
Implementing Type-Based Constructive Negation

Lunjin Lu
Department Of Computer Science and Engineering

Oakland University
lunjin@acm.org

ABSTRACT
This paper presents an implementation of a constructive
negation method. The constructive negation method makes
use of type dependencies between arguments of a predicate
to rewrite negative goals in a logic program. The construc-
tive negation method is first reformulated as a derivation
rule. Then an algorithm for efficiently implementing the
derivation rule is presented and its complexity is analyzed.
Keywords: Constructive negation, Logic programs, Types

1. INTRODUCTION
A challenging issue in logic programming is how to find

answers to negative goals. The “negation by failure” rule
that is adopted in majority of logic programming systems is
problematic: it does not allow negative goals to bind vari-
ables. Any use of a negative goal other than as a test may
lead to non-monotonicity of the system in the sense that the
system produces less output information given more input
information. To solve this problem, various “constructive
negation” methods have been proposed that find solutions
to negative goals.

One of the proposed methods makes use of existence prop-
erties to construct answers to negative goals. It was orig-
inally proposed in [9] where existence properties are func-
tional dependencies between arguments to a predicate. Let
sq(x, y) denote square relation in the domain of real num-
bers. The predicate sq(x, y) holds iff x2 = y holds. It has
this property.

For any real number x, there is a
unique y such that sq(x, y) is true.

(P)

Using property (P), ¬∃y.(sq(x, y) ∧ q(y)) is rewritten to
sq(x, y) ∧ ¬q(y). Note that the atom sq(x, y) has been ex-
tracted out of the scope of negation. Existentially quantified
variable are called local and other variables global. The pre-
requisite is restrictive that a functional dependency exists
between arguments to a predicate. Cleary et. al generalize
the notion of an existence property [10]. An input may now

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. SAC’07, March 11-15, 2007, Seoul, Korea.
Copyright 2007 ACM 1-59593-480-4/07/0003 ...$5.00.

correspond to multiple outputs provided that each output
can be isolated into a sub-domain, which make the gener-
alized method applicable to more negative goals. Domain
constraints are expressed as type constraints in [10]. Ex-
amples of generalized existence properties can be found in
section 2. The method developed in [9, 10] offer two advan-
tages over other proposed methods. Firstly, the method can
be applied in program transformation because it extracts
an atom from a negative goal without executing the atom.
Other methods execute the atom in order to construct solu-
tions to the negative goal. Secondly, the method may avoid
satisfiability tests when used as a simplification procedure
(cf. example 7). See section 7 for more detailed discussion
about related work.

This paper continues work in [10] and addresses two key is-
sues in implementing the rewrite rules. A crucial task of any
implementation of [10] is to introduce new local variables
into an atom inside a negative goal so that it satisfies a given
existence property. Consider ¬(sq(x, 16)∧q(16)). The atom
sq(x, 16) does not satisfy property (P) and hence cannot be
extracted. This is because the unique y such that sq(x, y)
holds is not necessarily 16. However, ¬(sq(x, 16) ∧ q(16))
can be transformed to ¬∃y′.(sq(x, y′) ∧ 16 = y′ ∧ q(16))
by introducing a new local variable y′. The transformed
goal can then be rewritten to sq(x, y′) ∧ ¬(16 = y′ ∧ q(16))
since sq(x, y′) satisfies property (P). In general cases, the
task of introducing new local variables is much more com-
plicated. We present an algorithm in this paper that tests
if an existence property can be used to extract an atom by
introducing zero or more new local variables.

Another essential issue is how to find quickly an extractable
atom inside a negative goal. Let Gi be sq(xi−1, xi) and G be
¬∃x1.∃x2. · · · ∃xn.∃xn+1.[Gn ∧ Gn−1 · · ·G2 ∧ G1]. By re-
peatedly using property (P), we can extract from the neg-
ative goal G atoms G1, G2 to Gn−1 in order and obtain
G1 ∧ G2 · · ·Gn−1 ∧ ¬∃xn+1.Gn. Observe that Gj becomes
extractable after and only after xj becomes global upon ex-
traction of Gj−1. We use a digraph to represent a negative
goal. The digraph links an atom to a local variables iff the
local variable occurs in the atom. This data structure allows
efficient identification of extractable atoms. We present an
implementation of [10] based on the digraph representation
of negative goals and the above mentioned algorithm. This
is the main contributions of the paper. In addition, rewrite
rules in [10] have been substantially reformulated.

The rest of the paper is organized as follows. Section 2
reformulates the rewrite rules in [10]. Section 3 describes di-
graphs for representing negative goals and section 4 presents

the algorithm for introducing new variables. Section 5 de-
scribes the implementation and section 6 analyzes its com-
plexity. Section 7 discusses related work and concludes.
Proofs are omitted due to space limits.

1.1 Notations
We assume that variables are typed. Expression y:η indi-

cates that variable y has type η. A type is a finite expression
denoting a possibly infinite set of terms. We use 1 to denote
the set of all terms and 0 to denote the empty set of terms.
R and Z denote the set of real numbers and the set of inte-
ger numbers respectively. R and Z with subscripts denote
their subtypes. A subscript is either an interval or a logical
formula. Relation σ v θ holds iff σ is a subtype of θ; and
relation σ ≡ θ holds iff σ is equivalent to θ. The intersection
of two types θ and σ is denoted as θuσ.

Both existence properties and rewrite rules partition the
argument list in an atom into several selections. For an
example, let add(x,y,z) denote x + y = z where x, y and z
range over the domain of real numbers. For given x and y,
there is exactly one z such that add(x,y,z) holds. The input
selection πi consists of the first two arguments x and y and
the output selection πo consists of the third argument z.
Formally, a selection is a partial function whose domain is
a set of argument positions (positive integers). Thus, πi =
{1 7→ x, 2 7→ y} and πo = {3 7→ z}. The domain of a
selection π is denoted dom(π). The projection of π onto
D ⊆ dom(π) is denoted π ↓ D. Then (π ↓ D)(i) = π(i) if
i ∈ D. Otherwise, (π ↓ D)(i) is undefined. We call π ↓ D
a sub-selection of π and accordingly π is a super-selection
of π ↓ D. The empty selection is denoted by ε. We have
π ↓ ∅ = ε for any selection π. By an element of a selection
π, we mean π(i) for some i ∈ dom(π). We use diff (π) to
indicate that elements in π are pair wise different, that is,
diff (π) is true iff π(p1) 6= π(p2) for any p1 ∈ dom(π) and
any p2 ∈ dom(π) such that p1 6= p2. In the sequel, a letter
ū with an over bar denotes a selection of different variables,
a letter with a tilde ũ denotes a selection of terms and a
Greek letter with an over bar denotes a selection of types.
A selection of types is also called a type. When there is no
ambiguity from the context, ū is also used to denote the set
of variables occurring in ū. By juxtaposition π1π2, we mean
that π1 and π2 have disjoint domains and π1π2 = π1 ∪ π2.
For instance, πiπo = πoπi = {1 7→ x, 2 7→ y, 3 7→ z}. Let A
be of arity n. By A(π), we mean that dom(π) = {1..n} and
A(π) = A(π(1), · · · , π(n)). For instance, add(πiπo) stands
for add(x, y, z). When it is clear from context, a selection is
simplify written as a sequence with positions omitted.

By ū : σ̄, we mean that dom(ū) = dom(σ̄) and ū(i):σ̄(i) for
any i ∈ dom(ū). By σ̄ v η̄, we mean that dom(η̄) = dom(σ̄)
and σ̄(i) v η̄(i) for all i ∈ dom(σ̄). We say that σ̄ and η̄
intersect iff σ̄(i)uη̄(i) 6≡ 0 for all i ∈ dom(σ̄). Let E be
an expression. We use VE to denote the set of variables in
E and type(E) the type of E. As each variable in a term
is typed, the type of E is defined. The letters L, W and Y

denote sets of variables.

2. REWRITE RULES
This section reformulates the rewrite rules for construc-

tive negation in [10]. The reformulated rewrite rules avoid
introducing new local variables whenever possible.

2.1 Exists unique

An exists unique property states that for any input ū in a
particular domain σ̄, there is exactly one output x̄ in each
of a fixed number of domains θ̄i such that A(ūx̄) holds. For-
mally,

∀ū:σ̄.∀x̄.[A(ūx̄) → ∨i∈I x̄ ∈ θ̄i] (1)

∀ū:σ̄. ∧i∈I ∃!x̄i:θ̄i.A(ūx̄i) (2)

where I is a set of indices and ∃!x stands for “there is exactly
one x”. Each θ̄i is called an output subtype for x̄. The
type of a variable is annotated with its first occurrence in a
formula.

Example 1. The fact that, in the domain of real num-
bers, a positive number has exactly one negative square root
and exactly one positive square root can be expressed as the
following exists unique property.

∀y:R>0.∀x.(sq(x, y) → x ∈ R>0 ∨ x ∈ R<0) (1′)

∀y:R>0.(∃!x1:R>0.sq(x1, y) ∧ ∃!x2:R<0.sq(x2, y)) (2′)

The formulas (1′) and (2′) are respectively instances of (1)
and (2) with I = {1, 2}, ū = y, σ̄ = R>0, x̄ = x, θ̄1 = R>0

and θ̄2 = R<0.

We now consider how an exists unique property can be
used in solving negative goals of the form

¬∃L.[A(ũx̃) ∧ Q] (g1)
Assume that ũ is of type σ̄ (I.e. type(ũ) v σ̄) and that
variables in L do not occur in ũ (I.e. Vũ ∩ L = ∅). Suppose
that (1) and (2) hold. Then ∃x̄.(A(ũx̄) ∧ (x̄ = x̃) ∧ Q) is
equivalent to ∨i∈I∃x̄i.(A(ũx̄i:θ̄i) ∧ (x̄i = x̃) ∧ Q) from (1).
Goal (g1) is equivalent to ¬∃L.∃x̄.[A(ũx̄) ∧ (x̃ = x̄) ∧ Q]
and hence is equivalent to ¬∃L.[∨i∈I∃x̄i.(A(ũx̄i:θ̄i) ∧ (x̄i =
x̃) ∧ Q)]. Distributing ∃ over ∨, applying De Morgan’s law
and using (2), we deduce that goal (g1) is equivalent to

∧i∈I [A(ũx̄i : θ̄i) ∧ ¬∃L.((x̃ = x̄i) ∧ Q)] (g2)
provided that (1), (2), type(ũ) v σ̄ and Vũ ∩ L = ∅ hold.

Example 2. Let the exists unique property be expressed
by (1’) and (2’) and the negative goal be the following.

¬∃z′:Z, x′:R≥20.(sq(x′, y′:R>10) ∧ Q(x′, z′)) (g1′)
Goal (g1’) is an instance of (g1). We have L = {z′ :Z, x′ :
R≥20}, ũ = y′ and x̃ = x′. It holds that y′ ∈ R>0 since
y′ ∈ R>10 and (R>10 v R>0). It also holds that Vũ ∩ L =
{y′} ∩ {z′, x′} = ∅. Therefore, (g1’) rewrites to (g2’) that
follows.

sq(x1:R>0, y
′:R>10) ∧ ¬∃z′:Z, x′:R≥20.(x

′ =x1∧ Q(x′, z′))
∧

sq(x2:R<0, y
′:R>10)∧ ¬∃z′:Z, x′:R≥20.(x

′ =x2∧ Q(x′, z′))

If type(x̃) does not intersects with θ̄k then A(ũx̄k : θ̄k) ∧
¬∃L.((x̃ = x̄k) ∧ Q) can be removed from (g2) because
(x̃ = x̄k) is unsatisfiable and any further instantiation of
x̄k has no effect on the variables of the original goal. An
output subtype is relevant for an atom iff it intersects with
the type of the output argument of the atom. We need to
consider only relevant output subtypes when rewriting the
negative goal. The set of the indices of relevant output sub-
types is J = {i ∈ I | type(x̃)uθ̄i 6≡ 0}. Let W be the set of
those elements of L that occur in x̃ and Y = L \ W. Then
¬∃L.((x̃ = x̄j) ∧ Q) is equivalent to
¬∃Wj .(x̃[W/Wj] = x̄j)∨ (x̃[W/Wj] = x̄j)∧¬∃Y.Q[W/Wj] (g3)

where Wj is a renaming of W and Q[W/Wj] is the result
of substituting Wj for W in Q. The disequality constraint

¬∃Wj .(x̃[W/Wj] = x̄j) can be dealt with by augmenting
Chan’s simplification procedure with types.

Example 3. Continue with example 2. We have W =
{x′ :R≥20}, Y = {z′ :Z} and J = {1}. The output subtype
R<0 is not relevant since (type(x′) u R<0) ≡ 0. The sub-
formula ¬∃z′:Z, x′:R≥20.(x

′ = x1 ∧Q(x′, z′)) in (g2’) can be
rewritten to

0

@

¬∃w1:R≥20.(w1 = x1)
∨

(w1:R≥20 = x1) ∧ ¬∃z′:Z.Q(w1, z
′)

1

A (g3′)

A new local variable is introduced for each output argu-
ment in (g3). As the cost of simplifying ¬∃Wj .(x̃[W/Wj] =
x̄j) increases with the number of equations it contains, it is
desirable to avoid introducing new local variables whenever
possible. No new local variable need be introduced for an
output argument r if r is a local variable, its type is a super-
type of all relevant output subtypes and it does not appear
in an argument at any other output argument position.

Example 4. Continue with example 2. Variable x′ is a
local variable. Its type is R≥20. The only relevant output
subtype is R>0. A new local variable was introduced because
R≥20 is not a supertype of R>0.

The above considerations lead to the rewrite rule (QVT)
for exists unique properties in table 1. Variables in z̄j r̄j and
Wj do not occur in the lefthand side of the rewrite rule. The
selection z̄j r̄j is typed with θ̄j while Wj inherits the type of
W. The selection r̄ consists of different variables; and it is a
sub-selection of x̃ for which no new local variables need be
introduced.

Example 5. Continue with examples 1 and 2. Using (1′)
and (2′), (QVT) rewrites (g1’) directly to the following.

sq(x1:R>0, y
′:R>10) ∧ ¬∃w1:R≥20.(w1 = x1)

∨
sq(x1:R>0, y

′:R>10) ∧ (w1:R≥20 = x1) ∧ ¬∃z′:Z.Q(w1, z
′)

Example 6. The append/3 program satisfies the follow-
ing exists unique property.

∀x:list(β), y:list(β).z.(append(x, y, z) → z:list(β))
∀x:list(β), y:list(β)∃!z:list(β).append(x, y, z)

Goal ¬∃z:list(β).(append(x:list(β), y:list(β), z), p(z)) is rewrit-
ten to append(x:list(β), y:list(β), z:list(β)),¬ p(z) by (QVT).

As well as rewriting the original goal, (QVT) can also
be used as a simplification rule. This will result in a more
efficient simplification procedure since it will prune unsatis-
fiable goals without doing a satisfiability test.

Example 7. We have ∀y : 1.x.(x = s(y) → x : 1) and
∀y:1.∃!x:1.(x = s(y)) in the domain of Herbrand universe.
Consider the following program.

p(y).

r(y) :- x=s(y),q(x).

The goal p(y:1),¬ r(y) is reduced to p(y),¬∃x:1.(x = s(y:
1), q(x)) which is then simplified directly into x:1 = s(y), p(y:
1),¬ q(x) using the above property. Without using this prop-
erty, ¬∃x:1.(x = s(y:1), q(x)) is simplified to

∀x:1.(x 6= s(y:1)) ∨ (x:1 = s(y:1),¬ q(x))

and a satisfiability test is then used to eliminate ∀ x:1.(x 6=
s(y:1)). In that sense, the satisfiability test is pushed into
the simplification procedure by the exists unique property.

2.2 Exists sometimes
Another rewrite rule applies when it is known that for any

input ū in a particular domain, there is at most one output x̄
in each of a fixed number of domains such that A(ūx̄) holds
where A is a predicate. Such a property is called an exists
sometimes property and is expressed by (1) and

∀ū:σ̄. ∧i∈I ∃?x̄i:θ̄i.A(ūx̄i) (3)

where ∃? denotes “there is at most one”. The same con-
siderations as in the case for exists unique properties lead
to the rewrite rule (SVT) for exists sometimes properties in
table 2.

Example 8. The fact that, in the domain of integer num-
bers, a positive number has at most one negative square root
and at most one positive square root can be expressed as the
following exists sometimes property.

∀y:Z>0.∀x.(sq(x, y) → x ∈ Z<0 ∨ x ∈ Z>0)

∀y:Z>0.(∃?x1:Z<0.sq(x1, y) ∧ ∃?x2:Z>0.sq(x2, y))

The local variable x in the negative goal ¬∃x:Z[0,20].(sq(x, y:
Z>0) ∧ b(x)) has a type Z[0,20] which is not a supertype of
the sole relevant output subtype Z>0 of the corresponding
output parameter. Therefore, a new local variable z2 of type
Z>0 is introduced and the negative goal is rewritten to the
following.

¬∃z2:Z>0.sq(z2, y:Z>0)

∨ sq(z2:Z>0, y:Z>0) ∧ ¬∃x:Z[0,20].(x = z2)

∨ sq(z2:Z>0, y:Z>0) ∧ (x:Z[0,20] = z2) ∧ ¬ b(z2)

3. DIGRAPH
The rewrite rules (QVT) and (SVT) can be applied re-

peatedly to extract positive information from a negative
goal ¬∃W.Gn, · · · , G2, G1. A naive implementation would
repeatedly scan a conjunction of goals and check if an atom
is extractable. After an atom is extracted, some local vari-
ables become global. This makes it necessary to check if
other atoms are extractable. That would result in an inef-
ficient implementation because most of those checks would
fail.

A previously inextricable atom becomes extractable only
after some of its local variables become global or some of
its global variables are given a value or a stronger type.
However, none of (QVT) and (SVT) rules change the type
of global variables, nor will it assign any value to them.
So, after an atom is extracted, it is only necessary to check
those other atoms that share with the extracted atom some
variables that have become global. For that reason, we use
a list Φ consisting of atoms to be checked and a digraph D
which links each atom with the local variables it contains.
The method repeatedly removes one atom from Φ and checks
for its extractability until Φ becomes empty. Digraph D
is used in order to quickly retrieve the local variables an
atom contains and the atoms containing a particular local
variable. After an atom is extracted, it is moved out of
the scope of the negation and the local variables it contains
become global. This is done by removing the atom and
the local variables from D. Before the removal of the local
variables, other atoms linked to them are added to Φ as their
extractability needs to be checked for again. Initially, every
atom needs to be checked.

Given (1), (2), type(ũ) v σ̄ and Vũ ∩ L = ∅ hold

¬∃L.[A(ũx̃) ∧ Q] ↔

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

let J = {i ∈ I | type(x̃)uθ̄i 6≡ 0}
ν ⊆ {p | p ∈ dom(x̃) ∧ x̃(p) ∈ L ∧ ∀j ∈ J.(θ̄j(p) v type(x̃(p)))} such that diff (x̃ ↓ ν) holds
µ = dom(x̃) \ ν
r̄ = x̃ ↓ ν
s̃ = x̃ ↓ µ
W = (L ∩Vs̃) \ r̄
Y = L \ W

in

∧j∈J

0

@

A(ũ(z̄j r̄j):θ̄j) ∧ ¬∃Wj .(s̃[r̄/r̄j ,W/Wj] = z̄j)
∨

A(ũ(z̄j r̄j):θ̄j) ∧ (s̃[r̄/r̄j ,W/Wj] = z̄j) ∧ ¬∃Y.Q[r̄/r̄j , W/Wj]

1

A

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Table 1: Rewriting Rule QVT

Given (1), (3), type(ũ) v σ̄ and Vũ ∩ L = ∅ hold

¬∃L.[A(ũx̃) ∧ Q] ↔

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

let J = {i ∈ I | type(x̃) u θ̄i 6≡ 0}
ν ⊆ {p | p ∈ dom(x̃) ∧ x̃(p) ∈ L ∧ ∀j ∈ J.(θ̄j(p) v type(x̃(p)))} such that diff (x̃ ↓ ν) holds
µ = dom(x̃) \ ν
r̄ = x̃ ↓ ν
s̃ = x̃ ↓ µ
W = (L ∩Vs̃) \ r̄
Y = L \ W

in

∧j∈J

0

B

B

B

@

¬∃(z̄j r̄j):θ̄j .A(ũz̄j r̄j)
∨

A(ũ(z̄j r̄j):θ̄j) ∧ ¬∃Wj .(s̃[r̄/r̄j ,W/Wj] = z̄j)
∨

A(ũ(z̄j r̄j):θ̄j) ∧ (s̃[r̄/r̄j ,W/Wj] = z̄j) ∧ ¬∃Y.Q[r̄/r̄j , W/Wj]

1

C

C

C

A

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Table 2: Rewriting rule SVT

Let us first consider the case where an existence property
has one output subtype for its output parameter. When an
atom is extracted by (QVT) or (SVT) without introducing
any new local variable, it is moved out of the scope of the
negation and the local variables in it are promoted to being
global. The atom is deleted from Φ and D. The other atoms
that are linked to the local variables are then added into Φ
and the local variables are deleted from D. The method
continues with the updated D and Φ.

Example 9. Let p be of arity 2 with the following exists
unique property.

∀x:1.∀y.(p(x, y) → y ∈ 1)

∀x:1.∃!y:1.p(x, y)

Let Gi = p(xi, xi+1). The negative goal ¬∃x2 :1. · · · xn+1 :
1.(Gn, · · · , Gi, · · · , G1) is such that extracting Gi makes Gi+1

extractable. A naive implementation of (QVT) does n(n−1)
2

tests by testing Gn for n times, Gn−1 for n − 1 times and
so on. The negative goal has the following graph.

xn+1 xn x2

Gn G2 G1Gn−1

· · ·

· · ·

x3

The implementation technique works as follows. Initially,
Φ contains Gn, Gn−1, · · · , G2 and G1 that are removed from
Φ and tested in that order until G1 is extracted. At that

point, only G2 is added to Φ, it is then immediately removed
and tested. Extracting G2 adds G3 into Φ. This process
continues until Gn is tested and extracted, proving the falsity
of the original negative goal. A total of (2n − 1) tests are
performed with G1 being tested once and each Gi for 2 ≤
i ≤ n being tested twice.

When an atom is extracted by (QVT) or (SVT) by means
of introducing local variables, only some local variables be-
come global and the derived goals are more complex. How-
ever, the residual negative subgoals can be obtained in the
same way as above.

When the output parameter of an existence property has
more than one output subtype, several complex goals may
be derived from the negative goal. Each of these complex
goals may contain a number of residual negative subgoals to
which (QVT) or (SVT) may be applicable. However, these
residual negative subgoals differ only in the names and types
of newly promoted global variables. So, the digraph and
the checklist for each of these residual negative subgoals are
obtained in the same way.

4. EXTRACTABILITY
Given an atom inside a negation and an existence prop-

erty, (QVT) and (SVT) have to decide if the atom satisfies
the existence property and, if so, decide for which output ar-
guments new local variables need be introduced. The rules
(QVT) and (SVT) differ only in that (SVT) has an extra dis-
junct ¬∃(z̄j r̄j):θ̄j .A(ũz̄j r̄j) for each relevant output subtype.
Otherwise, they are the same. The common functionality of
(QVT) and (SVT) is factored out to a function sqvt. It
tests if an atom satisfies an existence property, introduces
new local variables, decides if an output subtype is relevant,
and renames and types local variables.

function sqvt(P, G, L)
begin

(01) Let G be B(· · · , tu, · · · , tx, · · ·) and P be
〈A(· · · , i(σ), · · · ,o(Θ̄), · · ·), I〉;

(02) if B = A and (type(tu) v σ) ∧ (Vtu ∩ L) = ∅ for each
tu matching an i(σ)

(03) then

(04) r̄ := ε; x̄m := ε; z̄ := ε; s̃ := ε; W := nil; J := I;

(05) for each tx at position p matching an o(Θ̄) do

(06) J := J ∩ {k | (type(tx) u Θ̄(k)) 6≡ 0};

(07) if tx ∈ (L \ r̄) ∧ ∀j ∈ J.(Θ̄(j) v type(tx))

(08) then

(09) r̄ := r̄[p 7→ tx];

(10) x̄m := x̄m[p 7→ (tx, Θ̄)];

(11) else

(12) s̃ := s̃[p 7→ tx];

(13) for each v ∈ ((Vtx ∩ L) \ (r̄ ∪ W))
do W := v :: W od;

(14) z := newv(1); z̄ := z̄[p 7→ z];
G := G[tx/z];

(15) x̄m := x̄m[p 7→ (z, Θ̄)]

(16) fi;

(17) od;

(18) x̄ := map(fst, x̄m);

(19) x̄cs :=
S

j∈J
{map(λe.newv((snd(e))(j)), x̄m)};

(20) return (G, x̄, x̄cs, s̃, z̄, r̄, W)

(21) else return nil

(22) fi

end;

Figure 1: The sqvt function where x :: L is a list with

head x and tail L.

An exists unique property is represented as follows. Each
input parameter u :σ in ū : σ̄ is represented by i(σ). Each
output parameter x in x̄ with output subtypes {θk | k ∈ I}
is represented by o(Θ̄) where Θ̄ is a mapping which maps
k in I to θk. An exists unique property has the following
representation where input and output parameters may be
interspersed.

〈A(· · · , i(σ), · · · ,o(Θ̄), · · ·), I〉

The set of exists unique properties is denoted by Γ!. We use
the same representation for an exists sometimes property
and denote the set of exists sometimes properties by Γ?.

Example 10. The exists sometimes property in exam-
ple 8 is represented by this item in Γ?: 〈sq(o({1 7→ Z<0, 2 7→
Z>0}), i(Z>0)), {1, 2}〉.

Figure 1 defines sqvt with the following auxiliary func-
tions. A call to newv(T) creates a new variable of type
T . Given a pair, the function fst returns the first compo-
nent while snd returns the second component. The high
order function map applies a function f to a selection π

point-wise: map(f, π)(i) = f(π(i)) for each i ∈ dom(π) and
dom(map(f, π)) = dom(π).

Given an existence property P of the form
〈A(· · · , i(σ), · · · ,o(Θ̄), · · ·), I〉 and an atom G of the form
B(· · · , tu, · · · , tx, · · ·) and a set L of local variables, sqvt
first checks if it is possible to replace some output argu-
ments in G with newly introduced local variables so as to
make G satisfy P . This is tested in line (02). Function
sqvt returns nil from line (21) if this test fails. Otherwise,
sqvt classifies every output argument according to whether
a new local variable needs be introduced for it or not. The
variable r̄ holds the selection of output arguments for which
no new local variables need be introduced, s̃ is the selection
of other output arguments and z̄ is the selection of corre-
sponding newly introduced local variables. Whenever a new
local variable z is introduced for an output argument tx,
sqvt substitutes z for tx in G. The function sqvt collects the
list W of the local variables that occur in s̃ but not in r̄. It
also builds up the selection x̄m of the new output arguments
each of which is associated with a mapping from indices in
I to types and collects the set J of relevant indices for G.
Line (04) initializes these selections and sets. The (05)-(17)
loop iterates through all output arguments. Line (06) nar-
rows the set J of relevant indices. Line (07) determines if it
is necessary to introduce a new local variable for the output
argument tx under consideration. If not, line (09) adds tx

into r̄ and line (10) adds to x̄m a pair consisting of tx and
the mapping for the corresponding output parameter in P .
Otherwise, line (12) adds tx to s̃, line (13) adds to W the
local variables in tx that do not occur in r̄ or W, line (14)
introduces a new local variable z of type 1, adds z to z̄ and
substitutes z for tx in G, and line (15) adds to x̄m a pair
consisting of z and the mapping for the corresponding out-
put parameter in P . The newly introduced local variable z
in line (14) will be renamed and attached with an appropri-
ate type from the mapping paired with it in x̄m. Line (18)
extracts the selection x̄ of the new output arguments of G.
Line (19) makes, for each relevant index in J , a new copy of
x̄ and types the copy with an appropriate type, and collects
the set x̄cs of all the copies made. For a fixed index j ∈ J ,
line (19) does the following for each pair in x̄m. It first takes
the second component of the pair which is a mapping from
indices to types, then finds the type for the index j, and
creates a new variable of that type. Line (20) returns with
required information.

Example 11. Continue with example 10. Let G = sq(x:
Z[0,20], y :Z>0) and L = {x :Z[0,20]}. Then sqvt(P, G, L) =
(G′, x̄, x̄cs, s̃, z̄, r̄, W) with G′ = sq(z :1, y :Z>0), x̄ = z :1,
x̄cs = {z2 : Z>0}, s̃ = x : Z[0,20], z̄ = z : 1, r̄ = ε, and
W = {x:Z[0,20]}.

Lemma 12. The time complexity of the test for the ex-
tractability of an atom with respect to an exists unique or
exists sometimes property is linear in the size of the atom.

The following theorem gives the correctness of sqvt. In
addition, it states that sqvt introduces a new variable only
when it is necessary.

Theorem 13. Let P be an exists sometimes (resp. exists
unique) property, G an atom, Q a conjunction of goals
and L a set of variables. G can be extracted from ∃L.(G ∧
Q) by SVT (resp. QVT) using P iff sqvt(P, G, L) 6= nil.
Furthermore, letting sqvt(P, G, L) = (G′, x̄, x̄cs, s̃, z̄, r̄, W),

• r̄, s̃, z̄ and W are as in (SVT) (resp. (QVT)). Further-
more, r̄ is maximal in the sense that any proper super-
selection of r̄ will include at least one output argument
of G for which a new variable must be introduced.

• G′ = G[s̃/z̄]

• x̄ is the selection of the output arguments of G′.

• x̄cs is a set of selections with each being a fresh copy
of x̄ typed by an output subtype of P that is relevant to
G.

5. IMPLEMENTATION

5.1 Derivation Rule
With a negative goal being represented by neg(Φ,D) where

Φ is the checklist and D is the digraph, rewrite rules (QVT)
and (SVT) are implemented a derivation rule ↪→sqvt. Let
loc(D) be the set of local variables in D, delete(Ns,D) be
the result of deleting nodes in Ns from D, link(N, Ns,D)
be true iff D links node N with some node in Ns.

• α, neg({G} ∪ Φ,D), β ↪→sqvt α, Nl, β for each 1 ≤ l ≤
k if ∃P ∈ Γ!.sqvt(P, G, loc(D)) = (G′, x̄, x̄cs, s̃, z̄, r̄, W)
and N1 ∨N2 ∨ · · · ∨Nk is a disjunctive normal form of

∧x̄′∈x̄cs

2

6

6

6

6

6

4

let W
′ = map(newv ◦ type , W) in

0

B

B

B

@

(G′ ∧ ¬∃W
′.(s̃[W/W′] = z̄))[x̄/x̄′]

∨
(G′ ∧ (s̃[W/W′] = z̄))[x̄/x̄′]

∧
neg(Φ′,D′)[W/W′][x̄/x̄′]

1

C

C

C

A

3

7

7

7

7

7

5

where Φ′ = Φ∪{N | link(N, r̄∪W,D)}\{G} and D′ =
delete(r̄∪W∪{G},D). The above formula corresponds
to the righthand side of (QVT) in that x̄′ corresponds
to z̄j r̄j and W

′ to Wj . Note that x̄′ and W
′ are typed

when they are created.

• α, neg({G} ∪ Φ,D), β ↪→sqvt α, Nl, β for each 1 ≤ l ≤
k if ∃P ∈ Γ?.sqvt(P, G, loc(D)) = (G′, x̄, x̄cs, s̃, z̄, r̄, W)
and N1 ∨N2 ∨ · · · ∨Nk is a disjunctive normal form of

∧x̄′∈x̄cs

2

6

6

6

6

6

6

6

6

6

4

let W
′ = map(newv ◦ type , W) in

0

B

B

B

B

B

B

B

@

¬∃x̄′.G′[x̄/x̄′]
∨

(G′ ∧ ¬∃W
′.(s̃[W/W′] = z̄))[x̄/x̄′]

∨
(G′ ∧ (s̃[W/W′] = z̄))[x̄/x̄′]

∧
neg(Φ′,D′)[W/W′][x̄/x̄′]

1

C

C

C

C

C

C

C

A

3

7

7

7

7

7

7

7

7

7

5

where Φ′ = Φ ∪ {N | link(N, r̄ ∪ W,D)} \ {G} and
D′ = delete(r̄ ∪ W ∪ {G},D).

• α, neg({G} ∪ Φ,D), β ↪→sqvt α, neg(Φ,D), β
if ∀P ∈ Γ! ∪ Γ?.sqvt(P, G, loc(D)) = nil. This rule re-
moves from the checklist an atom which doesn’t satisfy
any existence property.

• α, neg(∅, Λ), β ↪→sqvt false where Λ is the empty di-
graph. Note that neg(∅, Λ) represents ¬true.

neg_dig(GT,VT,[Gid|CHK]) :- %1
lookup(GT,Gid,G), %2
qvt(G,VT,G1,Xs,Xscs,Ss,Zs,Rs,Ws), %3
new_dig(GT,VT,CHK,Rs,Ws,Gid,GTn,VTn,CHKn), %4
neg_dig_qvt(Xscs,Xs,Ss,Zs,Rs,Ws,G1,GTn,VTn,CHKn). %5

neg_dig_qvt([],_Xs,_Ss,_Zs,_Rs,_Ws,_G1,_GT,_VT,_CHK).%6
neg_dig_qvt([Xsc|Xscs],Xs,Ss,Zs,Rs,Ws,G1,GT,VT,CHK):-%7

copy_vars(Ws,Wsc), % make a copy of Ws %8
replace(Ws,Wsc,(Ss,GT),(Ss0,GT0)), %rename Ws and %9
replace(Xs,Xsc,(G1,Ss0,Zs,GT0),(Gn,Ssn,Zsn,GTn)), %10
(% Xs in Ss,Zs,G1,GT %11

call(Gn), %12
neg_cet(Ssn,Zsn,Wsc) %13

; %14
call(Gn), %15
Ssn=Zsn, %16
neg_dig(GTn,VT,CHK) %17

), %18
neg_dig_qvt(Xscs,Xs,Ss,Zs,Rs,Ws,G1,GT,VT,CHK). %19

Figure 2: Implementation of the first rule for ↪→sqvt

5.2 ECLiPSe Implementation
We have implemented in ECLiPSe [1] a prototype con-

structive negation system that also implements Chan’s con-
structive negation rule. A type is associated with a variable
as an attribute [3]. Due to lack of space, we can only sketch
how the first rule for ↪→sqvt is translated into Prolog code.
Other rules are translated similarly.

A node N in a digraph is represented by a triple
〈id(N), N, linked(N)〉 where id(N) is an integer that uniquely
identifies N and linked(N) is the list of the identifiers of the
nodes that are linked to N . The checklist is represented as a
list of identifiers of subgoals while the digraph is represented
as a pair consisting of a list GT of triples for subgoals and
a list V T of triples for local variables.

The clause for neg dig/3 in figure 2 (lines 1-5) imple-
ments the first rule for ↪→sqvt. Line 2 looks up the sub-
goal G identified by the Gid. Line 3 succeeds iff there is
an exists unique property P such that sqvt(P,G, V T) =
(G1, Xs, Xscs, Ss, Zs, Rs,Ws). The call to new dig/9 in
line 4 computes a new digraph (GTn,VTn) by removing G
(identified by Gid), Ws and Rs from (GT,VT) and a new
checklist CHKn by adding subgoals linked to any variable in
Ws or Rs. Line 5 calls neg dig qvt/10 (lines 6-19) to com-
pute the disjunctive normal form as specified in the first rule
for ↪→sqvt.

Procedure neg dig qvt/10 does the following for each Xsc
in Xscs. It makes a fresh copy Wsc of Ws (line 8) and re-
names Ws and Xs in G1, Ss, Zs, GT into Wsc and Xsc re-
spectively (lines 9-10) resulting in Gn, Ssn, Zsn, GTn. Lines
12-13 compute the first conjunctive subformula inside the
parentheses in the first rule for ↪→sqvt while lines 15-17 com-
pute the second. V T in line 17 needn’t be renamed because
variables in V T remain local after moving G outside the
scope of negation. Call neg cet(Ssn, Zsn, Wsc) simplifies
the inequality ¬∃Wsc.(Ssn = Zsn) by augmenting the sim-
plification procedure in [7] with types.

The top-level of the constructive negation system is negx/2.
negx(G,Vs) is true iff ¬∃Vs .G is true. It constructs a
digraph representation for ¬∃Vs.G and repeatedly invokes
neg dig/3 that applies ↪→sqvt repeatedly until no rewriting
can be done. It then delays. The set of all delayed goals

constitutes a frontier of ¬∃Vs .G.

Example 14. This example illustrates a session with the
prototype. The prototype implements existence properties of
arithmetic constraints [9] as well as other commonly used
library predicates. Term real(l, u) encodes type R[l,u].

[eclipse 2]: negx((sq(X:real(-0.5,0.5),U),

sq(Y:real(-1,1),V),

add(U,V,W:real(0,1))),[U,V]).

sq(Y:real(-1, 1), V1:real),

add(Z:real, V1:real, W:real(0, 1)),

sq(X:real(-0.5, 0.5), U1:real),

neg_cet(Z:real, U1:real, []);

no (more) solution.

[eclipse 3]:

This states that ¬∃U : 1.V : 1.(sq(X:R[−0.5,0.5], U), sq(Y :
R[−1,1], V), add(U,V, W:R[0,1])) rewrites to sq(Y :R[−1,1], V 1:
R), add(Z :R, V 1, W :R[0,1]), sq(X :R[−0.5,0.5], U1 :R), Z 6=
U1.

6. TIME COMPLEXITIES
Given a negative goal, a ↪→sqvt derivation step extracts an

atom out of a negation and produces several residual neg-
ative goals which are then processed in subsequent deriva-
tion steps. The time complexity of ↪→sqvt with respect to a
negative goal is measured by the time spent on all possible
derivations from the negative goal.

Consider extracting an atom using an exists unique prop-
erty with k relevant output subtypes for the atom. The dis-
junctive normal form of the righthand side of the (QVT)
rewrite rule has at most 2k disjuncts. Each of k differ-
ent residual negative goals occurs in 2k−1 of the 2k dis-
juncts. Therefore, the negative goal spawns k × 2k−1 oc-
currences of residual negative goals. If we take ¬∃(z̄j r̄j) :
θ̄j .A(ũz̄j r̄j)∨A(ũ(z̄j r̄j):θ̄j)∧¬∃Wj .(s̃[r̄/r̄j , W/Wj] = z̄j) as
atomic when normalizing the righthand side of the (SVT)
rewrite rule then the negative goal also spawns k × 2k−1

occurrences of residual negative goals when an atom is ex-
tracted using an exists sometimes property with k relevant
output subtypes for the atom.

When an existence property is used to extract an atom,
the number of the relevant output subtypes of the existence
property for the atom may vary. For simplicity, we assume
that the number of the relevant output subtypes is a fixed
number k for all the atoms and all the existence properties.
The relationship between negative goals and the residual
negative goals they spawn forms a tree called a spawning
tree.

Let D consist of n atoms with non-decreasing sizes si, 1 ≤
i ≤ n. Consider the time complexity of ↪→sqvt. We weight
the ith atom in D by the number wi of those atoms that
share local variables with the ith atom and are smaller in
size than the ith atom. The following lemma gives the time
complexity of the extractability tests performed along a path
in the spawning tree for D.

Lemma 15. The time complexity of the extractability tests
performed along a path in the spawning tree for D is O(Σi(wi+
1) × si).

The above lemma states that in the worst case the nth

atom will be tested at levels n, (n−1), · · · , n−wn, the (n−
1)th atom at levels (n− 1), (n− 2), · · · , (n− 1)−wn−1, and
so on. This gives rise to the following result.

Theorem 16. The time complexity of ↪→sqvt is

O(Σjsj × [Σj−wj≤i≤j(k × 2k−1)i−1])

7. CONCLUSION AND DISCUSSION
We have presented an implementation of the constructive

negation method in [10] and analyzed its complexity. The
implementation uses a digraph and a worklist to represent
a negative goal so as to avoid futile extractability tests of
atoms in the negative goal. An algorithm is presented that
does the extractability test given an atom and an existence
property and introduces new local variables into the atom
to make it satisfy the existence property. The complexity of
the algorithm is linear in the size of the atom.

The constructive negation method developed in [9, 10] and
this paper was not intended to replace any other method.
Nevertheless, the method is correct in that its rewrite rules
preserve logical equivalence. The method is also complete
in the sense that it does not throw away any answer to a
negative goal; it simply suspends when none of its rewrite
rules is applicable. Rewrite rules in the implementation use
existence properties to extract atoms from negative goals.
How these existence properties are obtained is beyond the
scope of this paper. The current implementation includes
existence properties for arithmetic constraints and some li-
brary predicates.

There have been much research into constructive nega-
tion [2, 4, 5, 7, 8, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23].
Constructive intensional negation was studied in [2, 5, 4, 21].
Marchiori [17] addresses the termination of logic programs
with respect to constructive negation. Lobo[15] studies con-
structive negation for disjunctive logic programs. Ramı́rez
and Falashi [22] and Moreno-Navaro [18, 19, 20] extend con-
structive negation for functional logic programs. Foo et. al
propose a constructive negation approach for Datalog [13].

Chan introduced constructive negation which allows non-
ground negative goals to bind variables in the same way as
positive ones [7, 8]. Answers to ¬ Q are obtained by negat-
ing answers to Q. Answers to ¬ Q are then obtained from
the frontier as first-order formulae which are interpreted in
Clark’s equality theory (CET). Chan’s method was formu-
lated for logic programs in the Herbrand universe and in-
volves introducing disequality constraints over the Herbrand
universe. An answer to a goal by Chan’s operational se-
mantics SLD-CNF is a set of equality and disequality con-
straints. Originally, Chan’s method applied only to negative
goals with finite sub-derivation trees and worked by negat-
ing answers to the negated subgoal [7]. Chan later extended
his method by negating a frontier of a derivation tree for the
negated subgoal [8]. Ma luszyński and Näslund put forward
an approach which allows a negative goal to directly return
its answers [16]. Drabent defines SLDFA resolution over
the Herbrand universe that constructs answers for the neg-
ative goal from a finite number of answers to the negated
subgoal [11].

Stuckey provides a constructive negation method for con-
straint logic programs over arbitrary structures [23]. The
method is a generalization of Chan’s; it is sound and com-
plete with respect to the three-valued consequences of the

completion of the program. Stuckey uses the following prop-
erty of logic formulae in his simplification procedure.

¬∃Y.(c ∧ Q) ↔ ¬∃Y.c ∨ ¬∃Y.(c ∧ Q)

where c is a constraint over a pre-defined structure and Q
is a conjunction of goals. The method needs to do a satis-
fiability test when combining ¬∃Y.c with other constraints.
Fages proposes a concurrent pruning mechanism over stan-
dard SLD derivation trees for constructive negation in con-
straint logic programs [12]. Two derivation trees are con-
currently constructed. The computed answers from one of
the trees are used to prune the nodes of the other.

We now conclude this discussion using example 6 to com-
pare our method with Chan’s and Stuckey’s. Rule (QVT)
rewrites ¬∃z : list(β).(append(x : list(β), y : list(β), z), p(z)) to
append(x : list(β), y : list(β), z : list(β)),¬ p(z). Both Chan’s
method and Stuckey’s first construct an SLD derivation tree
of append(x, y, z), p(z) and collect a frontier of the SLD
derivation, say,

8

<

:

(x = [], y = z, p(z)),
(x = [h|x′], y = y′, z = [h|z′],

append(x′, y′, z′), p(z))

9

=

;

Then the negation of this frontier is simplified and put into
its disjunctive normal form. This gives rise to the following
four conjunctive formulae.

(1) x 6= [], ∀h, x′.(x 6= [h|x′])

(2) x 6= [], x = [h|x′],¬∃z′.(append(x′, y, z′), p([h|z′]))

(3) x = [], ∀h, x′.(x 6= [h|x′]),¬p(y)

(4) x = [], x = [h|x′],¬p(y),¬∃z′.(append(x′, y, z′), p([h|z′]))

Stuckey’s method derives (2) and (3) because the constraint
parts of (1) and (4) are unsatisfiable. Chan’s method derives
(1),(2) and (3) as it only tests satisfiability of atomic con-
straints. The constraint part of (4) is failed by unification in
Chan’s method as [] is not unifiable with [h|x′]. Neither of
these methods is effective as (2) is as complex as the original
goal. The exists unique property allows us to obtain a sim-
pler derived goal without making use of SLD derivation, and
to eliminate unsatisfiable derived goals without satisfiability
tests. Similar comparison can be made between our’s and
methods in [11, 12, 16] since they all construct a frontier of
an SLD derivation tree for append(x, y, z), p(z).

Acknowledgement
This work was funded by NSF grants CCR-0131862 and
INT-0327760.

8. REFERENCES
[1] A. Aggoun et. al. ECLiPSe 3.5 User Manual. ECRC

Munich, Germany, December 1995.

[2] A. Bossi, M. Fabris, and M.C. Meo. A bottom-up
semantics for constructive negation. In [6], pages
520–534.

[3] P. Brisset et. al. ECLiPSe 3.4 Extensions User
Manual. ECRC Munich, Germany, July 1994.

[4] P. Bruscoli, A. Dovier, E. Pontelli, and G. Rossi.
Compiling intensional sets in CLP. In [6], pages
647–661.

[5] P. Bruscoli, F. Levi, G. Levi, and M.C. Meo.
Compilative constructive negation in constraint logic
programs. Lecture Notes in Computer Science,
787:52–67, 1994.

[6] M. Bruynooghe, editor. Proceedings of the Eleventh
International Conference on Logic Programming. The
MIT Press, 1994.

[7] D. Chan. Constructive negation based on the
completed database. In [14], pages 111–125.

[8] D. Chan. An Extension of Constructive Negation and
its Application in Coroutining. In Proceedings of the
1989 North American Conference on Logic
Programming, pages 477–496. The MIT Press, 1989.

[9] J.G. Cleary. Constructive negation of arithmetic
constraints using data-flow graphs. Constraints,
2:131–162, 1997.

[10] J.G. Cleary and L. Lu. Constructive negation using
typed existence properties. Lecture Notes in Computer
Science, 1490:411–426, 1998.

[11] W. Drabent. What is failure? An approach to
constructive negation. Acta Informatica, 32:27–59,
1995.

[12] F. Fages. Constructive negation by pruning. Journal
of Logic Programming, 32(2):85–118, 1997.

[13] N. Foo, A. Rao, A. Taylor, and A. Walker. Deduced
relevant types and constructive negation. In [14],
pages 126–139.

[14] R. A. Kowalski and K. A. Bowen, editors. Proceedings
of the Fifth International Conference and Symposium
on Logic Programming. The MIT Press, 1988.

[15] Jorge Lobo. On constructive negation for disjunctive
logic programs. In Proceedings of the 1990 North
American Conference on Logic Programming, pages
704–718, The MIT Press, 1990.

[16] J. Ma luszyński and T. Näslund. Fail Substitutions for
Negation as Failure. In Proceedings of the 1989 North
American Conference on Logic Programming, pages
461–476. The MIT Press, 1989.

[17] E. Marchiori. On termination of general logic
programs w.r.t. constructive negation. Journal of
Logic Programming, 26(1):69–89, 1996.

[18] J. J. Moreno-Navaro. Default rules: An extension of
constructive negation for narrowing-based languages.
In [6], pages 535–549.

[19] J. J. Moreno-Navarro. Extending constructive
negation for partial functions in lazy functional-logic
languages. Lecture Notes in Artificial Intelligence,
1050:213–228, 1996.

[20] J. J. Moreno-Navarro and S. Muñoz-Hernández. How
to incorporate negation in a Prolog compiler. Lecture
Notes in Computer Science, 1753:124–139, 2000.

[21] S. Muñoz-Hernández, J. Mariño, and J.J.
Moreno-Navarro. Constructive intensional negation.
Lecture Notes in Computer Science, 2998:39–54, 2004.

[22] M. J. Ramı́rez and M. Falaschi. Conditional
Narrowing with Constructive Negation. Lecture Notes
in Artificial Intelligence, 660:59–79, 1993.

[23] P.J. Stuckey. Negation and constraint logic
programming. Information and Computation,
118:12–33, 1995.

