
Analysing Logic Programs by
Reasoning Backwards

Jacob M. Howe1, Andy King2, and Lunjin Lu3

1 City University, London, EC1V 0HB, UK
2 University of Kent, Canterbury, CT2 7NF, UK
3 Oakland University, Rochester, MI 48309, USA

Abstract. One recent advance in program development has been the application
of abstract interpretation to verify the partial correctness of a (constraint) logic
program. Traditionally forwards analysis has been applied that starts with an initial
goal and traces the execution in the direction of the control-flow to approximate the
program state at each program point. This is often enough to verify assertions that
a property holds. The dual approach is to apply backwards analysis to propagate
properties of the allowable states against the control-flow to infer queries for which
the program will not violate any assertion. Backwards analysis also underpins other
program development tasks such as verifying the termination of a logic program or
proving that a logic program with a delay mechanism cannot reduce to a state that
contains sub-goals which suspend indefinitely. This paper reviews various backwards
analyses that have been proposed for logic programs, identifying common threads in
these techniques. The analyses are explained through a series of worked examples.
The paper concludes with some suggestions for research in backwards analysis for
logic program development.

1 Introduction

Abstract interpretation has an important rôle in program development and
specifically the verification and debugging of (constraint) logic programs, as
recently demonstrated in [12,42,57]. In this context, programmers are typi-
cally equipped with an annotation language in which they encode properties
of the program state at various program points [56,64]. One approach to ver-
ification of logic programs is to trace the program state in the direction of
control-flow from an initial goal (forwards analysis), using abstract interpre-
tation to finitely represent and track the state. The program is deemed to be
correct if all the assertions are satisfied whenever they are encountered dur-
ing the execution of the program; otherwise the program is potentially buggy.
The dual approach is to trace execution against the control-flow (backwards
analysis) to infer those queries which ensure that the assertions are satisfied
should they be encountered [39,44]. If the class of initial queries does not con-
form to those expected by the programmer, then the program is potentially
buggy.

Many program properties cannot be simply verified by checking (an ab-
straction of) the program store – they are properties of sequences of pro-

2 Jacob M. Howe, Andy King and Lunjin Lu

gram states. For example, termination checking of logic programs attempts
to verify that a logic program left-terminates for a given query [10,53]. This
amounts to checking that sequences of program states are necessarily finite.
Suspension analysis of concurrent logic programs [8,11,17] also reasons about
sequences of states. It aims to verify that a given state cannot lead to another
which possesses a sub-goal that suspends indefinitely. These classic analyses
are inherently forwards since they trace sequences of states in the direction
of control-flow. Nevertheless these forwards analysis problems (and various
related analyses) have corresponding backwards analysis problems, tracing
requirements against the control-flow (specifying the backwards analysis will
be referred to as reversal). The reversal of termination checking is termina-
tion inference which infers initial queries under which a logic program left-
terminates [24,53]. The reversal of suspension analysis is suspension inference
[26] which infers a class of goals that will not lead to suspended (floundering)
sub-goals. It has been observed [24] that the “missing link” between termi-
nation inference and termination checking is the backwards analysis of [39].
Likewise suspension inference [26] relies on ideas inherited from backwards
analysis [39].

The unifying idea behind these various backwards analyses [24,26,39,40,44]
is reasoning about reverse information flow. In abstract interpretation, infor-
mation is represented, albeit in an approximate way, with an abstract do-
main which is a lattice 〈D,E,⊕,⊗〉. The ordering E expresses the relative
precision of two domain elements; the join ⊕ models the merging of com-
putation paths whereas meet ⊗ models the conjunction of constraints. To
propagate information against the control-flow, the analyses of [24,26,39,40]
(but notably not that of [44]) require the abstract domain D to be relatively
pseudo-complemented, that is, the relative pseudo-complement of two do-
main elements uniquely exists. The pseudo-complement of d1 relative to d2,
denoted d1 → d2, delivers the weakest element of D whose conjunction with
d1 implies d2, or more exactly, d1 → d2 = ⊕{d ∈ D | d ⊗ d1 E d2}. The rôle
of relative pseudo-complement is that if d2 expresses a set of requirements
that must hold after a constraint is added to the store, and d1 models the
constraint itself, then d1 → d2 expresses the requirements that must hold
on the store before the constraint. Relative pseudo-complement is central to
many backwards analyses.

Not all domains come equipped with a relative pseudo-complement, but
it turns out that it is always possible to synthesise a domain for backwards
analysis for some given downward closed property by applying Heyting com-
pletion [30]. Heyting completion enriches a domain with new elements so that
the relative pseudo-complement is well-defined. All domains that are condens-
ing possess a relative pseudo-complement. Examples of condensing domains
include the class of positive Boolean functions [37,46], the relational type
domain of [9], and the domain of directional types [1,30]. The requirement
for a domain to be relatively pseudo-complemented is one the major restric-

Analysing Logic Programs by Reasoning Backwards 3

tions of backwards analysis. Despite this limitation, backwards analysis still
offers two key advantages over forwards analysis for program development
problems. These advantages are summarised below:

• Backwards analysis generalises forwards analysis in that a single applica-
tion of backwards analysis can subsume many applications of a forwards
analysis. Another advantage that relates to ease of use is that backwards
analysis is not dependent on the programmer (or the module system) for
providing a top-level goal. This is because backwards analysis is goal-
independent.

• In terms of implementation, backwards analysis strikes a good balance
between generality and simplicity. Moreover, backwards analysis does not
necessarily incur a performance penalty over forwards analysis.

Both of these two points are multi-faceted and therefore they require some
unpacking. Returning to the first point – the issue of generality – forwards
analysis is driven from a top-level goal. Forwards analysis then verifies that
the goal (and those goals it recursively calls) satisfy a set of requirements.
Conversely, backwards analysis infers a class of goals all of which are guar-
anteed to satisfy the requirements. Under certain algebraic conditions this
class is maximal with respect to forwards analysis [40]; it describes all those
goals that can be verified with forwards analysis. For example, consider the
problem of understanding how to re-use code developed by a third party. In
the context of logic programming, part of this problem reduces to figuring
out how to query a program. If the logic program does not come with any
documentation, then the programmer is forced to experiment with queries in
an ad hoc fashion. More systematically, forwards analysis could be repeat-
edly applied to discover queries which are consistent with the called builtins in
that the calls do not generate any instantiation errors. By way of contrast the
backwards analysis framework when instantiated with a domain for tracking
groundness dependencies [37,46] yields an analysis for mode inference which
would discover (in a single application) all queries that will not generate any
instantiation errors. This recovered mode information then provides valuable
insight into behaviour of the program.

Expanding the second point – the issue of implementation – the analyses
presented in [26,39,40] reduce to two simple bottom-up fixpoint computa-
tions: a least fixpoint (lfp) and a greatest fixpoint (gfp). The lfp and the gfp
calculations can be ordered and thus de-coupled. This significantly simplifies
the tracking of dependencies which is the main source of complexity in an
efficient fixpoint engine. Moreover, although few forwards analyses have been
compared experimentally against backwards analyses, the notable exception
is in termination inference. In this context, the speed of inference appears
to at least match that of checking [24]. In fact the total analysis time for
checking and inference can be broken down into Joint – the time spent on
activities common to both checking and inference and Inf and Check – the
time spent on activities specific to inference and checking respectively. Joint

4 Jacob M. Howe, Andy King and Lunjin Lu

dominates both Inf and Check but Inf is typically smaller than Check [24].
Therefore the generality of inference does not necessarily incur a performance
penalty.

Backwards analysis has been applied extensively in functional program-
ming in, among other things, projection analysis [65], stream strictness anal-
ysis [31], inverse image analysis [18]. Furthermore, backwards reasoning on
imperative programs dates back to the early days of static analysis [14].
In contrast, backwards analysis has until very recently [19,22,24,26,40,44,49]
been rarely applied in logic programming. The aim of this paper is thus to
promote the use of backwards analysis especially within the context of logic
program development. To this end, the paper explains the key ideas behind
backwards analyses for mode inference, termination inference, suspension in-
ference and type inference. These analyses are each described in an informal
way through a series of worked examples in sections 2, 3, 4 and 5 respec-
tively. Each of these sections includes its own related work section. Section 6
then reviews directions for future work on backwards analysis for program
development and section 7 concludes.

2 Backwards mode inference

The objective of backwards analysis is to infer queries for which the pro-
gram is guaranteed to either not violate any assertion or satisfy some oper-
ational requirement. To realise this objective, backwards analyses propagate
requirements of the allowable states against the control-flow. This tactic es-
sentially reinterprets the calculation of weakest pre-conditions [35] for logic
programming using abstract interpretation techniques. To illustrate these
ideas, consider the problem of mode inference [39]. In mode inference, the
problem is to deduce moding properties which, if satisfied by the initial
query, ensure that the resulting derivations cannot encounter an instanti-
ation error. Instantiation errors arise when a builtin is called with insuffi-
ciently instantiated arguments. For example, the Prolog builtins tab and put
require their first (and only) argument to be bound to a ground term oth-
erwise they error. Conversely, the builtin is requires its last argument to be
ground. Other builtins such as the arithmetic tests =:=, <, >, etc require both
arguments to be ground. These grounding requirements can be expressed
with the domain of positive Boolean functions, Pos, which is traditionally
used to track groundness dependencies [37,46]. Pos is the set of functions
f : {true, false}n → {true, false} such that f(true, . . . , true) = true. For
example, X ∧ (Y ← Z) ∈ Pos since true ∧ (true ← true) = true. The for-
mula describes states in which X is ground and Y is ground whenever Z is
ground. Observe that this grounding property is closed under instantiation:
if X ∧ (Y ← Z) describes the state of the store, then both X and Y ← Z
still hold whenever the store is conjoined with additional constraints. When
augmented with false, Pos forms the lattice 〈Pos, |=,∨,∧〉 where |= denotes

Analysing Logic Programs by Reasoning Backwards 5

qs([], S, S) :- true.

qs([M | Xs], S, T) :- pt(Xs, M, L, H), qs(L, S, [M | R]), qs(H, R, T).

pt([], , [], []) :- true.

pt([X | Xs], M, [X | L], H) :- M ≤ X, pt(Xs, M, L, H).

pt([X | Xs], M, L, [X | H]) :- M > X, pt(Xs, M, L, H).

Fig. 1. quicksort program in expressed in Prolog

the entailment ordering, ∧ is logical conjunction and ∨ is logical disjunction.
The top and bottom elements of the lattice are true and false respectively.

The assertions that are used in mode inference are Pos abstractions that
express grounding requirements which ensure that instantiation errors are
avoided. Specifically, an assertion is added to the program for each call to a
builtin. The assertion itself precedes the call [39]. It is important to appreciate
that the assertions only codify sufficient conditions; necessary conditions for
the absence of instantiation errors cannot always be expressed within Pos.
For example, the assertion X ∨ (Y ∧ Z) describes states for which the builtin
functor(X, Y, Z) will not produce an instantiation error. Observe, however,
that the same call will not generate an instantiation error if X is bound to
a non-variable (non-ground) term such as [W|Ws], hence X ∨ (Y ∧ Z) is not
a necessary condition for avoiding an instantiation error. Observe too that
X∨ (Y∧ Z) only ensures that the call will not generate an instantiation error.
For instance, a domain error will be thrown whenever functor(X, Y, Z) is
called with Z is instantiated to a negative integer. However a richer domain,
such as the numeric power domain introduced in [40], could express this
positivity requirement on the variable Z. (The subtlety of reasoning about
builtins is not confined to backwards analysis. In fact correctly and precisely
encoding the behaviour of the builtins is often the most difficult part of any
analysis [33,36].)

2.1 Worked example on mode inference

To appreciate how the assertions and lattice operations ∨ and ∧ fit together
and why the domain is required to be relatively pseudo-complemented, it is
helpful to consider a worked example. Thus consider the quicksort program
listed in Figure 1 and the problem of computing those queries that avoid
instantiation errors. The quicksort program is coded in Prolog and therefore
the comma operator denotes sequential (rather than parallel) goal composi-
tion. A difference list is used to amortise the cost of appending the two lists
produced by the goals qs(L, S, [M | R]) and qs(H, R, T).

The backwards analysis consists of two computational steps. The first is
a least fixpoint (lfp) calculation and the second is a greatest fixpoint (gfp)

6 Jacob M. Howe, Andy King and Lunjin Lu

computation. The lfp is an analysis on its own right. It infers success pat-
terns that are required for the gfp computation. The success pattern for a
given predicate characterises the bindings made by the predicate whenever
it succeeds; in this context the success patterns are described as groundness
dependencies. Specifically, the lfp is a set of calls paired with groundness
dependencies which describe how a call to each predicate in the program
can succeed. The gfp is an analysis for input modes (the objective of the
backwards analysis). To simplify both steps, the program is put into a form
in which the arguments of head and body atoms are distinct variables. This
gives the normalised program listed in the first column of Figure 2. To clearly
differentiate assertions from the (Herbrand) constraints that occur within the
program, the program is expressed in the concurrent constraint style [60] us-
ing ask to denote an assertion and tell to indicate a conventional store write.
This notation (correctly) suggests that an assertion reads and checks a prop-
erty of the store. Empty conjunctions of atoms are denoted by true. The
process of normalisation does not introduce any assertions and therefore the
program in the first column of Figure 2 includes only tell constraints. Note
that each clause contains a single tell constraint which appears immediately
before the (normalised) atoms that constitute the body of the clause.

After normalisation, the program is abstracted by replacing each tell
constraint x = f(x1, . . . , xn) with a formula x↔ ∧n

i=1xi that describes its
groundness dependencies. This gives the abstract program listed in the sec-
ond column of Figure 2. Builtins that are called from the program, such as
the tests ≤ and >, are handled by augmenting the abstract program with
fresh predicates, ≤′ and >′, which capture the grounding behaviour of the
builtins. Assertions are introduced immediately after the head of these fresh
clauses which specify a mode that is sufficient for the builtin not to gen-
erate an instantiation error. For example, the ask formula in the ≤′ clause
asserts that the ≤ test will not error if its first two arguments are ground,
whereas the tell formula describes the state that holds if the test succeeds.
For uniformity, all clauses contain both an ask and a tell. This normal form
simplifies the presentation of the theory and well as the structure of the ab-
stract interpretation itself. In practise, the ask of most clauses are true and
thus vacuous. In the case of quicksort, the only non-trivial assertions arise
from builtins. This would change if the programmer introduced assertions for
purposes of verification [56].

2.2 Least fixpoint calculation

An iterative algorithm is used to compute the lfp and thereby characterise
the success patterns of the program. A success pattern is a pair consisting
of an atom with distinct variables for arguments paired with a Pos formula
over those variables which describes the groundness dependencies between
the arguments. Renaming and equality of formulae induce an equivalence
between success patterns which is needed to detect the fixpoint. The patterns

Analysing Logic Programs by Reasoning Backwards 7

qs(T1, S, T2) :-

tell(T1 = [], T2 = S),

true.

qs(T1, S, T3) :-

tell(T1 = [M|Xs], T3 = [M|R]),
pt(Xs, M, L, H),

qs(L, S, T3),

qs(H, R, T).

pt(T1, , T2, T3) :-

tell(T1=[], T2=[], T3=[]),

true.

pt(T1, M, T2, H) :-

tell(T1 = [X|Xs], T2 = [X|L]),
M ≤ X,

pt(Xs, M, L, H).

pt(T1, M, l, T2) :-

tell(T1 = [X|Xs], T2 = [X|H]),
M > X,

pt(Xs, M, L, H).

qs(T1, S, T2) :-

ask(true),
tell(T1 ∧ (T2↔ S),

true.

qs(T1, S, T3) :-

ask(true),
tell(T1↔ (M ∧ Xs) ∧ T3↔ (M ∧ R)),
pt(Xs, M, L, H),

qs(L, S, T3),

qs(H, R, T).

pt(T1, , T2, T3) :-

ask(true),
tell(T1 ∧ T2 ∧ T3),

true.

pt(T1, M, T2, H) :-

ask(true),
tell(T1↔ (X ∧ Xs) ∧ T2↔ (X ∧ L)),
≤’(M, X),

pt(Xs, M, L, H).

pt(T1, M, L, T2) :-

ask(true),
tell(T1↔ (X ∧ Xs) ∧ T2↔ (X ∧ H)),
>’(M, X),

pt(Xs, M, L, H).

≤’(M, X) :-

ask(M ∧ X), tell(M ∧ X), true.

>’(M, X) :-

ask(M ∧ X), tell(M ∧ X), true.

Fig. 2. quicksort program with assertions and as a Pos abstraction

〈p(u,w, v), u ∧ (w ↔ v)〉 and 〈p(x1, x2, x3), (x3 ↔ x2) ∧ x1〉, for example, are
considered to be identical: both express the same inter-argument groundness
dependencies. Each iteration produces a set of success patterns: at most one
pair for each predicate in the program.

Upper approximation of success patterns A success pattern records an
inter-argument groundness dependency that describes the binding effects of
executing a predicate. If 〈p(x), f〉 correctly describes the predicate p, and g
holds whenever f holds, then 〈p(x), g〉 also correctly describes p. Note that
here and henceforth x denotes a vector of distinct variables. Success patterns
can thus be approximated from above without compromising correctness. It-

8 Jacob M. Howe, Andy King and Lunjin Lu

eration is performed in a bottom-up fashion, TP -style, [28] and commences
with F0 = {〈p(x), false〉 | p ∈ Π} where Π is the set of predicates occurring
in the program. F0 is the bottom element of the lattice of success patterns;
the top element is {〈p(x), true〉 | p ∈ Π}. Fj+1 is computed from Fj by
considering each clause p(x) :- ask(d), tell(f), p1(x1), . . . , pn(xn) in turn. It is
at this stage that the lattice structure of Pos comes into play. Meet (the
operator ∧ which is also known as greatest lower bound) provides a way of
conjoining information from different body atoms, while join (the operator
∨ which is also known as least upper bound) is used to combine the infor-
mation from different clauses. More exactly, the success pattern formulae
fi for the n body atoms p1(x1), . . . , pn(xn) are conjoined with f to obtain
g = f ∧ (∧n

i=1fi). Variables not present in p(x), Y say, are then eliminated
from g. The Schröder elimination principle provides a way of eliminating a
variable from a given formula. It enables a projection operator ∃x to be de-
fined by ∃x(f) = f [x 7→ true] ∨ f [x 7→ false] which eliminates x from f .
Since f |= ∃x(f), computing g′ = ∃Y (g) where ∃{y1...yn}(g) = ∃y1(. . .∃yn(g))
weakens g. Weakening g does not compromise correctness because success
patterns can be safely approximated from above.

Weakening upper approximations The pattern 〈p(x), g′′〉 where g′′ is
the current Pos abstraction is then replaced with 〈p(x), g′ ∨ g′′〉 where g′ is
computed as above. Thus the success patterns become progressively weaker
(or at least not stronger) on each iteration. Again, correctness is preserved
because success patterns can be safely approximated from above.

Least fixpoint calculation for quicksort The lfp for the abstracted quick-
sort program is obtained (and checked) in the following 3 iterations:

F1 =

〈qs(x1, x2, x3), x1 ∧ (x2 ↔ x3)〉

〈pt(x1, x2, x3, x4), x1 ∧ x3 ∧ x4〉
〈=<′(x1, x2), x1 ∧ x2〉
〈>′(x1, x2), x1 ∧ x2〉

F2 =

〈qs(x1, x2, x3), x2 ↔ (x1 ∧ x3)〉

〈pt(x1, x2, x3, x4), x1 ∧ x3 ∧ x4〉
〈=<′(x1, x2), x1 ∧ x2〉
〈>′(x1, x2), x1 ∧ x2〉

Finally, F3 = F2. The space of success patterns forms a complete lattice
which ensures that a lfp exists. The iterative process will always terminate
since the space is finite and hence the number of times each success pattern
can be updated is also finite. Moreover, it will converge onto the lfp since
(so-called Kleene) iteration commences with the bottom element F0.

Observe that F2, the lfp, faithfully describes the grounding behaviour of
quicksort: a qs goal will ground its second argument if it is called with its

Analysing Logic Programs by Reasoning Backwards 9

first and third arguments already ground and vice versa. Note that assertions
are not considered in the lfp calculation.

2.3 Greatest fixpoint calculation

A bottom-up strategy is used to compute a gfp and thereby characterise the
safe call patterns of the program. A safe call pattern describes queries that
do not lead to violation of the assertions. A call pattern has the same form
as a success pattern (so there is one call pattern per predicate rather than
one per clause). The analysis starts by checking that no call causes an error
by reasoning backwards over all clauses. If an assertion is violated, the set of
safe call patterns for the involved predicate is strengthened (made smaller),
and the whole process is repeated until the assumptions turn out to be valid
(the gfp is reached).

Lower approximation of safe call patterns Iteration commences with
the top element D0 = {〈p(x), true〉 | p ∈ Π}. An iterative algorithm in-
crementally strengthens the call pattern formulae until they only describe
queries which lead to computations that satisfy the assertions. Note that call
patterns describe a subset, rather than a superset, of those queries which
are safe. Call patterns are thus lower approximations, in contrast to suc-
cess patterns which are upper approximations. Put another way, if 〈p(x), g〉
correctly describes some safe call patterns of p, and g holds whenever f
holds, then 〈p(x), f〉 also correctly describes some safe call patterns of p.
Call patterns can thus be approximated from below without compromising
correctness (but not from above). Dk+1 is computed from Dk by applying
each p(x) :- ask(d), tell(f), p1(x1), . . . , pn(xn) in turn and calculating a for-
mula that characterises its safe calling modes. A safe calling mode is cal-
culated by propagating moding requirements right-to-left by repeated ap-
plication of the logical operator →. More exactly, let fi denote the success
pattern formula for pi(xi) in the previously computed lfp and let di denote
the call pattern formula for pi(xi) in Dk. Set en+1 = true and then compute
ei = di ∧ (fi → ei+1) for 1 ≤ i ≤ n. Each ei describes a safe calling mode for
the compound goal pi(xi), . . . , pn(xn).

Intuition and explanation The intuition behind the symbolism is that
di represents the demand that is already known in order for pi(xi) not to
error whereas ei is di possibly strengthened with extra demand so as to
ensure that the sub-goal pi+1(xi+1), . . . , pn(xn) also does not error when
executed immediately after pi(xi). Put another way, anything larger than di

may possibly cause an error when executing pi(xi) and anything larger than
ei may possibly cause an error when executing pi(xi), . . . , pn(xn).

The basic inductive step in the analysis is to compute an ei which ensures
that pi(xi), . . . , pn(xn) does not error, given di and ei+1 which respectively

10 Jacob M. Howe, Andy King and Lunjin Lu

less than one(X, Flag) :- X < 1, Flag = 1.

less than one(X, Flag) :- 1 =< X, Flag = 0.

less than(X, Y) :- X < Y.

Fig. 3. The less than one and less than predicates

ensure that pi(xi) and pi+1(xi+1), . . . , pn(xn) do not error. This step propa-
gates a demand after the call to pi(xi) into a demand before the call to pi(xi).
The tactic is to set en+1 = true and then compute ei = di ∧ (fi → ei+1) for
i ≤ n. This tactic is best explained by unfolding the definitions of en, then
en−1, then en−2, and so on. This reverse ordering reflects the order in which
the ei are computed; the ei are computed whilst walking backwards across the
clause. Any calling mode is safe for the empty goal and hence en+1 = true.
Note that en = dn ∧ (fn → en+1) = dn ∧ (¬fn ∨ true) = dn. Hence en

represents a safe calling mode for the goal pn(xn).
Observe that ei should not be larger than di, otherwise an error may occur

while executing pi(xi). Observe too that if pi(xi), . . . , pn(xn) is called with
a mode described by di, then pi+1(xi+1), . . . , pn(xn) is called with a mode
described by (di ∧ fi), since fi describes the success patterns of pi(xi). The
mode (di ∧ fi) may satisfy the ei+1 demand. If it does not, then the minimal
extra demand is added to (di ∧ fi) so as to satisfy ei+1. This minimal extra
demand is ((di ∧ fi)→ ei+1) – the weakest mode that, in conjunction with
(di∧fi), ensures that ei+1 holds. Put another way, ((di∧fi)→ ei+1) = ∨{f ∈
Pos | (di∧fi)∧f |= ei+1}. Combining the requirements to satisfy pi(xi) and
then pi+1(xi+1), . . . , pn(xn), gives ei = di ∧ ((di ∧ fi)→ ei+1) which reduces
to ei = di∧(fi → ei+1) because of algebraic properties of condensing domains
[30] and yields the tactic used in the basic inductive step.

To illustrate how requirements are combined for compound queries, con-
sider the predicates less than one and less than given in figure 3. The first
predicate uses a flag to indicate whether its first argument is less than one;
the second predicate is a test which succeeds if and only if its first argument
is less than its second. In particular consider the (artificial) compound query
less than one(X, Flag), less than(X, Flag) which also succeeds when-
ever X is less than one. Observe that the query less than one(X, Flag)
will not admit an instantiation error if the query is called with X sufficiently
instantiated, that is, if X is ground. It is natural for this property also to
hold for the compound query, since declaratively it encodes the same be-
haviour (albeit with some redundancy). However, reasoning about the instan-
tiation requirements for less than one(X, Flag), less than(X, Flag) is
more subtle because the first sub-goal instantiates Flag thereby partially
discharging the instantiation requirements of the second sub-goal. More-
over, the requirement that X is ground for the first sub-goal ensures that

Analysing Logic Programs by Reasoning Backwards 11

the same requirement is satisfied in the second sub-goal. Observe that this
interaction is faithfully modelled by ei = di ∧ (fi → ei+1). Specifically, with
p1(x1) = less than one(X, Flag) and p2(x2) = less than(X, Flag), the
demand and success patterns for p1(x1) and p2(x2) are as follows d1 = X and
f1 = X ∧ Flag and d2 = X ∧ Flag and f2 = X ∧ Flag. Then

e3 = true
e2 = d2 ∧ (f2 → e3) = (X ∧ Flag) ∧ ((X ∧ Flag)→ true) = (X ∧ Flag)
e1 = d1 ∧ (f1 → e2) = (X) ∧ ((X ∧ Flag)→ (X ∧ Flag)) = X

Thus it is sufficient to ground X in order to avoid an instantiation error in
the compound goal.

Pseudo-complement This step of calculating the weakest mode that when
conjoined with di ∧ fi implies ei+1, is the very heart of the analysis. Set-
ting ei = false would trivially achieve safety, but ei should be as weak as
possible to maximise the class of safe queries inferred. For Pos, computing
the weakest ei reduces to applying the → operator, but more generally this
step amounts to applying the relative pseudo-complement. This operation
(if it exists for a given abstract domain) takes, as input, two abstractions
and returns, as output, the weakest abstraction whose conjunction with the
first input abstraction is at least as strong as the second input abstraction.
If the domain does not possess a relative pseudo-complement, then there is
not always a unique weakest abstraction (whose conjunction with one given
abstraction is at least as strong as another given abstraction).

To see this, consider the domain Def [2,38] which does not possess a rel-
ative pseudo-complement. Def is the sub-class of Pos that is definite [2,38].
This means that Def has the special property that each of its Boolean func-
tions can be expressed as a (possibly empty) conjunction of propositional
Horn clauses. As with Pos, Def is assumed to be augmented with the bot-
tom element false. Def can thus represent the groundness dependencies
x ∧ y, x, x↔ y, y, x← y, x→ y, false and true but not x ∨ y. Suppose
that di ∧ fi = (x ↔ y) and ei+1 = (x ∧ y). Then conjoining x with di ∧ fi

would be at least as strong as ei+1 and symmetrically conjoining y with di∧fi

would be at least as strong as ei+1. However, Def does not contain a Boolean
function strictly weaker than both x and y, namely x∨ y, whose conjunction
with di ∧ fi is at least as strong as ei+1. Thus setting ei = x or ei = y would
be safe but setting ei = (x∨ y) is prohibited because x∨ y falls outside Def .
Moreover, setting ei = false would lose an unacceptable degree of precision.
A choice would thus have to be made between setting ei = x and ei = y
in some arbitrary fashion, so there would be no clear tactic for maximising
precision.

Returning to the compound goal pi(xi), . . . , pn(xn), a call described by
the mode di∧((di∧fi)→ ei+1) is thus sufficient to ensure that neither pi(xi)
nor the sub-goal pi+1(xi+1), . . . , pn(xn) error. Since di ∧ ((di ∧ fi)→ ei+1) =

12 Jacob M. Howe, Andy King and Lunjin Lu

di∧ (fi → ei+1) = ei it follows that pi(xi), . . . , pn(xn) will not error if its call
is described by ei. In particular, it follows that e1 describes a safe calling mode
for the body atoms of the clause p(x) :- ask(d), tell(f), p1(x1), . . . , pn(xn).

The next step is to calculate g = d∧(f → e1). The abstraction f describes
the grounding behaviour of the Herbrand constraint added to the store prior
to executing the body atoms. Thus (f → e1) describes the weakest mode
that, in conjunction with f , ensures that e1 holds, and hence the body atoms
are called safely. Hence d ∧ (f → e1) represents the weakest demand that
both satisfies the body atoms and the assertion d. One subtlety which relates
to the abstraction process is that d is required to be a lower-approximation
of the assertion whereas f is required to be an upper-approximation of the
constraint. Put another way, if the mode d describes the binding on the store,
then the (concrete) assertion is satisfied, whereas if the (concrete) constraint
is added to the store, then the store is described by the mode f .

Strengthening lower approximations The projection operator ∃x cannot
be applied to eliminate variables in g that are not present in p(x), since this
could potentially weaken g and thereby compromise safety. Instead a dual
projection operator ∀x is applied which is defined ∀x(f) = f ′ if f ′ ∈ Pos
otherwise ∀x(f) = false where f ′ = f [x 7→ false] ∧ f [x 7→ true]. Note
that although f [x 7→ false] ∨ f [x 7→ true] ∈ Pos for all f ∈ Pos it does
not follow that f [x 7→ false] ∧ f [x 7→ true] ∈ Pos for all f ∈ Pos. For
example, (x ← y)[x 7→ false] ∧ (x ← y)[x 7→ true] = ¬y. Like ∃x(f), ∀x(f)
eliminates a variable x from f . The fundamental difference is in the direction
of approximation in that ∀x(f) |= f |= ∃x(f). Thus if Y are the variables
that are not present in p(x), then g′ = ∀Y (g) eliminates Y from g where
∀{y1...yn}(g) = ∀y1(. . .∀yn(g)), whilst strengthening g. A safe calling mode
for this particular clause is then given by g′, since if g′ holds then g holds
also.

Dk+1 will contain a call pattern 〈p(x), g′′〉 and, assuming g′∧g′′ 6= g′′, this
is updated with 〈p(x), g′ ∧ g′′〉. Thus the call patterns become progressively
stronger on each iteration. Correctness is preserved because call patterns can
be safely approximated from below. The space of call patterns forms a com-
plete lattice which ensures that a gfp exists. In fact, because call patterns are
approximated from below, the gfp is the most precise solution, and therefore
the desired solution. (This contrasts to the norm in logic program analysis
where approximation is from above and a lfp is computed). Moreover, since
the space of call patterns is finite, termination is assured. In fact, the scheme
will converge onto the gfp since (lower Kleene) iteration commences with the
top element D0 = {〈p(x), true〉 | p ∈ Π}.

Analysing Logic Programs by Reasoning Backwards 13

Greatest fixpoint calculation for quicksort Under this procedure quick-
sort generates the following Dk sequence:

D0 =

〈qs(x1, x2, x3), true〉

〈pt(x1, x2, x3, x4), true〉
〈=<′(x1, x2), true〉
〈>′(x1, x2), true〉

 D1 =

〈qs(x1, x2, x3), true〉

〈pt(x1, x2, x3, x4), true〉
〈=<′(x1, x2), x1 ∧ x2〉
〈>′(x1, x2), x1 ∧ x2〉

D2 =

〈qs(x1, x2, x3), true〉

〈pt(x1, x2, x3, x4), x2 ∧ (x1 ∨ (x3 ∧ x4))〉
〈=<′(x1, x2), x1 ∧ x2〉
〈>′(x1, x2), x1 ∧ x2〉

D3 =

〈qs(x1, x2, x3), x1〉

〈pt(x1, x2, x3, x4), x2 ∧ (x1 ∨ (x3 ∧ x4))〉
〈=<′(x1, x2), x1 ∧ x2〉
〈>′(x1, x2), x1 ∧ x2〉

These calculations are non-trivial so consider how D2 is obtained from D1 by
applying the second (abstract) clause of pt as listed in Figure 2 – the clause
with head pt(T1, M, T2, H). The following ei and g formulae are generated
from the demands di and the success patterns fi:

e3 = true

e2 = d2 ∧ (f2 → e3)
= true ∧ ((Xs ∧ L ∧ H)→ true) = true

e1 = d1 ∧ (f1 → e2)
= (M ∧ X) ∧ ((M ∧ X)→ true) = M ∧ X

g = d ∧ (f → e1)
= true ∧ (((T1↔ X ∧ Xs) ∧ (T2↔ X ∧ L))→ (M ∧ X))

To characterise those pt(T1, M, T2, H) calls which are safe, it is neces-
sary to compute a function g′ on the variables T1, M, T2, H which, if satisfied
by the mode of a call, ensures that g is satisfied by the mode of the call.
Put another way, it is necessary to eliminate the variables X, Xs and L from g
(those variables which do not occur in the head pt(T1, M, T2, H)) to obtain
a Pos function g′ such that g holds whenever g′ holds. This is accomplished
by calculating g′ = ∀L∀Xs∀X(g). First consider the computation of ∀X(g):

g[X 7→false] = ((T1↔false ∧ Xs) ∧ (T2↔false ∧ L))→ (M ∧false)
= (¬T1 ∧ ¬T2)→ false
= T1 ∨ T2

g[X 7→ true] = ((T1↔ true ∧ Xs) ∧ (T2↔ true ∧ L))→ (M ∧ true)
= ((T1↔ Xs) ∧ (T2↔ L))→ M

14 Jacob M. Howe, Andy King and Lunjin Lu

Since g[X 7→ false] ∧ g[X 7→ true] ∈ Pos it follows that:

∀X(g) = (((T1↔ Xs) ∧ (T2↔ L))→ M) ∧ (T1 ∨ T2)

(otherwise ∀X(g) would be set to false). Eliminating the other variables in a
similar way we obtain:

∀X(g) = (((T1↔ Xs) ∧ (T2↔ L))→ M) ∧ (T1 ∨ T2)
∀Xs∀X(g) = ((T2↔ L)→ M) ∧ (T1 ∨ T2)

g′ = ∀L∀Xs∀X(g) = M ∧ (T1 ∨ T2)

Observe that if ∀L∀Xs∀X(g) holds then g holds. Thus if the mode of a call
satisfies g′ then the mode also satisfies g as required. This clause thus yields
the call pattern 〈pt(x1, x2, x3, x4), x2∧(x1∨x3)〉. Similarly the first and third
clauses contribute the patterns 〈pt(x1, x2, x3, x4), true〉 and 〈pt(x1, x2, x3, x4),
x2 ∧ (x1 ∨ x4)〉. Observe also that

true ∧ (x2 ∧ (x1 ∨ x3)) ∧ (x2 ∧ (x1 ∨ x4)) = x2 ∧ (x1 ∨ (x3 ∧ x4))

which gives the final call pattern formula for pt(x1, x2, x3, x4) in D2. The gfp
is reached at D3 since D4 = D3. The gfp often expresses elaborate calling
modes, for example, it states that pt(x1, x2, x3, x4) cannot generate an in-
stantiation error (nor any predicate that it calls) if it is called with its second,
third and fourth argument ground. This is a surprising result which suggests
that the analysis can infer information that might be normally missed by a
programmer.

2.4 Work related to mode inference

Mode inference was partly motivated by the revival of interest in logic pro-
gramming with assertions [4,56,64]. Interestingly, [56] observe that predicates
are normally written with an expectation on the initial calling pattern, and
hence provide an entry assertion to make the, moding say, of the top-level
queries explicit. Mode inference gives a way of automatically synthesising
entry assertions providing a provably correct way of ensuring that instanti-
ation errors do not occur during program execution.

An analysis for type inference could be constructed by refining the analysis
presented in this section by replacing the mode domain Pos with the domain
of directional types [1,30,40]. This domain is condensing and therefore the
domain comes equipped with the relative pseudo-complement operator that
is necessary for backward reasoning. Interestingly, type inference can be per-
formed even when the domain is not relatively pseudo-complemented [44].
This, however, relies on a radically different form of fixpoint calculation and
therefore this approach to type inference is discussed separately in section 5.

Analysing Logic Programs by Reasoning Backwards 15

split([], [], []) :- true.

split([X | Xs], [X | L1], L2) :- split(Xs, L2, L1).

Fig. 4. split program expressed in Prolog

3 Backwards termination inference

The aim of termination inference is to determine conditions under which
calls to a predicate are guaranteed to terminate [24]. Termination inference
is not a new idea in itself; it dates back to the pioneering work of Mesnard
and his colleagues [34,50,52,53]. Recently it has been observed, however, that
termination inference [24] can be performed by composing backwards analysis
with a standard termination checker [10]. The elegance of this approach is
that termination analysis can be reversed without dismantling an existing
(forwards) termination analysis.

The key advantage of (backwards) termination inference over (forwards)
termination checking is that termination inference can deduce, in a single
application, a class of queries that lead to finite LD-derivations [24]. To il-
lustrate this key idea, consider the program split listed in Figure 4. The
split predicate arises in the classic mergesort algorithm where it is used to
partition a list into sub-lists as preparation for an ordered merge [43]. For
instance, the goal split([a,b,c], L1, L2) will terminate, binding L1 and
L2 to [a,c] and [b] respectively. Correspondingly, a termination checker
will ascertain that the call split(L, L1, L2) will terminate if L is bound
to a list of fixed length [43]. However, a termination inference engine such as
TerminWeb [24] or cTI [50] will deduce that split(L, L1, L2) terminates
with either the first argument bound to a closed list or both the second and
third arguments bound to closed lists. Of course, a termination checker could
be reapplied to prove that split(L, L1, L2) will terminate under the latter
condition, but inference finds all the termination conditions in one applica-
tion. Thus termination inference can discover termination conditions that are
not observed by one, or possibly many, applications of a termination checker.
Note that is not due to a failing of the checker; it is due to the programmer
failing to realise that a condition warrants checking. (Actually, the conditions
under which termination inference truly generalises termination checking are
technical [24] and relate, among other things, to properties of the projection
operators ∃x and ∀x [40].)

Termination inference can be realised in terms of the backwards analysis
framework of [39] that was applied, in the previous section, to the problem of
mode inference. In fact the only conceptual difference between mode inference
and termination inference is in the way in which assertions are calculated.
Whilst for mode analysis assertions are direct groundness abstractions of the

16 Jacob M. Howe, Andy King and Lunjin Lu

builtins, for termination inference, assertions need to be calculated by an
analysis of the loops within the program.

Termination analyses typically amount to showing that successive goals in
an LD-derivation are decreasing with respect to some well-founded ordering.
In the context of a termination checker founded on a binary clause semantics
[20], this reduces to observing a size decrease between the arguments of the
head and the body atom for each recursive binary clause [10]. From such a
checker, a termination inference engine is obtained as follows:

• Firstly, the program is abstracted with respect to a chosen norm (or pos-
sibly a series of norms [25]). A norm maps each Herbrand term in the
program to a linear expression that represents its size. Syntactic equa-
tions between Herbrand terms are replaced with linear inequations which
express size relationships. The resulting program is abstract – it is a
constraint program over the domain of linear constraints – but it is not
binary; abstract clauses may contain more than one body atom.

• Secondly, an abstract version of the binary clause semantics is applied
[10]. The (concrete) binary clause semantics of [20] provides a sound
basis for termination analysis since the set of (concrete) binary clauses
it defines precisely characterises the looping behaviour of the program.
Specifically, a call to a given predicate will left-terminate if each corre-
sponding recursive binary clause possesses a body atom that is strictly
smaller than its head. Since this set of clauses is not finitely computable,
an abstract version of binary clause semantics is used to compute a set
of abstract binary clauses which, though finite, faithfully describes the
set of concrete binary clauses. The linear inequalities in these abstract
clauses capture size relationships between the arguments in the head and
the body atom of the concrete clauses.

• Thirdly, combinations of ground arguments that are sufficient for termi-
nation are derived. The crucial point is that a decrease in size is only
observable if sufficient arguments of a call are ground. These ground ar-
gument combinations are extracted from the linear inequalities in the
abstract binary clauses, expressed as Boolean functions, and added to
the original program in the form of assertions.

• Fourthly and finally, backwards mode analysis is performed on the pro-
gram augmented with its assertions. The greatest fixpoint then yields
groundness conditions which, if satisfied by an initial call, ensure that
the call leads to a finite LD-derivation.

Note that backwards termination inference can be considered to be the com-
position of one black-box that infers binary clauses, with another which ex-
tracts assertions from the binary clauses with yet another performs mode
inference. Because of this construction, readers who wish to skip the details
on approximating loops can progress directly onto section 3.3.

Analysing Logic Programs by Reasoning Backwards 17

subset([],) :-

true.

subset([X | Xs], Ys) :-

member(X, Ys), subset(Xs, Ys).

member(X, [X | Xs]) :-

true.

member(X, [| Ys]) :-

member(X, Ys).

subset(0, Ys) :-

0 ≤ Ys, true.

subset(1 + Xs, Ys) :-

0 ≤ X, 0 ≤ Xs, 0 ≤ Ys,

member(X, Ys), subset(Xs, Ys).

member(X, 1 + Xs) :-

0 ≤ X, 0 ≤ Xs, true.

member(X, 1 + Ys) :-

0 ≤ X, 0 ≤ Ys, member(X, Ys).

Fig. 5. subset program expressed in Prolog, and its list-length abstraction

3.1 Program abstraction

Termination inference will be illustrated using the subset program listed
in the first column of Figure 5. The predicate subset(L1, L2) holds iff
each element of the list L1 occurs within the list L2. Observe that neither
subset(L1, [a,b,c]) nor the call subset([a,b,c], L2) terminate when
L1 and L2 are uninstantiated. However, both calls will terminate (albeit pos-
sibly in failure) when L1 and L2 are ground. The challenge is to automatically
derive these grounding properties which are sufficient to guarantee termina-
tion.

Non-termination of logic programs is the result of infinite loops occurring
during execution. Consequently recursive calls are the focus of termination
analysis; a logic program will terminate if the arguments of successive calls
to a predicate become progressively smaller with respect to a well-founded
ordering. Thus, the notion of argument size (and more generally term size)
is at the core of termination analyses. To measure term size, a norm is ap-
plied which maps a ground term to a natural number. To support program
abstraction [28], the concept is normally lifted to terms that contain vari-
ables by defining a symbolic norm which maps a term to an expression over
variables, non-negative integer constants and the functor +. For instance, the
list-length norm is defined over the set of ground terms by:

|t|length =
{
|t2|length + 1 if t = [t1|t2]
0 otherwise

whereas the symbolic list-length norm is given by:

|t|length =

 |t2|length + 1 if t = [t1|t2]
t if t is a variable
0 otherwise

This symbolic norm describes the length of a list, using a variable to describe
the variable length of an open list. For example |[X | Xs]|length = 1 + |Xs|length

18 Jacob M. Howe, Andy King and Lunjin Lu

= 1 + Xs. Non-list terms are ascribed a length of zero. The second column
of Figure 5 gives the list-length norm abstraction of subset and member
in which terms are replaced by their sizes. The abstraction is obtained by
replacing each term with its size. Since a norm can only map a variable
to a non-negative value, extra inequalities are introduced to ensure that all
(size) variables are non-negative. Observe that the resulting abstraction is a
constraint program over the system of linear inequations.

3.2 Least fixpoint calculation over binary clauses

In [10] it is shown (using a semantics for call patterns similar to that of [20])
that a logic program is terminating iff its binary unfolding is. Informally,
the binary unfolding of a program is the least set of binary clauses each
with a head and body such that the head occurs as a head in the original
program and, when the original program is called with the head as a goal, then
the body occurs as a subsequent sub-goal in an LD-derivation. The binary
unfolding is formally expressed in terms of the lfp of a TP -style operator
[10,20]. Moreover, an abstract binary unfolding can be obtained by applying
an abstraction of the binary unfolding operator to the abstract program [10].

Calculation of this abstract lfp is complicated by the property that the
domain of linear inequations does not satisfy the ascending chain condition
[15]. This property compromises the termination of the abstract lfp calcula-
tion since it enables a set of abstract binary clauses to be repeatedly enlarged
on successive iterates ad infinitum. Termination can be assured, however, by
restricting the inequations that occur within abstract binary clauses to a
finite sub-class, for example, the sub-class of monotonicity and equality con-
straints [5]. Alternatively widening can be applied to enforce convergence [3].
Using the latter technique the following set of abstract binary unfolding is
obtained:

member(x1, x2) :- 0 ≤ x1 ∧ 1 ≤ x2, true
member(x1, x2) :- 0 ≤ x1 ∧ 0 ≤ y2 ∧ 1 + y2 ≤ x2 ∧ x1 = y1,

member(y1, y2)
subset(x1, x2) :- 0 ≤ x1 ∧ 0 ≤ x2, true
subset(x1, x2) :- y2 ≤ x2 ∧ 1 ≤ x1 ∧ 0 ≤ y2 ∧ 0 ≤ y1,

member(y1, y2)
subset(x1, x2) :- y1 + 1 ≤ x1 ∧ y2 = x2 ∧ 1 ≤ x1 ∧ 1 ≤ x2,

subset(y1, y2)

The set of abstract clauses contains at most |Π|2 clauses where Π is the set
of predicate symbols occurring in the program (which is assumed to include
true). This follows because widening ensures that two abstract clauses cannot
share the same predicate symbols in both the head and body. Note that if an
abstract binary clause has true as its body atom then the clause does not
describe a loop and therefore has no bearing on the termination behaviour.
Such clauses are given above simply for completeness.

Analysing Logic Programs by Reasoning Backwards 19

subset(A, B) :-

tell(A = []),

true.

subset(A, B) :-

tell(A = [X | Xs]),
member(X, B),

subset(Xs, B).

member(X, B) :-

tell(B = [X | Xs]),
true.

member(A, B) :-

tell(B = [Y | Ys]),
member(A, Ys).

subset(A, B) :-

ask(A), tell(A),
true.

subset(A, B) :-

ask(A), tell(A ↔ (X ∧ Xs)),

member(X, B),

subset(Xs, B).

member(A, B) :-

ask(B), tell(B ↔ (X ∧ Xs)),

true.

member(A, B) :-

ask(B), tell(B ↔ (Y ∧ Ys)),

member(A, Ys).

Fig. 6. subset normalised and as a Pos abstraction with assertions

3.3 Extracting the assertions from the binary clauses

Those abstract binary clauses that involve recursive calls are as follows:

member(x1, x2) :-
0 ≤ x1 ∧ 0 ≤ y2 ∧
1 + y2 ≤ x2 ∧ x1 = y1,
member(y1, y2).

subset(x1, x2) :-
y1 + 1 ≤ x1 ∧ y2 = x2 ∧
1 ≤ x1 ∧ 1 ≤ x2,
subset(y1, y2).

Consider the abstract clause for member. The inequality 1 + y2 ≤ x2 as-
serts that the recursive call is smaller than the previous call (as measured
by the list-length norm). Therefore, assuming that the second argument of
the original call to member is ground, each recursive call will operate on a
strictly smaller list and thus terminate. Hence, although one abstract mem-
ber clause approximates many concrete member clauses, the approximation
is sufficiently precise to enable termination properties to be deduced. Like-
wise, the inequality y1 + 1 ≤ x1 for subset ensures that termination follows
if the first argument of the initial call to subset is ground.

Since termination is dependent on groundness, the inequalities in recur-
sive abstract clauses induce groundness requirements that, if satisfied, assure
termination. Since the number of ground argument combinations is exponen-
tial in the number of arguments, inferring the optimal set of ground argument
combinations is potentially expensive (though experimentation suggests the
contrary [51]). Therefore a subset of the argument combinations may only be
considered [24]. Once extracted, the requirements are added to the original
logic program in the form of assertions. Figure 6 lists the subset program
complete with assertions that are sufficient for termination.

20 Jacob M. Howe, Andy King and Lunjin Lu

3.4 Backwards mode analysis

Backwards mode analysis can then be performed on the program with its
assertions as specified in the previous section. Using the notation from that
section, backwards mode analysis yields the following sequence of iterates:

D0 =
{
〈member(x1, x2), true〉
〈subset(x1, x2), true〉

}
D1 =

{
〈member(x1, x2), x2〉
〈subset(x1, x2), x1〉

}

D2 =
{
〈member(x1, x2), x2〉
〈subset(x1, x2), x1 ∧ x2〉

}
The fixpoint is reached and checked in the next iteration since D3 = D2. The
fixpoint specifies grounding conditions that are sufficient for termination.
That is, subset is guaranteed to left-terminate if both of its arguments are
ground. This is as expected, since the first argument of subset needs to be
ground in order that its own recursive call terminates. Moreover, the second
argument additionally needs to be ground in order that the call to member
terminates. Both the recursive call and the call to member are required to
terminate to assure that a call to the second clause of subset terminates.

3.5 Work related to termination inference

Performing termination inference via backwards analysis is a comparatively
new idea [24] but termination inference was developed by Mesnard and oth-
ers [34,50–53] long before this connection was made. Their system, the cTI
analyser, applied a µ-calculus solver to compute a greatest fixpoint. This
seems to suggest that greatest fixpoints are intrinsic to the problem itself.
On the other hand, the termination inference analyser reported in [24] (and
described in this section) is composed from two components: a standard ter-
mination checker [10] and a backwards analysis. The resulting analyser is
similar to cTI; the main difference is its design as two existing black-box
components which, according to [24], simplifies the formal justification and
implementation.

4 Backwards suspension inference

In mode inference [39] the assertions are synthesised from the builtins. In
termination inference [24] the assertions are distilled from a separate anal-
ysis of the loops which occur within the program [10]. Both these analyses
share the same backwards analysis component – a component which essen-
tially propagates requirements right-to-left over sequences of goals against
the control-flow. Interestingly, and perhaps surprisingly, backwards analysis
can still be applied when the control is more loosely defined. In fact, back-
wards analysis is still applicable even when the control is specified by a delay

Analysing Logic Programs by Reasoning Backwards 21

mechanism which blocks the selection of a sub-goal until some condition is
satisfied [7]. This, arguably, is one of the most flexible ways of specifying
control within logic programming.

Delays have proved to be invaluable for handling negation [54], delaying
non-linear constraints [32], enforcing termination [47], improving search and
modelling concurrency [45]. However, reasoning about logic programs with
delays is notoriously difficult and one reoccurring problem for the program-
mer is that of determining whether a given program and goal can reduce
to a state which possesses a sub-goal that suspends indefinitely. A number
of abstract interpretation schemes [8,11,17] have therefore been proposed for
verifying that a program and goal cannot suspend in this fashion. These anal-
yses are essentially forwards in that they simulate the operational semantics
tracing the execution of the program in the direction of the control with col-
lections of abstract states. This section reviews a suspension analysis that is
performed backwards by propagating requirements against the control-flow.
Specifically, rather than verifying that a particular goal will not lead to a
suspension, the analysis infers a class of goals that will not lead to suspen-
sion. This approach has the computational advantage that the programmer
need not rerun the analysis for different (abstract) queries. Moreover, like
the previous analyses, this suspension analysis is formulated as two simple
bottom-up fixpoint computations. The analysis strikes a good balance be-
tween tractability and precision. It avoids the complexity of goal interleaving
by exploiting reordering properties of monotonic and positive Boolean func-
tions.

Another noteworthy aspect of the analysis is that it verifies whether a logic
program with delays can be scheduled with a local selection rule [63]. Under
local selection, the selected atom is completely resolved, that is, those atoms
it directly and indirectly introduces are also resolved, before any other atom
is selected. Leftmost selection is one example of local selection. Knowledge
about suspension within the context of local selection is useful within it own
right [17,41]. In particular, [17] explains how various low-level optimisations,
such as returning output values in registers, can be applied if goals can be
scheduled left-to-right without suspension. Furthermore, any program that
can be shown to be suspension-free under local selection is clearly suspension-
free with a more general selection rule. Note, however, that the converse does
not follow and the analysis cannot infer non-suspension if the program relies
on coroutining techniques.

4.1 Worked example on suspension inference

To illustrate the ideas behind suspension analysis, consider an analysis of the
Prolog program listed in Figure 7. Declaratively, the program defines the re-
lation that the second argument (a list) is an in-order traversal of the first ar-
gument (a tree). Operationally, the declaration :- block append(-, ?, -)

22 Jacob M. Howe, Andy King and Lunjin Lu

inorder(nil, []) :- true.

inorder(tree(L, V, R), I) :-

append(LI, [V|RI], I), inorder(L, LI), inorder(R, RI).

:- block append(-, ?, -).

append([], X, X) :- true.

append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

Fig. 7. inorder program in expressed in Prolog with block declarations

delays (blocks) append goals until their arguments are sufficiently instanti-
ated. The dashes in the first and third argument positions specify that a
call to append is to be delayed until either its first or third argument are
bound to non-variable terms. Thus append goals can be executed in one of
two modes. The problem is to compute input modes which are sufficient to
guarantee that any inorder query which satisfies the modes will not lead to
a suspension under local selection. This problem can be solved with back-
wards analysis. Backwards analysis infers requirements on the input which
ensure that certain properties hold at (later) program points [39]. Exactly
like before, the analysis is tackled via an abstraction step followed by a least
fixpoint (lfp) and then a greatest fixpoint (gfp) computation.

4.2 Program abstraction

Abstraction reduces to two transformations: one from a Prolog with delay
program to a concurrent constraint programming [60] (ccp) program and
another from the ccp program to a Pos abstraction. The Prolog program is
re-written to a ccp program to make blocking requirements explicit in the
program as ask constraints. More exactly, a clause of a ccp program takes
the form h :- ask(c′), tell(c′′), g where h is an atom, g is a conjunction of
body atoms and c′ and c′′ are the ask and tell constraints. The asks are
guards that inspect the store and specify synchronisation behaviour whereas
the tells are writes that update the store. As before, empty conjunctions of
atoms are denoted by true. Unlike before, ask does not denote an assertion
but a synchronisation requirement. Moreover, a conjunction of goals g is not
necessarily executed left-to-right: goals can only be reduced with a clause
when the ask constraint within the clause is satisfied. A goal will suspend
until this is the case, hence the execution order of the sub-goals within a goal
does not necessarily concur with the textual (left-to-right) ordering of these
sub-goals. In this particular example, the only ask constraint that appears in
the program is nonvar(x) which formalises the requirement that x must be
bound to a non-variable term.

The second transform abstracts the ask and tell constraints with Boolean
functions which capture instantiation dependencies. The ask constraints are

Analysing Logic Programs by Reasoning Backwards 23

inorder(T, I) :-

ask(true),
tell(T = nil, I = []),

true.

inorder(T, I) :-

ask(true),
tell(T = tree(L,V,R),A = [V|RI]),
append(LI, A, I),

inorder(L, LI),

inorder(R, RI).

append(L, Ys, A) :-

ask(nonvar(L) ∨ nonvar(A)),

tell(L = [], A = Ys),

true.

append(L, Ys, A) :-

ask(nonvar(L) ∨ nonvar(A)),

tell(L = [X|Xs], A = [X|Zs]),
append(Xs, Ys, Zs).

inorder(T, I) :-

ask(true),
tell(T ∧ I),

true.

inorder(T, I) :-

ask(true),
tell(T↔ (L ∧ V ∧ R), A↔ (V ∧ RI)),
append(LI, A, I),

inorder(L, LI),

inorder(R, RI).

append(L, Ys, A) :-

ask(L ∨ A),

tell(L ∧ (A↔ Ys)),
true.

append(L, Ys, A) :-

ask(L ∨ A),

tell(L↔ (X ∧ Xs), A↔ (X ∧ Zs)),
append(Xs, Ys, Zs).

Fig. 8. inorder program expressed in ccp and as a Pos abstraction

abstracted from below whereas the tell constraints are abstracted from above.
More exactly, an ask abstraction is stronger than the ask constraint – when-
ever the abstraction holds then the ask constraint is satisfied; whereas the
tell abstraction is weaker than the tell constraint – whenever the tell con-
straint holds then so does its abstraction. For example, the function L ∨ A
describes states where either L or A is ground [2] which, in turn, ensure that
the ask constraint nonvar(L) ∨ nonvar(A) holds. On the other hand, once
the tell A = [V|RI] holds, then the grounding behaviour of the state (and all
subsequent states) is described by A↔ (V ∧ RI).

4.3 Least fixpoint calculation

The least fixpoint calculation approximates the success patterns of the ccp
program (and thus the Prolog with delays program) by mimicking the TP

operator [28]. A success pattern is an atom with distinct variables for argu-
ments paired with a Pos formula over those variables. This is the same notion
of success pattern as used in mode inference and, just as in mode inference,
a success pattern summarises the behaviour of an atom by describing the
bindings it can make. The lfp of the Pos program can be computed in a
finite number of iterates to give the following lfp:

F =
{
〈inorder(x1, x2), x1 ↔ x2〉
〈append(x1, x2, x3), (x1 ∧ x2)↔ x3〉

}

24 Jacob M. Howe, Andy King and Lunjin Lu

4.4 Greatest fixpoint calculation

A gfp is computed to characterise the safe call patterns of the program. A call
pattern has the same form as a success pattern. Iteration commences with

D0 =
{
〈inorder(x1, x2), true〉
〈append(x1, x2, x3), true〉

}
and incrementally strengthens the call pattern formulae until they are safe,
that is, they describe queries which are guaranteed not to violate the ask
constraints. The iterate Di+1 is computed by putting Di+1 = Di and then
revising Di+1 by considering each p(x) :- ask(d), tell(f), p1(x1), . . . , pn(xn) in
the abstract program and calculating a (monotonic) formula that describes
input modes (if any) under which the atoms in the clause can be scheduled
without suspension under local selection. A monotonic formula over set of
variables X is any formula of the form ∨n

i=1(∧Yi) where Yi ⊆ X [18]. Let di

denote a monotonic formula that describes the call pattern requirement for
pi(xi) in Di and let fi denote the success pattern formula for pi(xi) in the lfp
(that is not necessarily monotonic). A new call pattern for p(x) is computed
using the following algorithm:

• Calculate e = ∧n
i=1(di → fi) that describes the grounding behaviour of

the compound goal p1(x1), . . . , pn(xn). The intuition is that pi(xi) can be
described by di → fi since if the input requirements di hold then pi(xi)
can be executed without suspension, hence the output fi must also hold.

• Compute e′ = ∧n
i=1di which describes a groundness property sufficient

for scheduling all of the goals in the compound goal without suspension.
Then e → e′ describes a grounding property which, if satisfied, when
the compound goal is called ensures the goal can be scheduled by local
selection without suspension.

• Calculate g = d ∧ (f → (e → e′)) that describes a grounding property
which is strong enough to ensure that both the ask is satisfied and the
body atoms can be scheduled by local selection without suspension.

• Eliminate those variables not present in p(x), Y say, by calculating
g′ = ∀Y (g) where ∀{y1...yn}(g) = ∀y1(. . .∀yn(g)). Hence ∀x(f) entails f
and g′ entails g, so that a safe calling mode for this particular clause is
then given by g′.

• Compute a monotonic function g′′ that entails g′. Since g′′ is stronger
than g′ it follows that g′′ is sufficient for scheduling the compound goal
by local selection without suspension. The function g′ needs to be ap-
proximated by a monotonic function since the e → e′ step relies on di

being monotonic.
• Replace the pattern 〈p(x), g′′′〉 in Di+1 with 〈p(x), g′′ ∧ g′′′〉.

This procedure generates the following Di sequence:

D1 =
{
〈inorder(x1, x2), true〉
〈append(x1, x2, x3), x1 ∨ x3〉

}

Analysing Logic Programs by Reasoning Backwards 25

D2 =
{
〈inorder(x1, x2), x1 ∨ x2〉
〈append(x1, x2, x3), x1 ∨ x3〉

}
The gfp is reached and checked in three iterations. The result asserts that a
local selection rule exists for which inorder will not suspend if either its first
or second arguments are ground. Indeed, observe that if the first argument is
ground then body atoms of the second inorder clause can be scheduled as fol-
lows: inorder(L, LI), then inorder(R, RI), and then append(LI, A, I).
Conversely, if the second argument is ground, then the reverse ordering is suf-
ficient for non-suspension. These call patterns are intuitive and experimental
evaluation [26] suggests that unexpected and counter-intuitive call patterns
arise (almost exclusively) in buggy programs. This suggests that the analysis
has a useful rôle in bug detection and program development.

4.5 Work related to suspension inference

One of the most closely related works comes surprisingly from the compiling
control literature and in particular the problem of generating a local selection
rule under which a program universally terminates [34]. The technique of [34]
builds on the termination inference method of [50] which infers initial modes
for a query that, if satisfied, ensure that a logic program left-terminates.
The chief advance in [34] over [50] is that it additionally infers how goals
can be statically reordered so as to improve termination behaviour. This
is performed by augmenting each clause with body atoms a1, . . . , an with
n(n − 1) Boolean variables bi,j with the interpretation that bi,j = 1 if ai

precedes aj in the reordered goal and bi,j = 0 otherwise. The analysis of [50] is
then adapted to include consistency constraints among the bi,j , for instance,
bj,k ∧ ¬bi,k → ¬bi,j . In addition, the bi,j are used to determine whether
the post-conditions of ai contribute to the pre-conditions of aj . Although
motivated differently and realised differently (in terms of the Boolean µ-
calculus) this work also uses Boolean functions to finesse the problem of
enumerating the goal reorderings.

A demand analysis for the ccp language Janus [61] is proposed in [16]
which determines whether or not a predicate is uni-modal. A predicate is
uni-modal iff the argument tuple for each clause shares the same minimal
pattern of instantiation necessary for reduction. The demand analysis of a
predicate simply traverses the head and guard of each clause to determine
the extent to which arguments have to be instantiated. Body atoms need
not be considered so the analysis does not involve a fixpoint computation. A
related paper [17] presents a goal-dependent (forwards) analysis that detects
those ccp predicates which can be scheduled left-to-right without deadlock.
This work is unusual in that it attempts to detect suspension-freeness for
goals under leftmost selection. Although this approach only considers one
local selection rule, it is surprisingly effective because of the way data often
flows left-to-right.

26 Jacob M. Howe, Andy King and Lunjin Lu

5 Backwards type inference

Backwards mode inference, termination inference and suspension inference
analysis of the previous sections all apply the same operator to model re-
versed information flow – the relative pseudo-complement. The key idea that
these analyses exploit is that if d2 expresses a set of requirements that must
hold after a constraint is added to the store, and d1 models the constraint
itself, then d1 → d2 expresses the requirements that must hold on the store
before the constraint. Comparatively few domains possess a relative pseudo-
complement and, arguably, the most well-known type domain that comes
equipped with a relative pseudo-complement operator is the domain of direc-
tional types [1,30]. This section demonstrates that backwards analysis is still
applicable to problems in program development even when the domain is not
relatively pseudo-complemented or when the relative pseudo-complement is
not particularly tractable [40]. The section focuses on the problem of inferring
type signatures for predicates that are sufficient to ensure that the execution
of the program with a query satisfying the inferred type signatures will be
free from type errors. This problem generalises backwards mode inference –
types are richer than modes. It also generalises type checking in which the
programmer declares type signatures for all predicates in the program and a
type checker verifies that the program is well-typed with respect to these type
signatures, that is, these type signatures are consistent with the operational
semantics of the program.

The value of type inference is illustrated by returning to the quicksort
program listed in Figure 1. A type checker would require the programmer to
declare type signatures for qs and pt and then check if the program is well-
typed with respect to these and the type signatures for builtin predicates ≤
and > stipulated in the user manual. In contrast, type signature inference
will infer that if qs is called with a list of numbers as the first argument
then the execution of the program will not violate the type signatures of ≤
and >; the programmer need not declare types for qs nor pt. Backwards type
analysis gives the programmer the flexibility not to declare and maintain type
signatures for predicates that are subject to frequent modifications during
program development. In the extreme situation, the programmer may choose
to leave unspecified type signatures for all user-defined predicates and let
the analyser to infer type signatures from builtin and library predicates.
One application of the new analysis is automatic program documentation.
Type signatures provide valuable information for both program development
and maintenance [62]. Another application is in bug detection. The inferred
type signature for a predicate can be compared with that intended by the
programmer and any discrepancy indicates the possible existence of bugs.

Analysing Logic Programs by Reasoning Backwards 27

5.1 Greatest fixpoint calculation

The analysis is performed by computing a greatest fixpoint. It starts by as-
suming that no call causes a type error and then checks this assumption by
reasoning backwards over all clauses. If an assertion is violated, pre-conditions
are strengthened, and the whole process is repeated. The basic datum of the
analysis is a type constraint. A type constraint is a disjunction of conjunctive
type constraints. A conjunctive type constraint, in turn, is a conjunction of
atomic type constraints of the form x:τ where x is a variable and τ a type
that denotes a set of terms closed under instantiation. Similarly to before, tell
constraints distinguish syntactic equations from assertions which are them-
selves indicated by ask constraints. The assertions specify type constraints
which must be respected by the execution of the program.

Each clause of the normalised program takes the form of p(x) :- B1, . . . , Bk

where each Bi is either:

• an assertion ask(φ) where φ is a type constraint or
• tell(E) where E is a syntactic equation (unification) or
• a call to an atom q(y) where y is a vector of distinct variables.

Unlike previously, ask and tell constraints can occur multiply within the same
clause. A conjunction of body atoms B1, . . . , Bk is executed left-to-right.

As previously, backwards analysis reduces to computing a finite sequence
of iterates Di. Each Di is a mapping from an atom p(x) to a function that
itself maps a type constraint φR to another φL such that the execution of
p(x) in a state satisfying φL succeeds (if it does) only in a state satisfying
φR and respects type constraints given by the assertions. The pair 〈p(x), φR〉
is called a demand whereas φL is a pre-condition for 〈p(x), φR〉. Di+1 is
computed from Di by updating the pre-condition for each demand in Di and
adding new demands to Di+1 if necessary. For a demand 〈p(x), φR〉, a type
constraint φC

L is computed from each clause p(x) :- B1, . . . , Bk by computing
a series ψk, . . . , ψ0 of type constraints. This starts by assigning ψk = φR.
Then every other ψj−1 is computed from ψj as follows:

• If Bj = ask(φ) then ψj−1 is calculated by ψj−1 = ψj ∧ φ.
• If Bj = tell(E) then ψj−1 is computed by performing backwards ab-

stract unification. Backwards abstract unification ensures that the result
of unifying E in the context of a store satisfying ψj−1 is a store sat-
isfying ψj . Since the domain is not condensing, backwards unification
cannot coincide with the relative pseudo-complement operator. The rela-
tive pseudo-complement operator is unique in that it delivers the weakest
abstraction which when combined with one given abstraction, entails an-
other given abstraction. This suggests there may exist a pre-condition
which is strictly weaker than ψj−1 or strictly incomparable with ψj−1

which is also sufficient for ensuring that ψj holds after E. Put another
way, backwards unification does not come with the precision guarantee
that characterises the relative pseudo-complement.

28 Jacob M. Howe, Andy King and Lunjin Lu

• If Bj = q(y) is a call to a user-defined predicate then ψj−1 is computed
as follows:
– Let ψj =

∨m
l=1 µl where each µl is a conjunctive type constraint.

– Apply existential quantification to project µl onto the variables y to
obtain νl. Hence νl is weaker than µl, that is, νl holds if µl holds.
Moreover, 〈q(y), νl〉 is a demand that constrains only variables in y.

– If 〈q(y), νl〉 (modulo renaming) is in Di then ωl = Di(〈q(y), νl〉);
recall that Di is interpreted as a mapping from demands to
pre-conditions.

– Otherwise, ωl = true and 〈q(y), νl〉 7→ true is added into Di+1,
thereby introducing a new demand.

– Put ψj−1 =
∨m

l=1(ωl ∧ υl) where each υl is obtained from µl by
applying existential quantification to project out variables in y.

Then ψj−1 is a pre-condition for 〈q(y), ψj〉 provided that ωl is a
pre-condition for 〈q(y), νl〉 for each l.

Finally φC
L is computed from ψ0 via universal quantification by projecting

onto the variables within p(x). As in the previous backwards analyses, this
strengthens the pre-condition such that ψ0 holds if φC

L holds.

5.2 Worked example on type inference

To illustrate, consider the insertionsort program listed in the first column
of Figure 9. The second column gives the program in a normalised form, dec-
orated with ask and tell constraints. Note how the tests X > Y and X ≤ Y are
both replaced with the tell constraint X:num∧Y:num where num denotes the
set of numbers. Unlike the previous backwards analyses, the analysis is driven
from an initial demand. The initial demand is the pair 〈sort(Xs, Ys), true〉
for which a pre-condition is required, hence D0 is:

D0 = {〈sort(Xs, Ys), true〉 7→ true}

The iterate D1 is computed by successively updating D0 by considering
each clause in turn. To illustrate, consider the first clause for sort where
B1 = append(As, Cs, Xs), . . . , B6 = sort(Zs, Ys). This clause has 6 body
atoms and analysis amounts to computing ψ5, . . . , ψ0 where ψ6 = true. The
analysis proceeds as follows:

• Firstly, ψ5 = true is computed. Since B6 = sort(Zs, Ys) is an atom,
ψ6 is projected onto the variables {Zs, Ys}, yielding true. Then D1 is
checked for the demand 〈B6, true〉. Because 〈sort(Zs, Ys), true〉 is a vari-
ant of 〈sort(Xs, Ys), true〉, no new demand is added to D1 and thus
ψ5 = D1(〈sort(Zs, Ys), true〉) = true.

Analysing Logic Programs by Reasoning Backwards 29

sort(Xs, Ys) :-

append(As, [X, Y|Bs], Xs),

X > Y,

append(As, [Y, X|Bs], Zs),

sort(Zs, Ys).

sort(Xs, Xs) :-

order(Xs).

append([], Ys, Ys) :- true.

append([X|Xs], Ys, [X|Zs]) :-

append(Xs, Ys, Zs).

order([]) :- true.

order([]) :- true.

order([X, Y|Xs]) :-

X ≤ Y,

order([Y|Xs]).

sort(Xs, Ys) :-

append(As, Cs, Xs),

tell(Cs = [X, Y|Bs]),
ask(X:num ∧ Y:num),

tell(Ds = [Y, X|Bs]),
append(As, Ds, Zs),

sort(Zs, Ys).

sort(Xs, Ys) :-

tell(Xs = Ys),

order(Xs).

append(Xs, Ys, Zs) :-

tell(Xs = [], Ys = Zs).

append(Xs, Ys, Zs) :-

tell(Xs = [X|Xs1], Zs = [X|Zs1]),
append(Xs1, Ys, Zs1).

order(Xs) :-

tell(Xs = []).

order(Xs) :-

tell(Xs = []).

order(Xs) :-

tell(Xs = [X|Xs1], Xs1 = [Y|Ys]),
ask(X:num ∧ Y:num),

order(Xs1).

Fig. 9. insertionsort expressed in Prolog and with type assertions

• Secondly, ψ4 = true is computed. As previously B5 = append(As, Ds, Zs)
is an atom. Thus true is projected onto {As, Ds, Zs}, obtaining true. Un-
like before, D1 does not contain the demand 〈B5, true〉 and therefore D1

is updated to

D1 =
{
〈append(As, Ds, Zs), true〉 7→ true,

〈sort(Xs, Ys), true〉 7→ true

}
and ψ4 = D1(〈append(As, Ds, Zs), true〉) = true.

• Thirdly, ψ3 = true is computed. Because B4 = tell(Ds = [Y, X|Bs]), back-
wards abstract unification is applied. Since ψ4 = true, this requirement
is trivially satisfied, hence ψ3 = true.

• Fourthly, ψ2 = X:num ∧ Y:num is computed. Since B3 = ask(X:num ∧
Y:num), ψ2 = ψ3 ∧ φ where B3 = ask(φ).

• Fifthly, ψ1 = (X:num ∧ Y:num) ∨ Cs:list(num) is computed where list is
the standard polymorphic list constructor associated with the typing rules
list(β) ::= [] and list(β) ::= [β|list(β)]. Abstract backwards unification is

30 Jacob M. Howe, Andy King and Lunjin Lu

applied since B2 = tell(Cs = [X, Y|Bs]). The conjunct (X:num ∧ Y:num)
derives from the fact that a type constraint that holds before unification
also holds after unification. The conjunct Cs:list(num) derives from the
fact that both Cs and [X, Y|Bs] are of the same type after unification
and Cs:list(num) implies [X, Y|Bs]:list(num), hence (X:num∧Y:num). More
generally, backwards abstract unification takes as inputs an equational
constraint E and a type constraint ψ and produces as output a type
constraint φ which describes θ whenever ψ describes mgu(θ(E)) ◦ θ.

• Sixthly, ψ0 = true is computed. Since B1 = append(As, Cs, Xs) is an
atom, (X:num∧Y:num) is projected onto {As, Cs, Xs} yielding true. A vari-
ant of 〈append(As, Cs, Xs), true〉 is contained within D1. However, pro-
jecting {As, Cs, Xs} out of (X:num∧Y:num) yields (X:num∧Y:num). Thus,
one pre-condition for 〈append(As, Cs, Xs), (X:num ∧ Y:num)〉 is (true ∧
(X:num ∧ Y:num)) = (X:num ∧ Y:num). Another is obtained by project-
ing Cs:list(num) onto {As, Cs, Xs} to obtain Cs:list(num), hence D1 is
updated with the new demand:

D1 =

 〈append(As, Ds, Zs), true〉 7→ true,
〈append(As, Cs, Xs), Cs:list(num)〉 7→ true,

〈sort(Xs, Ys), true〉 7→ true

Because D1(〈append(As, Cs, Xs), Cs:list(num)〉) = true, the other pre-
condition for 〈append(As, Cs, Xs), Cs:list(num)〉 is true. Therefore ψ0 =
(X:num ∧ Y:num) ∨ true = true.

Processing the second clause of sort gives the same pre-condition true and
introduces one more demand 〈order(Xs), true〉. Therefore

D1 =

〈append(As, Ds, Zs), true〉 7→ true,

〈append(As, Cs, Xs), Cs:list(num)〉 7→ true,
〈order(Xs), true〉 7→ true,
〈sort(Xs, Ys), true〉 7→ true

Omitting details of the remaining computation, the gfp is reached at D5 with

D5 =

〈append(Xs, Ys, Zs), true〉 7→ true,
〈append(Xs, Ys, Zs), Zs:list(num)〉 7→ Zs:list(num),
〈append(Xs, Ys, Zs), Ys:list(num)〉 7→

Ys:list(num) ∨ Zs:list(num),
〈order(Xs), true〉 7→ Xs:list(num),
〈sort(Xs, Ys), true〉 7→ Xs:list(num)

The gfp asserts that sort cannot generate a type error (nor any predicate it
subsequently calls) if it is called with a list of numbers as its first argument.
It also states that order will not generate a type error if it called with a list
of numbers. Interestingly, it also asserts that calling append with its third
argument instantiated to a list of numbers ensures that its second argument
is instantiated to a list of numbers.

Analysing Logic Programs by Reasoning Backwards 31

5.3 Work related to type inference

Type analysis can be performed either with or without type definitions pro-
vided by the programmer. The former are easy for the programmer to under-
stand whereas the latter are useful in compiler optimisation but can be more
difficult for the programmer to interpret. If type definitions are not given by
the programmer, then the analysis has to infer both the type definitions and
the type descriptions for the program components. Traditionally unary regu-
lar logic programs [66] and type graphs [13] have been applied to this class of
problem, though modern set-based techniques founded on non-deterministic
finite tree automata offer a number of advantages [23].

Alternatively, if type definitions are supplied by the programmer, then
the analysis need only infer type descriptions from the type constructors for
the program components. In this class of problem of particular note is the
work on formulating type dependency domains with ACI-unification [9] since
the resulting domains condense. Directional type analysis [1,59] is likewise
performed with type definitions provided by the programmer. A directional
type p(x) : σ → τ indicates that if p(x) is called with x being of type σ then
x is of type τ upon the success of p(x). Aiken and Lakshman [1] provide a
procedure for checking if a program is well-typed with respect to a given set
of monomorphic directional types, whereas Rychlikowski and Truderung [59]
provide type checking and inference algorithms for polymorphic types.

All the above type analyses propagate type information in the direction
of program execution and compute upper approximations to the set of reach-
able program stores. In contrast, the backwards type analysis reviewed in
this section propagates type information in the reverse direction of program
execution and computes lower approximations to the set of program stores
from which the execution will not violate any type assertions.

6 Directions for research on backwards analysis

6.1 Backwards analysis and module interaction

When reasoning about module interaction it can be advantageous to reverse
the traditional deductive approach to abstract interpretation that is based
on the abstract unfolding of abstract goals. In particular, [27] shows how
abduction and abstraction can be combined to compute those properties that
one module must satisfy to ensure that its composition with another fulfils
certain requirements. Abductive analysis can, for example, determine how an
optimisation in one module depends on a predicate defined in another module.
Abductive analysis is related to backwards analysis since abduction is the
inverse of deduction in much the same way that relative pseudo-complement
is the reverse of conjunction. This suggests that the relationship between
backwards analysis and abductive analysis warrants further investigation.

32 Jacob M. Howe, Andy King and Lunjin Lu

6.2 Backwards analysis and unfolding

Automatic program specialisation is a reoccurring theme in logic program
development and one important aspect of this is the control of polyvariance
[58]. Too much polyvariance (too many versions of a predicate) can lead to
code bloat whereas too little polyvariance (too few versions of a predicate)
can impede program specialisation and thereby efficiency. Surprisingly few
works have addressed the problem of relating polyvariance to the ensuing op-
timisations [58], but recent work [49] has suggested that backwards analysis
can be applied to control polyvariance by inferring specialisation conditions.
Backwards analysis then becomes a pre-processing step that precedes the
goal-dependent analysis and determines the degree of unfolding. Specifically,
if the specialisation conditions are satisfied by an (abstract) call in a goal-
dependent analysis then the call will possibly lead to valuable optimisations,
and therefore it should not be merged with calls that lead to a lower level of
optimisation. The backwards analysis in effect provides a convenient separa-
tion of concerns in that it enables version generation decisions to be made
prior to applying top-down analysis. This work generalises and refines ear-
lier work on compile-time garbage collection [48] that presents a kind of ad
hoc backwards analysis for deriving reuse conditions for Mercury [62]. These
works, and in particular [49], show how backwards analysis can provide a
useful separation of concerns: the backwards analysis infers specialisation
conditions which are later used in version control. This is reminiscent of the
separation of control from unfolding that arises in off-line binding-time anal-
ysis [6]. In fact one promising direction for research would be to investigate
how termination inference can be adapted to infer conditions under which
loops can be partially unfolded.

6.3 Backwards analysis and Hoare logic

Pedreschi and Ruggieri [55] develop a calculus of weakest pre-conditions and
weakest liberal pre-conditions, the latter of which is essentially a reformula-
tion of Hoare’s logic. Weakest liberal pre-conditions are characterised as the
greatest fixpoint of a co-continuous operator on the space of interpretations.
The work is motivated by, among other things, the desire to infer the absence
of ill-typed arithmetic. Interestingly, it has been recently shown [40] that
backwards analysis not only infers sufficient pre-conditions but the weakest
pre-conditions. On the practical side, it means that backwards analysis need
not be applied if forwards analysis cannot verify that a given query satisfies
the assertions. Conversely, if an initial query is not inferred by backwards
analysis, then it follows that forwards analysis cannot infer that the query
satisfies the assertions. More generally, the expressive power of any backwards
analysis needs to be compared against that of the forwards analysis that it
attempts to reverse.

Analysing Logic Programs by Reasoning Backwards 33

6.4 Backwards analysis and domain refinement

Recent work in domain refinement [29] has shown that the problem of mini-
mally enriching an abstract domain to make it condense reduces to the prob-
lem of making the domain complete with respect to unification. Specifically,
the work shows that unification coincides with multiplicative conjunction in
a quantale of (idempotent) substitutions and that elements in a complete
refined (condensing) abstract domain can be expressed in terms of linear
logic. The significance of this work for backwards analysis, is that it pro-
vides a pathway for synthesising condensing domains that are not necessarily
downward-closed. This suggests that the framework of [39] needs to be revised
to accommodate these domains.

6.5 Backwards analysis and transformation

Very recently Gallagher [22] has proposed program transformation as a tac-
tic for realising backwards analysis in terms of forwards analysis. Assertions
are realised with a meta-predicate d(G, P) which expresses the relationship
between an initial goal G and a property P to be checked at some program
point. The meta-predicate d(G,P) holds if there is a derivation starting from
G leading to the program point. The transformed program defining the predi-
cate d can be seen as a realisation of the resultants semantics [21]. Backwards
analysis is performed by examining the meaning of d, which can be approxi-
mated using a standard forwards analysis, to deduce goals G that imply that
the property P holds. This work is both promising and intriguing because
it finesses the requirement of calculating a greatest fixpoint. One interesting
line of enquiry would be to compare the expressive power of transformation –
the pre-conditions its infers – against those deduced via a bespoke backwards
analysis framework [39,44].

7 Concluding discussion

This paper has shown how four classic program analysis and program de-
velopment problems can be reversed. Reversal is a laudable goal in program
analysis because it transforms a goal-dependent, checking problem into a
goal-independent, inference problem; the latter being more general than the
former. Arguably the greatest strength of backwards analysis is its ease of
automation: backwards analyses can be surprisingly simple to implement and
efficient to apply, and goal-independence means that it can be applied with-
out any programmer interaction. Programmers merely have to interpret the
inferred results and inspect the program if the results do not match their
expectations. Thus, although backwards analysis is not yet a mainstream
technology in the analysis of logic programs, its benefits need to be carefully
weighed when a particular program development problem is being considered.

34 Jacob M. Howe, Andy King and Lunjin Lu

Backwards analysis is a modern approach to the analysis of logic programs
in the sense that it relies on ideas that have been developed comparatively
recently within the context of domain refinement. Backwards analysis thus
illustrates the value of foundational work in logic program development. It
also demonstrates the benefits of developing programs within the context of
logic programming: the elegance of the underlying semantics manifests itself
in the simplicity of the analyses. In fact it is fair to say that if we have
seen slightly further in program development, it is only because we stand on
the shoulders of those who have developed the underpinning semantics and
abstract interpretation techniques.

Acknowledgements Our work on backwards analysis has greatly benefited
from discussions with Maurice Bruynooghe, Mike Codish, John Gallagher
Samir Genaim, Roberto Giacobazzi, Bart Massey, Fred Mesnard,
Germán Puebla, Francesca Scozzari to name but a few. We also thank the
anonymous referees for their valuable comments. This work was supported,
in part, by the Nuffield Foundation grant NAL/00478/G and the National
Science Foundation grants CCR-0131862 and INT-0327760.

References

1. A. Aiken and T. K. Lakshman. Directional Type Checking of Logic Programs.
In B. Le Charlier, editor, Static Analysis Symposium, volume 864 of Lecture
Notes in Computer Science, pages 43–60. Springer-Verlag, 1994.

2. T. Armstrong, K. Marriott, P. Schachte, and H. Søndergaard. Two Classes of
Boolean Functions for Dependency Analysis. Science of Computer Program-
ming, 31(1):3–45, 1998.

3. F. Benoy and A. King. Inferring Argument Size Relationships with CLP(R).
In J. Gallagher, editor, Logic Program Synthesis and Transformation (Selected
Papers), volume 1207 of Lecture Notes in Computer Science, pages 204–224.
Springer-Verlag, 1996.

4. J. Boye, W. Drabent, and J. Ma luszyński. Declarative Diagnosis of Con-
straint Programs: an Assertion-based Approach. In Proceedings of the Third
International Workshop on Automated Debugging, pages 123–141. University
of Linköping Press, 1997.

5. A. Brodsky and Y. Sagiv. Inference of Monotonicity Constraints in Datalog
Programs. In Symposium on Principles of Database Systems, pages 190–199.
ACM Press, 1989.

6. M. Bruynooghe, M. Leuschel, and K. Sagonas. A Polyvariant Binding-Time
Analysis for Off-line Partial Deduction. In C. Hankin, editor, European Sym-
posium on Programming, volume 1381 of Lecture Notes in Computer Science,
pages 27–41. Springer-Verlag, 1998.

7. M. Carlsson. Freeze, Indexing, and Other Implementation Issues in the WAM.
In J.-L. Lassez, editor, International Conference on Logic Programming, pages
40–58. MIT Press, 1987.

Analysing Logic Programs by Reasoning Backwards 35

8. M. Codish, M. Falaschi, and K. Marriott. Suspension Analyses for Concur-
rent Logic Programs. Transactions on Programming Languages and Systems,
16(3):649–686, 1994.

9. M. Codish and V. Lagoon. Type Dependencies for Logic Programs using ACI-
unification. Theoretical Computer Science, 238:131–159, 2000.

10. M. Codish and C. Taboch. A Semantic Basis for the Termination Analysis of
Logic Programs. The Journal of Logic Programming, 41(1):103–123, 1999.

11. C. Codognet, P. Codognet, and M. Corsini. Abstract Interpretation for Con-
current Logic Languages. In S. K. Debray and M. V. Hermenegildo, editors,
North American Conference on Logic Programming, pages 215–232. MIT Press,
1990.

12. M. Comini, R. Gori, G. Levi, and P. Volpe. Abstract Interpretation based Ver-
ification of Logic Programs. Electronic Notes of Theoretical Computer Science,
30(1), 1999.

13. A. Cortesi, B. Le Charlier, and P. Van Hentenryck. Type Analysis of Prolog
using Type Graphs. The Journal of Logic Programming, 22(3):179–208, 1995.

14. P. Cousot and R. Cousot. Inductive Principles for Proving Invariance Properties
of Programs. In Tools and Notions for Program Construction, pages 75–119.
Cambridge University Press, 1982.

15. P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints Among
Variables of a Program. In Symposium on Principles of Programming Lan-
guages, pages 84–97. ACM Press, 1978.

16. S. K. Debray. QD-Janus: a Sequential Implementation of Janus in Prolog.
Software Practice and Experience, 23(12):1337–1360, 1993.

17. S. K. Debray, D. Gudeman, and P. Bigot. Detection and Optimization of
Suspension-free Logic Programs. The Journal of Logic Programming, 29(1–
3):171–194, 1992.

18. P. Dyber. Inverse Image Analysis Generalises Strictness Analysis. Information
and Computation, 90(2):194–216, 1991.

19. M. Falaschi, P. Hicks, and W. Winsborough. Demand Transformation Analy-
sis for Concurrent Constraint Programs. The Journal of Logic Programming,
41(3):185–215, 2000.

20. M. Gabbrielli and R. Giacobazzi. Goal Independency and Call Patterns in the
Analysis of Logic Programs. In ACM Symposium on Applied Computing, pages
394–399. ACM Press, 1994.

21. M. Gabbrielli, G. Levi, and M. C. Meo. Resultants Semantics for Prolog.
Journal of Logic and Computation, 6(4):491–521, 1996.

22. J. P. Gallagher. A Program Transformation for Backwards Analysis of Logic
Programs. In M. Bruynooghe, editor, Pre-proceedings of the International Sym-
posium on Logic-based Program Synthesis and Transformation, volume CW 365
of Katholieke Universiteit Leuven, Technical Report, pages 113–122, 2003.

23. J. P. Gallagher and G. Puebla. Abstract Interpretation over Non-deterministic
Finite Tree Automata for Set-based Analysis of Logic Programs. In S. Krish-
namurthi and C. R. Ramakrishnan, editors, Practical Aspects of Declarative
Languages, volume 2257 of Lecture Notes in Computer Science, pages 243–261.
Springer-Verlag, 2002.

24. S. Genaim and M. Codish. Inferring Termination Conditions for Logic Pro-
grams using Backwards Analysis. In R. Nieuwenhuis and A. Voronkov, ed-
itors, International Conference on Logic for Programming, Artificial Intelli-
gence and Reasoning, volume 2250 of Lecture Notes in Artificial Intelligence,

36 Jacob M. Howe, Andy King and Lunjin Lu

pages 681–690. Springer-Verlag, 2001. Technical report version available at
http://www.cs.bgu.ac.il/~mcodish/Papers/Pages/lpar01.html.

25. S. Genaim, M. Codish, J. P. Gallagher, and V. Lagoon. Combining Norms
to Prove Termination. In A. Cortesi, editor, Verification, Model Checking and
Abstract Interpretation, volume 2294 of Lecture Notes in Computer Science,
pages 126–138. Springer-Verlag, 2002.

26. S. Genaim and A. King. Goal-Independent Suspension Analysis for Logic Pro-
grams with Dynamic Scheduling. In P. Degano, editor, European Symposium
on Programming, volume 2618 of Lecture Notes in Computer Science, pages
84–98. Springer-Verlag, 2003.

27. R. Giacobazzi. Abductive Analysis of Modular Logic Programs. Journal of
Logic and Computation, 8(4):457–484, 1998.

28. R. Giacobazzi, S. K. Debray, and G. Levi. Generalized Semantics and Abstract
Interpretation for Constraint Logic Programs. The Journal of Logic Program-
ming, 25(3):191–248, 1995.

29. R. Giacobazzi, F. Ranzato, and F. Scozzari. Making Abstract Domains Con-
densing. ACM Transactions on Computational Logic, To appear.

30. R. Giacobazzi and F. Scozzari. A Logical Model for Relational Abstract
Domains. ACM Transactions on Programming Languages and Systems,
20(5):1067–1109, 1998.

31. C. Hall and D. Wise. Generating Function Versions with Rational Strictness
Patterns. Science of Computer Programming, 12:39–74, 1989.

32. M. Hanus. Compile-time Analysis of Nonlinear Constraints in CLP(R). New
Generation Computing, 13(2):155–186, 1995.

33. A. Heaton, M. Abo-Zaed, M. Codish, and A. King. A Simple Polynomial
Groundness Analysis for Logic Programs. The Journal of Logic Programming,
45(1–3):143–156, 2000.

34. S. Hoarau and F. Mesnard. Inferring and Compiling Termination for Con-
straint Logic Programs. In P. Flener, editor, Logic-based Program Synthesis
and Transformation (Selected Papers), volume 1559 of Lecture Notes in Com-
puter Science, pages 240–254. Springer-Verlag, 1998.

35. C. A. R. Hoare, I. J. Hayes, J. He, C. Morgan, A. W. Roscoe, J. W. Sanders,
I. H. Sorensen, J. M. Spivey, and B. Sufrin. Laws of Programming. Communi-
cations of the ACM, 30(8):672–686, 1987.

36. J. M. Howe and A. King. Abstracting Numeric Constraints with Boolean Func-
tions. Information Processing Letters, 75(1–2):17–23, 2000.

37. J. M. Howe and A. King. Positive Boolean Functions as Multiheaded Clauses. In
P. Codognet, editor, International Conference on Logic Programming, volume
2237 of Lecture Notes in Computer Science, pages 120–134. Springer-Verlag,
2001.

38. J. M. Howe and A. King. Efficient Groundness Analysis in Prolog. Theory and
Practice of Logic Programming, 3(1):95–124, 2003.

39. A. King and L. Lu. A Backward Analysis for Constraint Logic Programs.
Theory and Practice of Logic Programming, 2:517–547, 2002.

40. A. King and L. Lu. Forward versus Backward Verification of Logic Programs.
In C. Palamidessi, editor, International Conference on Logic Programming,
volume 2916 of Lecture Notes in Computer Science, pages 315–330. Springer-
Verlag, 2003.

Analysing Logic Programs by Reasoning Backwards 37

41. A. King and P. Soper. Schedule Analysis of Concurrent Logic Programs. In
K. R. Apt, editor, Joint International Conference and Symposium on Logic
Programming, pages 478–492. MIT Press, 1992.

42. B. Le Charlier, C. Leclére, S. Rossi, and A. Cortesi. Automatic Verification of
Prolog Programs. The Journal of Logic Programming, 39(1–3):3–42, 1999.

43. N. Lindenstrauss, Y. Sagiv, and A. Serebrenik. Unfolding the Mystery of Merge-
sort. In N. E. Fuchs, editor, Logic Program Synthesis and Transformation
(Selected Papers), volume 1463 of Lecture Notes in Computer Science, pages
206–225. Springer-Verlag, 1997.

44. L. Lu and A. King. Backward Type Inference Generalises Type Checking.
In M. V. Hermenegildo and G. Puebla, editors, Static Analysis Symposium,
volume 2477 of Lecture Notes in Computer Science, pages 85–101. Springer-
Verlag, 2002.

45. K. Marriott, M. Garćıa de la Banda, and M. V. Hermenegildo. Analyzing Logic
Programs with Dynamic Scheduling. In Principles of Programming Languages,
pages 240–254. ACM Press, 1994.

46. K. Marriott and H. Søndergaard. Precise and Efficient Groundness Analysis
for Logic Programs. ACM Letters on Programming Languages and Systems,
2(4):181–196, 1993.

47. J. C. Martin and A. King. Generating Efficient, Terminating Logic Programs.
In Theory and Practice of Software Development, volume 1214 of Lecture Notes
in Computer Science, pages 273–284. Springer-Verlag, 1997.

48. N. Mazur, G. Janssens, and M. Bruynooghe. A Module Based Analysis for
Memory Reuse in Mercury. In Computational Logic, volume 1861 of Lecture
Notes in Artificial Intelligence, pages 1255–1269, 2000.

49. N. Mazur, G. Janssens, and V. Van Hoof. Collecting Potential Optimizations.
In M. Leuschel, editor, Logic-based Program Synthesis and Transformation,
volume 2664 of Lecture Notes in Computer Science, pages 109–110, 2002.

50. F. Mesnard. Inferring Left-terminating Classes of Queries for Constraint Logic
Programs. In Joint International Conference and Symposium on Logic Pro-
gramming, pages 7–21. MIT Press, 1996.

51. F. Mesnard and U. Neumerkel. Applying Static Analysis Techniques for Infer-
ring Termination Conditions of Logic Programs. In Static Analysis Symposium,
volume 2126 of Lecture Notes in Computer Science, pages 93–110. Springer-
Verlag, 2001.

52. F. Mesnard, É. Payet, and U. Neumerkel. Detecting Optimal Termination
Conditions of Logic Programs. In M. V. Hermenegildo and G. Puebla, editors,
Static Analysis Symposium, volume 2477 of Lecture Notes in Computer Science,
pages 509–526. Springer-Verlag, 2002.

53. F. Mesnard and S. Ruggieri. On Proving Left Termination of Constraint Logic
Programs. ACM Transactions on Computational Logic, 4(2):207–259, 2003.

54. L. Naish. Negation and Quantifiers in NU-Prolog. In E. Y. Shapiro, editor,
International Conference on Logic Programming, volume 225 of Lecture Notes
in Computer Science, pages 624–634. Springer-Verlag, 1986.

55. D. Pedreschi and S. Ruggieri. Weakest Preconditions for Pure Prolog Programs.
Information Processing Letters, 67(3):145–150, 1998.

56. G. Puebla, F. Bueno, and M. V. Hermenegildo. An Assertion Language for
Constraint Logic Programs. In Analysis and Visualization Tools for Constraint
Programming, volume 1870 of Lecture Notes in Computer Science, pages 23–61.
Springer-Verlag, 2000.

38 Jacob M. Howe, Andy King and Lunjin Lu

57. G. Puebla, F. Bueno, and M. V. Hermenegildo. A Generic Preprocessor for
Program Validation and Debugging. In Analysis and Visualization Tools for
Constraint Programming, volume 1870 of Lecture Notes in Computer Science,
pages 63–107. Springer-Verlag, 2000.

58. G. Puebla and M. V. Hermenegildo. Abstract Multiple Specialization and its
Application to Program Parallelization. The Journal of Logic Programming,
41(2&3):279–316, 1999.

59. P. Rychlikowski and T. Truderung. Polymorphic Directional Types for Logic
Programming. In International Conference on Principles and Practice of
Declarative Programming, pages 61–72. ACM Press, 2001.

60. V. A. Saraswat. Concurrent Constraint Programming. MIT Press, 1993.
61. V. A. Saraswat, K. Kahn, and J. Levy. Janus: a Step Towards Distributed Con-

straint Programming. In North American Conference on Logic Programming,
pages 431–446. MIT Press, 1990.

62. Z. Somogyi, F. Henderson, and T. Conway. The Execution Algorithm of Mer-
cury, an Efficient Purely Declarative Logic Programming Language. The Jour-
nal of Logic Programming, 29(1–3):17–64, 1996.

63. L. Vielle. Recursive Query Processing: The Power of Logic. Theoretical Com-
puter Science, 69(1):1–53, 1989.

64. P. Volpe. A First-Order Language for Expressing Aliasing and Type Properties
of Logic Programs. Science of Computer Programming, 39(1):125–148, 2001.

65. P. Wadler and R. J. M. Hughes. Projections for Strictness Analysis. In Func-
tional Programming and Computer Architecture, volume 274 of Lecture Notes
in Computer Science, pages 385–407. Springer-Verlag, 1987.

66. E. Yardeni and E. Y. Shapiro. A Type System for Logic Programs. The Journal
of Logic Programming, 10(2):125–153, 1991.

