](E(π1), · · · , E(πm)).

The lattice operations over PSV have straightforward codes: ∅] = false,
∪] = ∨ and ∩] = ∧ and =] is ⇔. The remainder of this section constructs codes
for other operations commencing with simpler ones. Let f = E(π).

E(χ(t, π)) = E(¬linear(t) ∨ ((V(t)2 ∩ π) 6= ∅))
= ¬linear(t) ∨ (E(V(t)2 ∩ π) 6⇔ false)

= ¬linear(t) ∨ (E(V(t)2) ∧ E(π) 6⇔ false)

= ¬linear(t) ∨ (E(V(t)2) ∧ f 6⇔ false)

Thus, χ](t, f) = linear(t) ∨ (E(V(t)2) ∧ f) 6⇔ false) is a correct code of χ. The
code ⊗] of ⊗ is X⊗]Y = E(X⊗Y) = (

∨
u∈X,v∈Y L(u)∧R(v))∨(

∨
u∈Y,v∈X L(u)∧

R(v)).
Now consider link(s, t, π). By rewriting, link(s, t, π) = σ ∪ (π 1 σ) ∪ (σ 1

π) ∪ (π 1 σ 1 π) where σ = V(s) ⊗V(t) and π1 1 π2 = {〈u, v〉 | ∃w.(〈u, w〉 ∈
π1 ∧ 〈w, v〉 ∈ π2)}. Observe that 1 is associative. Encoding link reduces to
encoding 1 since ∪] = ∨. Let {d0, · · · , dk} be disjoint with {b0, · · · , bk} and
{c0, · · · , ck}. Define

f 1] g = ∃d0. · · · ∃dk.(f [c0/d0 · · · ck/dk] ∧ g[b0/d0 · · · bk/dk])

It can be readily proved that 1] is associative. We now prove that 1] is a correct
code of 1.

Lemma 1. For any π1, π2 ∈ PSV where V ∈ {VP ,V‡
P }, E(π1 1 π2) = E(π1) 1]

E(π2).

The following lemma provides a correct code of link .

Lemma 2. For any s, t ∈ Term(V) and any π ∈ PSV where V ∈ {VP ,V‡
P },

link](s, t, f) =
{

let g = V(s)⊗] V(t)
in g ∨ (f 1] g) ∨ (g 1] f) ∨ (f 1] g 1] f)

Example 6. Let VP = {x1, x2}, s = Ψ(x1), t = h(x1, x2) and π = (Ψ(x1) ↔
Ψ(x1)). Let L(x1) = b0∧ b1 and L(x2) = b0∧ b1 and f = E(π) = b0∧ b1∧ c0∧ c1.
Then link](s, t, f) = g ∨ (f 1] g) ∨ (g 1] f) ∨ (f 1] g 1] f) where g =

V(s)⊗] V(t) = b0∧b1∧c0∧c1∨b0∧b1∧c0∧c1∨b0∧b1∧c0∧c1∨b0∧b1∧c0∧c1.
We obtain f 1] g as follows.

f 1] g = ∃d0.∃d1.

(
b0 ∧ b1 ∧ d0 ∧ d1 ∧

(
d0 ∧ d1 ∧ c0 ∧ c1 ∨ d0 ∧ d1 ∧ c0 ∧ c1

∨ d0 ∧ d1 ∧ c0 ∧ c1 ∨ d0 ∧ d1 ∧ c0 ∧ c1

))
= b0 ∧ b1 ∧ c0 ∧ c1 ∨ b0 ∧ b1 ∧ c0 ∧ c1

Similarly, g 1] f = b0∧b1∧c0∧c1 ∨ b0∧b1∧c0∧c1 and f 1] g 1] f = false. So,
link](s, t, f) = b0∧b1∧c0∧c1 ∨ b0∧b1∧c0∧c1 ∨ b0∧b1∧c0∧c1 ∨ b0∧b1∧c0∧c1.

The code of the tagging operation Ψ simply changes b0 in its argument into
b0 and c0 into c0: Ψ](f) = f [b0/b0, c0/c0]. The code of the projection operation
proj falsifies min-terms with a negative occurrence of b0 or c0 in its argument:
proj](f) = b0∧ c0∧f . The correctness of Ψ] and proj] follows immediately from
the definitions for Ψ , proj and E . Observe that B ∧ E(π) = E(B � π) for any
sharing relation π, implying that B �] f = B ∧ f is a correct code of �. The
following theorem provides correct codes of the abstract operations amgu, entry
and exit .

Theorem 1. For any s′, t′ ∈ Term(V‡
P), any s, t ∈ Term(VP), any code h of a

sharing relation in PSV‡
P
, any codes f, g of sharing relations in PSVP

,

amgu](s′, t′, h) =
h ∧ ((V‡

P \V(s′))⊗] (V‡
P \V(s′))) if V(t′) = ∅

h ∧ ((V‡
P \V(t′))⊗] (V‡

P \V(t′))) if V(s′) = ∅
h ∨ link](s′, t′, h) ∨ (χ](t′, h) ∧ link](s′, s′, h)) ∨ (χ](s′, h) ∧ link](t′, t′, h))

otherwise

entry](s, f, t) = proj] ◦ amgu](mgu(Ψ(s), t), Ψ](f))
exit](s, f, t, g) = proj] ◦ amgu](mgu(Ψ(s), t), Ψ](f) ∨ g)

where amgu](∅, f) = f and amgu]({s = t} ∪ E, f) = amgu](E, amgu](s, t, f)).

Example 7. Continue with example 6. We have χ](s, f) = true, χ](t, f) = false.
So, amgu](s, t, f) = f ∨ link](s, t, f) ∨ link](t, t, f). link(s, t, f) is calculated in
example 6. Omitting details, we obtain link](t, t, f) = (b0 ∧ b1 ∧ c0 ∧ c1) ∨ (b0 ∧
b1 ∧ c0 ∧ c1) ∨ (b0 ∧ b1 ∧ c0 ∧ c1) ∨ (b0 ∧ b1 ∧ c0 ∧ c1) ∨ (b0 ∧ b1 ∧ c0 ∧ c1). Thus,

amgu](s, t, h) =

 b0 ∧ b1 ∧ c0 ∧ c1 ∨ b0 ∧ b1 ∧ c0 ∧ c1 ∨ b0 ∧ b1 ∧ c0 ∧ c1

∨ b0 ∧ b1 ∧ c0 ∧ c1) ∨ b0 ∧ b1 ∧ c0 ∧ c1 ∨ b0 ∧ b1 ∧ c0 ∧ c1

∨ b0 ∧ b1 ∧ c0 ∧ c1 ∨ b0 ∧ b1 ∧ c0 ∧ c1) ∨ b0 ∧ b1 ∧ c0 ∧ c1


that is the code of {Ψ(x1) ↔ Ψ(x1), x1 ↔ Ψ(x1), x2 ↔ Ψ(x1), x1 ↔ x1, x1 ↔
x2, x2 ↔ x2}.

4.3 Prototype Implementation

We have implemented in C++ a prototype pair sharing analyzer in order to
demonstrate the viability of the encoding scheme. The Boolean functions are
implemented using a BDD package developed by Schaechte. The analyzer has
been run on benchmark programs. As expected, the analyzer produces the cor-
rect result on each program we have tested. Table 1 contains timing data for
medium sized programs. Each row corresponds to a program. The first two en-
tries are the name of the program and the number of program points in the
program. Next two entries are analysis time in seconds and analysis time per
program point in seconds. The average analysis time per porgram point is 0.0025
seconds, which is fast. The same table also shows that the encoding results in bet-
ter time performance. For the sake of comparison, we also implemented another
analyzer which is identical to the prototype analyzer except that pair sharing
relations are expressed as bitmaps. The last two entries contain the analysis time
and analysis time per program point taken by the bitmap-based analyzer. The
bitmap-based analyzer takes an average of 0.0061 seconds per program point
which is more than two times slower than the BDD-based analyzer.

Table 1. Time Performance

CPU: Intel(R) Pentium(R) 4 CPU 2.40GHz.
Operating System: Linux 3.2.8

BDD Bit Map
Program Size Time PTime Time PTime

sdda.pl 171 0.3 0.0017 0.55 0.0032

kalah.pl 220 0.2 0.0009 0.21 0.0009

ann.pl 70 0.04 0.0005 0.04 0.0005

asm.pl 515 0.03 0.00005 0.02 0.00003

disj r.pl 127 0.1 0.0007 0.17 0.0013

chat.pl 840 13.07 0.015 12.41 0.014

zebra.pl 43 0.01 0.0002 0.01 0.0002

tsp.pl 86 0.27 0.003 0.48 0.005

cs r.pl 261 0.37 0.0014 1.13 0.004

life.pl 71 0.24 0.003 0.3 0.004

peep.pl 333 0.41 0.0012 0.72 0.002

nand.pl 343 3.07 0.0089 10.22 0.029

read.pl 386 0.95 0.002 1.48 0.0038

ga.pl 293 0.11 0.0003 0.19 0.0006

5 Discussion and Conclusion

We have presented an encoding sheme in which pair sharing relations are en-
coded in Boolean functions and abstract operations on pair sharing relations

in operations on Boolean functions. The encoding scheme is the first one for
pair sharing despite the fact that Boolean functions have been used to express
a variety of program properties for (constraint) logic programs.

In logic programming, Boolean functions were first used to trace groundness
dependency between program variables. The domain Def of definite Boolean
functions was first used in Dart [11] whilst the domain Pos of Positive Boolean
functions first appeared in [22]. Both Def and Pos have since been widely stud-
ied [15, 8, 1, 19, 14, 6]. Boolean functions have also been used to express definite-
ness [3], finiteness [2] and termination [13] properties.

The most related work is by Codish, Søndergaard and Stuckey [7] who express
set sharing in positive Boolean functions and encode abstract operations for set
sharing analysis in operations on Boolean functions. They discover that the set
sharing domain Sharing is isomorphic to Pos. Let X be the set of variables of
interest. An element in Sharing is a set of sharing groups that are subsets of X.
A positive Boolean function f is the code of a set sharing S iff S = {X \ G′ |
assign(G′) |= f} where assign(G) = λx ∈ X.(if x ∈ G then true else false). The
code of the abstract unification operation makes use of an operation ↓ that mapes
a positive Boolean function f to the smallest definite Boolean function g such
that f |= g. A constructive definition of ↓ is given by Howe and King [16].

As further work, we would like to investigate how a pairing sharing analy-
sis based on Boolean functions could be integrated with other analyses based
on Boolean functions. We would also like to experimentally study how an im-
plementation using Boolean functions to trace pair sharing compares with an
implementation using a different representation of pair sharing.

Acknowledgements

Thanks are due to annonymous referees for their feedbacks on a previous draft of
this paper. This work was supported by the National Science Foundation under
grants CCR-0131862 and INT-0327760.

References

1. T. Armstrong, K. Marriott, P. Schachte, and H. Søndergaard. Two classes of
Boolean functions for dependency analysis. Science of Computer Programming,
31(1):3–45, 1998.

2. R. Bagnara, R. Gori, P. M. Hill, and E. Zaffanella. Finite-tree analysis for con-
straint logic-based languages. In P. Cousot, editor, Static Analysis: Proceedings
of the 8th International Symposium, volume 2126 of Lecture Notes in Computer
Science, pages 165–184, Paris, France, 2001. Springer-Verlag.

3. P. Bigot, S. K. Debray, and K. Marriott. Understanding Finiteness Analysis Us-
ing Abstract Interpretation. In Krzysztof Apt, editor, Proceedings of the Joint
International Conference and Symposium on Logic Programming, pages 735–749,
Washington, USA, November 1992. The MIT Press.

4. R. Bryant. Symbolic Boolean manipulation with ordered binary-decision diagrams.
ACM Computing Survey, 24(3):293–318, 1992.

5. M. Codish, D. Dams, and E. Yardeni. Derivation and safety of an abstract uni-
fication algorithm for groundness and aliasing analysis. In K. Furukawa, editor,
Proceedings of the Eighth International Conference on Logic Programming, pages
79–93. The MIT Press, 1991.

6. Michael Codish. Worst-case groundness analysis using positive Boolean functions.
The Journal of Logic Programming, 41(1):125–128, 1999.

7. Michael Codish, Harald Søndergaard, and Peter Stuckey. Sharing and groundness
dependencies in logic programs. ACM Transactions on Programming Languages
and Systems, 21(5):948–976, 1999.

8. A. Cortesi, G. Filé, and W. Winsborough. Optimal groundness analysis using
propositional logic. The Journal of Logic Programming, 27(2):137–168, 1996.

9. P. Cousot and R. Cousot. Abstract interpretation: a unified framework for static
analysis of programs by construction or approximation of fixpoints. In Principles
of Programming Languages, pages 238–252. The ACM Press, 1977.

10. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Principles of Programming Languages, pages 269–282. The ACM Press, 1979.

11. P.W. Dart. On derived dependencies and connected databases. The Journal of
Logic Programming, 11(2):163–188, 1991.

12. G. Filé, R. Giacobazzi, and F. Ranzato. A unifying view on abstract domain
design. ACM Computing Surveys, 28(2), 1996.

13. S. Genaim and M. Codish. Inferring termination conditions for logic programs
using backwards analysis. In R. Nieuwenhuis and A. Voronkov, editors, Proceed-
ings of the Eighth International Conference on Logic for Programming, Artificial
Intelligence and Reasoning, volume 2250 of Lecture Notes in Artificial Intelligence,
pages 681–690. Springer, 2001.

14. Andy Heaton, Muhamed Abo-Zaed, Michael Codish, and Andy King. Simple,
efficient and scalable groundness analysis of logic programs. The Journal of Logic
Programming, 45(1-3):143–156, 2000.

15. P. Van Hentenryck, A. Cortesi, and B. Le Charlier. Evaluation of the Domain
PROP. The Journal of Logic Programming, 23(3):237–278, 1995.

16. J. M. Howe and A. King. Efficient Groundness Analysis in Prolog. Theory and
Practice of Logic Programming, 3(1):95–124, January 2003.

17. D. Jacobs and A. Langen. Static analysis of logic programs for independent and
parallelism. The Journal of Logic Programming, 13(1–4):291–314, 1992.

18. A. King. Pair-sharing over rational trees. The Journal of Logic Programming,
46(1–2):139–155, 2000.

19. A. King, J. Smaus, and P. Hill. Quotienting Share for dependency analysis. In
S. D. Swierstra, editor, Proc. of the 8th European Symposium on Programming,
volume 1576 of Lecture Notes in Computer Science, pages 59–73. Springer, 1999.

20. J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

21. L. Lu. A mode analysis of logic programs by abstract interpretation. In D. Bjørner,
M. Broy, and I.V. Pottosin, editors, Perspectives of System Informatics, volume
1181 of Lecture Notes in Computer Science, pages 362–373. Springer, 1996.

22. K. Marriott and H. Søndergaard. Precise and efficient groundness analysis for logic
programs. ACM Letters on Programming Languages and Systems, 2(1–4):181–196,
1993.

23. K. Muthukumar and M. Hermenegildo. Compile-time derivation of variable de-
pendency using abstract interpretation. The Journal of Logic Programming, 13(1–
4):315–347, 1992.

24. H. Søndergaard. An application of abstract interpretation of logic programs: oc-
cur check problem. In B. Robinet and R. Wilhelm, editors, ESOP 86, European
Symposium on Programming, volume 213 of Lecture Notes in Computer Science,
pages 324–338. Springer, 1986.

A Proofs

Lemma 1: For any π1, π2 ∈ PSV where V ∈ {VP ,V‡
P }, E(π1 1 π2) = E(π1) 1]

E(π2).

Proof. We only prove the case for V = V‡
P for the case as V = VP is similar.

We have E(π1) =
∨

〈x,z1〉∈π1
L(x) ∧ R(z1), E(π2) =

∨
〈z2,y〉∈π2

L(z2) ∧ R(y) and
h = (E(π1)[c0/d0 · · · ck/dk] ∧ E(π2)[b0/d0 · · · bk/dk]). Then

E(π1)[c0/d0, · · · , ck/dk] =
∨

〈x,z1〉∈π1

L(x) ∧ (R(z1)[c0/d0, · · · , ck/dk])

=
∨

〈x,z1〉∈π1

L(x) ∧ (L(z1)[b0/d0, · · · , bk/dk])

E(π2)[b0/d0, · · · , bk/dk] =
∨

〈z2,y〉∈π2

(L(z2)[b0/d0, · · · , bk/dk]) ∧R(y)

Since L(z1) ∧ L(z2) ⇔ false for z1 6= z2, we obtain

E(π1)[c0/d0 · · · ck/dk] ∧ E(π2)[b0/d0 · · · bk/dk]

=
∨

〈x,z〉∈π1,〈z,y〉∈π2

L(x) ∧R(y) ∧ (L(z)[b0/d0, · · · , bk/dk])

Thus,

E(π1) 1] E(π2) = ∃d0. · · · ∃dk.E(π1)[c0/d0 · · · ck/dk] ∧ E(π2)[b0/d0 · · · bk/dk]

=
∨

〈x,z〉∈π1,〈z,y〉∈π2

L(x) ∧R(y)

= E(π1 1 π2)

Lemma 2: For any s, t ∈ Term(V) and any π ∈ PSV where V ∈ {VP ,V‡
P },

link](s, t, f) =
{

let g = V(s)⊗] V(t)
in g ∨ (f 1] g) ∨ (g 1] f) ∨ (f 1] g 1] f)

Proof. Let f = E(π).

E(link(s, t, π))

=
{

let σ = V(s)⊗V(t)
in E(σ ∪ (π 1 σ) ∪ (σ 1 π) ∪ (π 1 σ 1 π))

=
{

let σ = V(s)⊗V(t)
in E(σ) ∨ (E(π) 1] E(σ)) ∨ (E(σ) 1] E(π)) ∨ (E(π) 1] E(σ) 1] E(π)))

=
{

let g = V(s)⊗] V(t)
in g ∨ (f 1] g) ∨ (g 1] f) ∨ (f 1] g 1] f)

= link](s, t, f)
= link](s, t, E(π))

Theorem 1: For any s′, t′ ∈ Term(V‡
P), any s, t ∈ Term(VP), any code h of a

sharing relation in PSV‡
P
, any codes f, g of sharing relations in PSVP

,

amgu](s′, t′, h) =
h ∧ ((V‡

P \V(s′))⊗] (V‡
P \V(s′))) if V(t′) = ∅

h ∧ ((V‡
P \V(t′))⊗] (V‡

P \V(t′))) if V(s′) = ∅
h ∨ link](s′, t′, h) ∨ (χ](t′, h) ∧ link](s′, s′, h)) ∨ (χ](s′, h) ∧ link](t′, t′, h))

otherwise

entry](s, f, t) = proj] ◦ amgu](mgu(Ψ(s), t), Ψ](f))
exit](s, f, t, g) = proj] ◦ amgu](mgu(Ψ(s), t), Ψ](f) ∨ g)

where amgu](∅, f) = f and amgu]({s = t} ∪ E, f) = amgu](E, amgu](s, t, f)).

Proof. We first consider the correctness of amgu]. Let h = E(π). Then E({〈x, y〉 ∈
π | x 6∈ V(s′)∧y 6∈ V(s′)}) = E(π∩(V‡

P \V(s′))2) = h∧((V‡
P \V(s′))⊗](V‡

P \V(s′))).
Similarly, E({〈x, y〉 ∈ π | x 6∈ V(t′)∧y 6∈ V(t′)}) = h∧((V‡

P \V(t′))⊗](V‡
P \V(t′))).

E(amgu(s′, t′, π))

=


E({〈x, y〉 ∈ π | x 6∈ V(s′) ∧ y 6∈ V(s′)}) if V(t′) = ∅
E({〈x, y〉 ∈ π | x 6∈ V(t′) ∧ y 6∈ V(t′)}) if V(s′) = ∅
E(π ∪ link(s′, t′, π) ∪ (χ(t′, π) � link(s′, s′, π)) ∪ (χ(s′, π) � link(t′, t′, π)))

otherwise

=


h ∧ ¬(

∨
x∈V(s′) L(x)) ∧ ¬(

∨
y∈V(s′)R(y)) ∧ >‡ if V(t′) = ∅

h ∧ ¬(
∨

x∈V(t′) L(x)) ∧ ¬(
∨

y∈V(t′)R(y)) ∧ >‡ if V(s′) = ∅
h ∨ link](s′, t′, h) ∨ (χ](t′, h) ∧ link](s′, s′, h)) ∨ (χ](s′, h) ∧ link](t′, t′, h))

otherwise

= amgu](s′, t′, f)

The correctness of entry] and exit] follows from that of amgu], Ψ] and proj].

