
Use of Correctness Assertions in Declarative Diagnosis

Lunjin Lu
Department Of Computer Science and Engineering

Oakland University
Rochester, Michigan 48309

lunjin@acm.org

ABSTRACT
We use assertions to reduce the quantity of queries in declar-
ative diagnosis of logic programs. We first present a declar-
ative diagnoser for normal logic programs. Given a bug
symptom, the diagnoser first constructs a tree that models
the execution of the bug symptom and then searches the
tree for the bug that causes the bug symptom. We then in-
corporate into the diagnoser three tree transformations that
prune the tree before it is searched. These transformations
make use of two kinds of assertion about the correctness of
the program and maintain the soundness and completeness
of the diagnoser. These transformations reduce the size of
the tree and thus reduce the quantity of queries imposed on
the oracle.

Keywords: Declarative diagnosis; Correctness assertions;
Logic programs

1. INTRODUCTION
Declarative program diagnosis is an interactive process where
a declarative diagnoser obtains the intended interpretation
of the program from an oracle, usually the programmer, and
compares the intended interpretation with the actual inter-
pretation of the program. The declarative diagnosis was pro-
posed for logic programs by Shapiro [17, 18] and has been
since adapted for other programming paradigms [6, 13, 12,
11, 16].

A buggy logic program may exhibit many kinds of bug symp-
tom. It may produce a wrong answer, fail to produce a cor-
rect answer, or loop and so on. This paper is concerned with
the first two kinds of bug symptom. Many declarative diag-
nosers for logic programs have been developed. Shapiro [17,
18] developed the algorithmic debugging method1 and exem-

1We use the term diagnosis instead of debugging because
debugging is a process which involves bug detection and bug
correction as well as bug diagnosis.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’05, March 13-17, 2005, Santa Fe, New Mexico, USA.
Copyright 2005 ACM 1-58113-964-0/05/0003...$5.00

plified the method through pure Prolog. Ferrand [5] adapted
the algorithmic debugging method for definite logic pro-
grams. Lloyd [8, 9] presented a declarative diagnoser for
arbitrary logic programs. The diagnoser is a meta-program
which makes it easy to improve its performance by adding
control information as meta-calls. Lloyd [8, 9] obtained a
top-down diagnoser by adding control information. Yan [19]
improved the top-down diagnoser by reorganising its control
information.

The main advantage of using a declarative diagnoser is that
the oracle does not need to know anything about the opera-
tional aspect of the program. All that they need to know is
the intended interpretation of the program. The quantity of
the queries imposed on the oracle may be large and reduc-
ing the quantity of the queries has been the main objective
of much research into declarative diagnosis [4, 2, 3, 14, 15].
The quantity of the queries is dependent on the size of the
search space and the search strategy [18, 9].

This paper formalises the programmer’s practice of using
assertions about the correctness of the program and uses
two kinds of correctness assertion to reduce the size of the
search space of a declarative diagnoser for normal logic pro-
grams [10]. We first recall the original declarative diagnoser
and then present an improved declarative diagnoser that
makes use of correctness assertions to reduce the quantity
of queries.

The remaider of the paper is organised as follows. Section 2
defines bugs and bug symptoms and establishes the connec-
tion between a bug symptom and a bug by means of a tree
that models the execution of the bug symptom. Section 3
presents the original diagnoser that constructs and searches
the tree. In section 4, we formalise the two kinds of cor-
rectness assertion and present the improved diagnoser. The
improved diagnoser reduces the quantity of queries by re-
ducing the size of the search space. It does so by applying
three tree pruning transformations that make use of the two
kinds of correctness assertion. Section 5 concludes the pa-
per and compares our work with other work on the use of
assertions in declarative logic program diagnosis.

Let T be a tree and v a node of T . The height of T , writ-
ten as h(T ), is the length of the longest path of T . Tv

denotes the sub-tree of T that is rooted at v. We use T/v

to denote the tree resulting from replacing Tv of T with a
single node v. Let v1, · · · , vm be the children of v, we write



Tv = t(v, {Tv1 , · · · , Tvm}). Let T1 be a sub-tree of T and
T2 a tree. We write T [T1 7→ T2] to denote the tree resulting
from substituting T2 for T1.

2. SYMPTOMS, BUGS AND EXECUTION
We assume that readers are familiar with the terminology of
logic programming [9]. To simplify presentation, we use the
left-to-right computation rule. Adaptation to other compu-
tation rules is straightforward.

2.1 Symptoms and Bugs
Let P be the program to diagnose and I its intended inter-
pretation. An atom A is a wrong answer if A is invalid in
I and A ∈ SS(P ) where SS(P ) is the success set of P . An
atom A is a missing answer if A is satisfiable in I and P
finitely fails on A. A clause instance A←W is inconsistent
if A ← W is invalid in I. An atom A is uncovered if A
is valid in I and, for every clause A′ ← W of P such that
A and A′ unify with mgu θ, Wθ is unsatisfiable in I. An
atom A is incompletely covered if an instance of A is un-
covered. If there is a wrong or missing answer then there is
an inconsistent clause instance or an incompletely covered
atom [9, 8, 5, 19]. Therefore, given a wrong or missing an-
swer, a declarative diagnoser for logic programs is to search
for an inconsistent clause instance or an incompletely cov-
ered atom.

2.2 Execution Trees
We now establish the relation between a symptom and a bug
by means of an execution tree. Consider wrong answers first.
Let L be a node of an ordered tree T and L1, L2, · · · , Lk the
children of L in that order. We say that L← L1, L2, · · · , Lk

is the root implication of TL and write it as RI(T, L). A
partial proof tree for an atom A is rooted at A and, for each
non-leaf node L′, either RI(T, L′) is an instance of a clause
or RI(T, L′) = (¬A′ ← true) and A′ is an atom on which P
finitely fails. A partial proof tree is congruent if each of its
leaves is valid in I. A proof tree is a partial proof tree whose
leaves are all labelled with true. Observe that A proof tree
is a congruent partial proof tree (CPP for short) since true

is valid in I.

Let P be the following quicksort program that has a bug
indicated by a comment.

qs([X|L],L0) :- pt(L,X,L1,L2), qs(L1,L3), qs(L2,L4),
ap([X|L3],L4,L0). %ap(L3,[X|L4],L0)

qs([],[]).

pt([X|L],Y,L1,[X|L2]) :- Y=<X, pt(L,Y,L1,L2).
pt([X|L],Y,[X|L1],L2) :- Y>X, pt(L,Y,L1,L2).
pt([],X,[],[]).

ap([X|L1],L2,[X|L3]) :- ap(L1,L2,L3).
ap([],L,L).

The atom qs([2, 3, 1], [2, 1, 3]) is a wrong answer. Figure 1
illustrates a CPP for qs([2, 3, 1], [2, 1, 3]). It is a part of a
proof tree for qs([2, 3, 1], [2, 1, 3]) because in a proof tree for
qs([2, 3, 1], [2, 1, 3]) each of node (3) (labelled with 2 =< 3)
and node (5) (labelled with 2 > 1) has a child labelled with
true.

qs([2,3,1],[2,1,3]) (1)
|---------------------------|
| |
|-pt([3,1],2,[1],[3]) (2) |-qs([3],[3]) (18)
| |--2=<3 (3) | |-pt([],3,[],[]) (19)
| |--pt([1],2,[1],[]) (4) | | |--true (20)
| |--2>1 (5) | |-qs([],[]) (21)
| |--pt([],2,[],[]) (6) | | |--true (22)
| |--true (7) | |-qs([],[]) (23)
|-qs([1],[1]) (8) | | |--true (24)

|--pt([],1,[],[]) (9) | |-ap([3],[],[3]) (25)
| |--true (10) | |--ap([],[],[]) (26)
|--qs([],[]) (11) | |--true (27)
| |--true (12) |-ap([2,1],[3],[2,1,3])(28)
|--qs([],[]) (13) |-ap([1],[3],[1,3]) (29)
| |--true (14) |--ap([],[3],[3]) (30)
|--ap([1],[],[1]) (15) |--true (31)

|--ap([],[],[]) (16)
|--true (17)

Figure 1: A CPP for qs([2, 3, 1], [2, 1, 3])

It is shown in [10] that a wrong answer A can be diagnosed
by searching a CPP T for A to find a node L′ of T such that
C = RI(T, L′) is invalid in I. Either C is an inconsistent
clause instance, or C = (¬A′ ← true) such that A′ is a
missing answer.

We now consider missing answers. A goal W ′ is derived from
another W , denoted W =⇒W ′ if W = L1, L2, · · · , Lm, and
either (i) L1 is positive, there is a clause A←W ′′ such that
L1 and A unify with a mgu θ, and W ′ = (W ′′, L2, · · · , Lm)θ,
or (ii) L1 is negative with L1 = ¬A1, P finitely fails on A1,
and W ′ = (L2, · · · , Lm).

Let W be a goal, and T a tree rooted at W .

(1) An SLD tree for W is a tree rooted at W such that
W ′′ is a child of W ′ in T iff W ′′ derived from W ′.

(2) A partial SLD tree for W is a tree rooted at W such
that W ′′ is a child of W ′ in T only if W ′ =⇒W ′′.

(3) A partial SLD tree T for W is complete (CPS for short)
if W ′′ is a child of W ′ in T for each W ′′ derived from
W ′ such that is satisfiable in I.

The notion of a CPS T for W captures the idea that if P
is correct wrt I, then any successful derivation of W corre-
sponds to a path from the root of T to a leaf of T which is 2.
It follows that an SLD tree for W is a CPS for W . If A is
a missing answer, then a CPS for A (via a fair computation
rule) is a finite tree, and none of its leaves is 2 because any
derivation of A terminated with 2 corresponds to a proof
tree for Aθ for some θ.

Consider the following buggy program. The intended inter-
pretation for d(X,Ys,Zs) is that either X is in list Ys but not
in list Zs or X is in list Zs but not in list Y s. The intended
interpretation for m(X,L) is that X is in list L.

d(X,Ys,Zs) :- m(X,Ys), \+ m(X,Zs).
d(X,Ys,Zs) :- m(X,Zs), \+ m(X,Zs). % \+ m(X,Ys)



m(X,[X|Xs]).
m(X,[Y|Ys]) :- m(X,Ys).

The atom d(3, [1, 2, 4], [2, 3]) is a missing answer with this
CPS .

(d(3,[1,2,4],[2,3])) (1)
|
|-(m(3,[1,2,4]),\+ m(3,[2,3])) (2)
| |-(m(3,[2,4]),\+ m(3,[2,3])) (3)
| |-(m(3,[4]),\+ m(3,[2,3])) (4)
| |-(m(3,[]),\+ m(3,[2,3]))(5)
|
|--(m(3,[2,3]),\+ m(3,[2,3])) (6)

|-(m(3,[3]),\+ m(3,[2,3])) (7)
|-(\+ m(3,[2,3])) (8)
|-(m(3,[]),\+ m(3,[2,3]))(9)

Let T be a CPS . A node W of T is critical if W is satisfiable
in I and each child of W is unsatisfiable in I. It is shown
in [10] that a missing answer A can be diagnosed by search-
ing a CPS T for A to find a critical node W of T . W 6= 2

since P finitely fails on A. Let L be the selected literal L of
W . Either L is an incompletely covered atom, or L = ¬A′

and A′ is a wrong answer.

3. A DIAGNOSER
This section recalls a declarative diagnoser π for normal logic
programs that is presented in details in [10]. The top level
procedures of π are defined.

wrong(A,D) :-
cpp(A,T), !, invalid_impl(T,C),
( C = (\+A1:-true) -> missing(A1,D) ; D = C ).

missing(A,D) :-
cps((A),T), !, critical(T,W), selected(W,L),
( L = \+A1 -> wrong(A1,D) ; D = L ).

The auxiliary procedure cpp(A, T ) succeeds with T being
a CPP for A. Likewise, cps(W, T ) succeeds with T being a
CPS for W . The procedure selected(W, A) succeeds with A
the selected atom of W .The procedure invalid impl(T, C)
succeeds with C being an invalid root implication of a node
in T ; and the procedure critical(T, W ) succeeds with W
being a critical node of T .

To diagnose a wrong answer A, wrong/2 first calls cpp/2 to
construct a CPP T for A. Then it calls invalid impl/2 to
find a node L′ of T such that C = RI(T, L′) is invalid. If
C is an instance of a clause of P , wrong/2 returns with C
as its output. Otherwise C = (¬A′ ← true) with A′ being
a missing answer and wrong/2 calls missing/2 to diagnose
the missing answer A′. To diagnose a missing answer A,
missing/2 first calls cps/2 to construct a CPS T for ← A.
Then it calls critical/2 to find a W node of T such that
W is a critical node of T . Let L be the selected literal of
W . If L is positive, missing/2 returns with L as its output.
Otherwise, L = ¬A′ with A′ being a wrong answer and
missing/2 calls wrong/2 to diagnose the wrong answer A′.

4. USE OF CORRECTNESS ASSERTIONS
Given a symptom, diagnoser π first constructs a tree mod-
elling the execution of the symptom and then searches the
tree for the bug that causes the symptom. The quantity of
the queries on the oracle is dependent on the size of the tree.
Therefore it is desirable to reduce size of the tree before it
is searched.

We present three tree transformations that reduces the size
of the tree modelling the execution of the symptom before
it is searched. Each of these tree transformations makes
use of assertions about the correctness of the program and
these assertions can be accumulated during the process of
debugging.

4.1 Correctness Assertions I
At some stage of debugging, the programmer may know that
the result of a call of a certain pattern is always correct. Such
knowledge is expressed as an assertion faithful(p(~t)). The
meaning of faithful(p(~t)) is that p(~t)θ ∈ SS(P ) iff p(~t)θ is
valid in I for any substitution θ. In other words, P gives
correct answers when called with an instance of p(~t). This
applies naturally to all the built-in-predicates and all the
predefined predicates. This also applies to a procedure that
has been thoroughly tested, especially when all procedures
that might be called during the execution of the procedure
have been thoroughly tested. Let Γ1 denote the set of the
assertions of the form faithful(p(~t)).

Let A be a wrong answer, T a CPP for A, and B a node
of T . If faithful(p(~t)) ∈ SS(Γ1) then B is valid in I,
whence, TB can be replaced by a single node B. This is
formalised as a transformation (relation) _1: T _1 T/B iff
B is a non-leaf node in T such that faithful(B) ∈ SS(Γ1).
Observe that T 6_1 T/A since A is a wrong answer and
faithful(A) 6∈ SS(Γ1).

Lemma 1. Let A be an atom, and T a CPP for A. If
T _1 T ′ then T ′ is a CPP for A. 2

We thus can diagnose a wrong answer A by constructing
a CPP for A, repeatedly applying _1 to the CPP until it
can not be applied further, and then invoke invalid impl/2
to search the CPP . Each time _1 is applied, it reduces
the size of the CPP at least by one. For an example, let
faithful(ap(L1, L2, L3)) ∈ Γ1. Applying _1 repeatedly to
CPP in figure 1 will remove nodes (16), (17), (26), (27),
(29), (30) and (31).

Let (L, W ) be a node of a CPS T for G. For each computed
answer θ for L, either Wθ is a node of TL,W or there is an
unsatisfiable goal W ′ such that (L, W ) =⇒∗ W ′ =⇒∗ Wθ.
If faithful(B) ∈ SS(Γ1) then it does not compromise the
soundness and completeness of π to substitute t((L, W ), T s)
for TL,W where Ts = {TWθ | Wθ is a node of TL,W }. This
is formalised as a transformation _2 defined

T _2 T [T(L,W ), t((L, W ), {TWθ |Wθ is a node of T(L,W )}]

iff faithful(B) ∈ SS(Γ1).



Lemma 2. Let G be a goal, T a CPS for G , and T _2 T ′.
If G1 is a critical node of T ′ then G1 is a critical node of T .
Furthermore, if T has a critical node then T ′ has one. 2

We therefore can diagnose a missing answer A by first con-
structing a CPS for A, then repeatedly applying transforma-
tion _2 to the CPS until it cannot be further pruned and
finally invoke critical/2 to search the CPS . For instance,
if faithful(m(X, L)) ∈ Γ1 then repeatedly applying _2 to
the CPS for d(3, [1, 2, 4], [2, 3]) in section 2 will result in the
following CPS . The effect is that nodes (3),(4),(5),(7) and
(9) are removed and node (8) becomes a child of node (6).

(d(3,[1,2,4],[2,3])) (1)
|--(m(3,[1,2,4]),\+ m(3,[2,3])) (2)
|--(m(3,[2,3]),\+ m(3,[2,3])) (6)

|--(\+ m(3,[2,3])) (8)

4.2 Correctness Assertions II
During the process of debugging, the programmer may also
know that a particular procedure when called with inputs
of a certain pattern does not cause any symptom. We rep-
resent such knowledge by means of an assertion of the form
correct(p(~t)). The semantics of correct(p(~t)) is:

(1) p(~t)θ is not an incompletely covered atom for any θ,
and

(2) if A ← W is a clause of P with A unifying with p(~t)
with mgu θ then (A ← W )θ is not an inconsistent
clause instance.

(1) is equivalent to that if p(~t)θ is satisfiable in I and P
finitely fails on p(~t)θ then there is a clause A ← W of P
such that A and p(~t)θ unify with mgu η and Wη is satisfiable
in I. (2) is equivalent to that if p(~t)θ is invalid in I and
p(~t)θ ∈ SS(P ) then, for each a clause A ← W of P such
that A and p(~t)θ unify with mgu η, Wη is invalid in I. (1)
and (2) together implies that when called with an instance of
p(~t), procedure p/m does not cause any symptom and it only
propagates symptoms. We now introduce a transformation
_3 on a CPS .

Let children(G) be the set of children of G and Gp be the
parent of G. Let T be a CPS and G a non-root node of T
such that G = (L, W ). If correct(L) ∈ SS(Γ2) then it is
safe to remove G by linking its children to its parent. This
is formalised as follows.

T _3 T [TGp , t(Gp, children(Gp) \G ∪ children(G))]

iff G = (L, W ) and correct(L) ∈ SS(Γ2). The transfor-
mation _3 removes a node whose selected literal satisfies a
correctness assertion in Γ2 and promotes its children.

Lemma 3. Let T a CPS for G , and T _3 T ′. If G1 is a
critical node of T ′ then G1 is a critical node of T . Moreover,
if T has a critical node then T ′ has one. 2

By lemma 3, given a missing answer A and a CPS for A,
we can diagnose by repeatedly applying transformation _3

to the CPS and then invoking critical/2 to search the
resulting tree. For instance, if correct(m(X, L)) ∈ Γ2 then
repeatedly applying _3 to the CPS in the previous section
will result in the following CPS . The effect is that nodes (2)
and (6) are removed and node (8) becomes a child of node
(1).

(d(3,[1,2,4],[2,3])) (1)
|--(\+ m(3,[2,3])) (8)

4.3 An Improved Diagnoser
We now present an improved declarative diagnoser π′ for
normal logic programs. It applies _1 to reduce the size of
a CPP or _2 and _3 to reduce the size of a CPS before
it is searched. transform 1(T1, T2) is true iff T1 _∗

1 T2 and
T2 _1 T2 where _∗

1 is the reflexive and transitive closure of
_1, transform 2(T1, T2) is true iff T1 _∗

2 T2 and T2 _2 T2,
and transform 3(T1, T2) is true iff T1 _∗

3 T2 and T2 _3 T2.
π′ consists of all the predicates in Γ1 and Γ2, predicates
transform 1/2, transform 2/2 and transform 3/2, all the
predicates of π except wrong/2 and missing/2 which are
redefined as follows.

wrong(A,D) :-
cpp(A,T), transform_1(T,T1) !, invalid_impl(T1,C),
( C = (\+A1:-true) -> missing(A1,D) ; D = C ).

missing(A,D) :-
cps((A),T), transform_2(T,T1), transform_3(T1,T2),
!, critical(T2,G), selected(G,L),
( L = \+A1 -> wrong(A1,D) ; D = L ).

The improved diagnoser has been implemented in SWI Prolog.
The following is a session with the diagnoser.

debug % load buggyqs.pl
debug % faithful

procedure or goal? pt/4.
debug % faithful

procedure or goal? ap/3.

debug % exec qs([8,3,8,4,6,2,7],[2,3,4,6,7,8,8]).
Is qs([8,3,8,4,6,2,7], [2,3,4,6,7,8,8]) valid? y
qs([8,3,8,4,6,2,7], [2,3,4,6,7,8,8])) is missing.

debug % diagnose
qs([8,3,8,4,6,2,7], [2,3,4,6,7,8,8]) is missing.
Is qs([3,8,4,6,2,7], [3,2,8,4,6,7]) valid? n
qs([3,8,4,6,2,7], [3,2,8,4,6,7]) is wrong.
Is qs([2], [2]) valid? y
Is qs([8,4,6,7], [8,4,6,7]) valid? n
Is qs([4,6,7], [4,6,7]) valid? y
Is qs([], []) valid? y

This is an inconsistent clause.
qs([8, 4, 6, 7], [8, 4, 6, 7]) :-

pt([4, 6, 7], 8, [4, 6, 7], []),
qs([4, 6, 7], [4, 6, 7]), qs([], []),
ap([8, 4, 6, 7], [], [8, 4, 6, 7]).

It is an instance of
qs([X|L], L0) :-

pt(L, X, L1, L2),
qs(L1, L3), qs(L2, L4), ap([X|L3], L4, L0).

with
L = [4,6,7] L1 = [4,6,7] L2 = [] X = 8
L3 = [4,6,7] L4 = [] L0 = [8,4,6,7]

discard/modify/none?



In the session, the programmer first loads the buggy quicksort
program from the file named “buggyqs.pl”. Then he informs the
diagnoser that calls to procedures pt/4 and ap/2 do not result
in any bug symptom. After that, he tests the program with the
call qs([8, 3, 8, 4, 6, 2, 7], [2, 3, 4, 6, 7, 8, 8]) which is a missing an-
swer and then instructs the diagnoser to find the bug. The diag-
noser queries the programmer with five questions before it reports
an inconsistent clause. No questions about procedures pt/4 and
ap/2 are asked.

The session uses the top-down zooming strategy to search both
CPP and CPS trees. Diagnoser supports various other search
strategies.

5. CONCLUSION
We have presented a declarative diagnoser that models the execu-
tion of a symptom as a tree and searches the tree for the bug that
causes the symptom. We have presented three tree transforma-
tions that reduce the size of the tree and maintain the soundness
and the completeness of the diagnoser. These three tree transfor-
mations use two kinds of correctness assertion.

The diagnoser presented in [17, 18] stores the oracle’s answer
to each query as an assertion about the intended interpretation
of the program. For instance, if an atom A is judged by the
oracle to be valid in the intended interpretation then assertion
fact(A, valid) is stored. An assertion stored by the diagnoser is
simply a unit clause of procedure fact/2. When a query is to be
made later, the diagnoser first tries to use the stored assertions
to answer the query. Only when the query cannot be answered
this way will the query be imposed on the oracle.

The diagnosers presented in [4], [1] and [7] use a full specifica-
tion for the program therefore the oracle can be fully automated.
However, a full infallible and executable specification is a strong
requirement.

The diagnoser presented in [2, 3] allows the programmer to par-
tially specify the intended interpretation of the program. An
assertion is a clause of one of the four procedures that are used to
specify what is known valid, what is known false, what is known
satisfiable and what is known unsatisfiable in the intended inter-
pretation of the program. When a query is to be made, the diag-
noser first tries to answer the query using assertions and imposed
the query on the oracle only if the query cannot be answered this
way.

There are two main differences between the use of assertions in
the above diagnosers and that in our diagnoser. All the above
diagnosers use assertions to answer queries in an automated or
partially automated manner. Our diagnoser uses assertions to
reduce the tree modelling the execution of the bug symptom in-
stead of to answer queries. These diagnosers use assertions about
the intended interpretation of the program while our diagnoser
uses correctness assertions. The correctness assertion are much
more abstract than assertions about the intended interpretation.
They are also easier for the programmer to specify. The assertions
about intended interpretation can be easily incorporated into our
declarative diagnoser. They can be used to answer queries as in
other diagnosers or they can be used during the construction of
CPP and CPS trees.

Acknowledgements
This work was supported, in part, by NSF grants CCR-0131862
and INT-0327760.

6. REFERENCES
[1] N. Dershowitz and Y.-J. Lee. Deductive debugging. In

Proceedings of 1987 Symposium of Logic Programming,
pages 298–306. The IEEE Computer Society Press, 1987.

[2] W. Drabent, S. Nadjm-Tehrani, and J. Ma luszynski. The
use of assertions in algorithmic debugging. In The
Proceedings of the International Conference on Fifth
Generation Computer Systems. ICOT, 1988.

[3] W. Drabent, S. Nadjm-Tehrani, and J. Ma luszynski.
Algorithmic debugging with assertions. In Harvey
Abramson and M.H. Rogers, editors, Meta-Programming in
Logic Programming, pages 502–521. The MIT Press, 1989.

[4] A. Edman and S.-Å. Tärnlund. Mechanization of an oracle
in a debugging system. In Proceedings of the Eighth
International Joint Conference on Artificial Intelligence,
volume 2, pages 553–555, Karlsruhe, West Germany,
August 1983.

[5] G. Ferrand. Error diagnosis in logic programming, an
adaptation of E.Y. Shapiro’s method. The Journal of Logic
Programming, 4(3):177–198, 1987.

[6] P. Fritzson, T. Gyimothy, M. Kamkar, and N. Shahmehri.
Generalized algorithmic debugging and testing. SIGPLAN
Notices, 26(6):317–326, 1991.

[7] T. Kanamori, T. Kawamura, M. Maeji, and K.Horiuchi.
Logical program diagnosis from specifications. ICOT
Technical Report TR-447, March 1989.

[8] J.W. Lloyd. Declarative error diagnosis. New Generation
Computing, 5(2):133–154, 1987.

[9] J.W. Lloyd. Foundations of Logic Programming.
Springer-Verlag, 1987.

[10] L. Lu. A generic declarative diagnoser for normal logic
programs. In Logic Programming and Automated
Reasoning, 5th International Conference, volume 822 of
Lecture Notes in Artificial Intelligence, pages 290–304.
Springer, 1994.

[11] L. Naish. Declarative debugging of lazy functional
programs. Australian Computer Science Communications,
15(1):287–294, 1993.

[12] L. Naish and T. Barbour. A declarative debugger for a
logical-functional language. In G. Forsyth and M. Ali,
editors, Eighth International Conference on Industrial and
Engineering Applications of Artificial Intelligence and
Expert, volume 2, pages 91–99, Melbourne, June 1995.

[13] L. Naish and T. Barbour. Towards a portable lazy
functional declarative debugger. Australian Computer
Science Communications, 18(1):401–408, 1996.

[14] L.M. Pereira. Rational debugging in logic programming. In
E. Shapiro, editor, Proceedings of the 3rd International
Logic Programming Conference, pages 203–210. Springer
Verlag, 1986. Lecture Notes in Computer Science no. 225.

[15] L.M. Pereira and M. Calejo. A framework for Prolog
debugging. In R. A. Kowalski and K. A. Bowen, editors,
Proceedings of the Fifth International Conference and
Symposium on Logic Programming, pages 481–495. The
MIT Press, 1988.

[16] G. Puebla, F. Bueno, and M. Hermenegildo. A framework
for assertion-based debugging in CLP. In Michael J. Maher
and Jean-Francois Puget, editors, Proceedings of the Fourth
International Conference on Principles and Practice of
Constraint Programming, volume 1520 of Lecture Notes in
Computer Science, page 472. Springer, 1998.

[17] E. Shapiro. Algorithmic program diagnosis. In ACM
Conference Record of the ninth annual ACM Symposium
on Principles of Programming Languages, pages 299–308.
The ACM Press, 1982.

[18] E. Shapiro. Algorithmic Debugging. The MIT Press, 1983.

[19] S.Y. Yan. Foundations of declarative debugging in arbitrary
logic programming. International Journal of Man Machine
Studies, 32:215–232, 1990.


