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ABSTRACT
We present a new analysis that infers polymorphic type
dependencies in logic programs. The analysis infers more
precise information than previous type dependency infer-
ence analyses. The improvement in precision is achieved
by making use of set union as a type constructor and non-
deterministic type definitions.
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1. INTRODUCTION
In logic programming, types have been used in compile-time
optimization, program transformation and error detection.
A type inference analysis derives type information from the
text of the program. Many type inference analyses have been
proposed for logic programs. Most of those proposed anal-
yses disregard dependencies between types of terms bound
to different variables, which causes loss of precision. To the
best of our knowledge, only analyses in [2, 6, 7, 14, 16] cap-
ture polymorphic type dependencies.

The analysis in [2] infers a set of abstract atoms p(τ1, . . . , τn)
where p is a predicate symbol and each τi is a poly-type -
a type expression that may contain type parameters. Each
abstract atom describes a set of atoms in the success set of
the program. Let `() be the list type constructor. Then,
abstract atom p(β, `(β)) with β being a type parameter de-
scribes p(t1, t2) iff there is a type R such that t1 is of type
R and t2 is of type `(R). For instance, the abstract atom
describes p(1, [2, 3]) where the term 1 is of type int and the
term [2, 3] of type `(int). The analysis in [6] is similar to
that in [2] except that its inferred abstract atoms describe
the whole success set of the program while the result of [2]
describes only well-typed atoms in the success set. As an
improvement on [6], an associative, commutative and idem-
potent operator ⊕ is introduced in [7] to form the type of a
term from those of its sub-terms. Type inference analyses in
[2, 6, 7] capture type dependency via type parameters as in

the abstract atom p(β, `(β)). Hill and Spoto [14] provide a
method that enriches an abstract domain with dependency
information. The enriched domain contains elements like
(x ∈ β) → (y ∈ `(β)) meaning that if x is of type β then
y is of type `(β) for any type β. This kind of type depen-
dencies are more explicit than those in [2, 6, 7]. The above
mentioned analyses are goal-independent in the sense that
they do not require a type description of initial goals as an
analysis input. A goal-dependent analysis is performed for
a given type description of initial goals. Given a type de-
scription of initial goals, the goal-dependent analysis in [16]
infers a type description for each program point. Type de-
scriptions are parameterized by type parameters that can be
instantiated after analysis, i.e., it infers the dependency of
the type description at each program point on that of initial
goals.

Two factors compromise precision of the analyses in [2,
6, 7, 14, 16]. Firstly, they only allow deterministic type
definitions in that a function symbol cannot occur in more
than one definition for the same type constructor. A type
then denotes a term language recognized by a deterministic
top-down tree automaton [8] and hence it is called deter-
ministic. This causes loss of precision because of the limited
power of deterministic types. The same restriction also pre-
vents many natural typings. For instance, these two type
rules float_ + (int , f loat) and float_ + (float, float) vi-
olate the restriction. Secondly, the join operation on types
in these analyses incurs a loss of precision. The denotation
of the join of two types can be larger than the set union
of their denotations. For instance, the join of `(int) and
`(float) is `(number). Let t be a type constructor that is
interpreted as set union. Then `(number) is a super-type of
t(`(int), `(float)) since the list [1, 0.5] belongs to the former
but not the latter.

This paper presents a new analysis that infers polymorphic
type dependencies. Following [2, 6, 7, 14, 16], the analy-
sis is performed with a priori type definitions which deter-
mine possible types and their meanings. Types are formed
from a fixed alphabet of type constructors. In contrast, a
type analysis that infers both type definitions and types such
as [5] has the freedom of generating new type constructors
as needed. The main contribution of the work is the use of
set union as a type constructor and non-deterministic type
definitions. The set union as a type constructor allows us to
compute precisely the join of two types. Non-deterministic
type definitions enable us to use types to denote more sets



of terms. They together make the new analysis more precise
than those in [2, 6, 7, 14, 16].

The remainder of the paper is organized as follows. Section
2 recalls basic concepts in logic programming [15] and ab-
stract interpretation [9] that are used in the rest of the paper,
and reformulates the S-semantics [3] in terms of renaming,
unification and projection operations on substitutions. The
S-semantics will be used as the concrete semantics for the
new analysis. Section 3 presents type definitions and the
meanings of types. In section 4, we present abstract substi-
tutions and renaming, unification and projection operations
on abstract substitutions. Each abstract substitution de-
scribes a set of substitutions and each operation on abstract
substitutions simulates an operation on substitutions. Sec-
tion 5 presents the abstract semantics for the new analysis
and illustrates it via examples. Section 6 concludes. Proofs
are placed in an appendix.

2. PRELIMINARIES
We assume a set of function symbols Σ, a set of predicate
symbols Π and an infinite set of variables V. Let V ⊆ V.
We use Term(Σ, V ) to denote the set of terms that are con-
structed from the function symbols in Σ and the variables
in V . Let V(o) be the set of variables in a syntactic object
o. The set of subsets of a set S is denoted by ℘(S) and the
set of finite subsets of S by ℘f (S). A bold lower case letter
denotes a sequence of different variables. An atom is of the
form p(~x) with p ∈ Π and ~x a sequence of different variables
with a suitable dimension. When there is no ambiguity, V(~x)
will be written as ~x.

2.1 Abstract Interpretation
A semantics of a program is defined as the least fixpoint
of a monotonic function on a complete lattice. There are
two semantics in abstract interpretation: concrete and ab-
stract semantics. Let lfp be the least fixpoint operator. The
concrete semantics is lfp C where C is a monotone func-
tion on the concrete domain 〈C,vC〉 while the abstract se-
mantics is lfp A where A is a monotone function on the
abstract domain 〈A,vA〉. The two domains are related
via a Galois connection (α, γ) which is a pair of mono-
tone functions α : C 7→ A and γ : A 7→ C satisfying
∀c ∈ C.(c vC γ ◦ α(c)) and ∀a ∈ A.(α ◦ γ(a) vA a). The
function α is called an abstraction function and γ a con-
cretization function. A sufficient condition for lfpA to be a
safe abstraction of lfp C is ∀a ∈ A.(α ◦ C ◦ γ(a) vA A(a))
or equivalently ∀a ∈ A.(C ◦ γ(a) vC γ ◦ A(a)), accord-
ing to propositions 24 and 25 in [10]. A complete meet-
morphism γ : A 7→ C induces a Galois connection (α, γ)
with α(c) = uA{a | c vC γ(a)}. A function γ : A 7→ C is a
complete meet-morphism iff γ(uAX) = uC{γ(x) ∈ X} for
any X ⊆ A.

2.2 Equivalence on substitutions
A substitution θ is a mapping from V to Term(Σ,V) such
that its domain dom(θ) = {x | x 6= θ(x)} is finite. A sub-
stitution θ is idempotent iff θ(θ(x)) = θ(x) for all x ∈ V.
The set of all idempotent substitutions is denoted Subst .
A renaming substitution is a bijection from V to V. Two
computed answer substitutions θ and σ for a goal G are
equivalent iff there is a renaming substitution δ such that

θ(x) = δ(σ(x)) for all x ∈ V(G) [15]. This notion of equiv-
alence is formalized by the following relation ∼U that was
introduced in [1]. Let U ∈ ℘f (V) and θ, σ ∈ Subst . We write
θ ≤U σ iff there is a substitution δ such that θ(x) = δ(σ(x))
for all x ∈ U . For instance, let θ = {x 7→ f(a), y 7→
f(b), z 7→ h(a)} and σ = {x 7→ u, y 7→ v, z 7→ g(b)} and
δ = {u 7→ f(a), v 7→ f(b)}. Then θ(x) = δ(σ(x)) and
θ(y) = δ(σ(y)) and hence θ ≤{x,y} σ. The relation ≤U

is a pre-order. Let ∼U be the equivalence relation induced
by ≤U . Then, θ ∼U σ iff there is a renaming substitution
ρ such that θ(x) = ρ(σ(x)) for all x ∈ U . Note that ∼U is
weaker than the usual equivalence relation in which θ and
ρ ◦ σ must agree on all variables in V.

Let [θ]U denote the equivalence class of θ with respect to
∼U and SubstU the quotient set of Subst with respect to
∼U . A substitution θ′ is a canonical representative of an
equivalence class [θ]U iff θ′ ∈ [θ]U and dom(θ′) = U and
U ∩ rng(θ′) = ∅ where rng(θ′) = ∪x∈dom(θ′)V(θ′(x)). In
any θ′ in [θ]U , bindings for variables outside U is irrelevant
since {x 7→ θ′(x) | x ∈ U} ∼U θ′. We will use η and ζ
to denote equivalence classes of substitutions with respect
to ∼U for some U that is either irrelevant or clear from the
context. Define Subst∼ =

U
U∈℘f (V) SubstU where ] is the

disjoint union operation. Let � 6∈ Subst∼ indicate failure of
unification and define Subst�∼ = Subst∼ ∪ {�}. Elements in
Subst�∼ are ordered by ≤ that is defined by � ≤ e for all
e ∈ Subst�∼ and for all [θ1]U , [θ2]V ∈ Subst∼,

[θ1]U ≤ [θ2]V iff (U ⊇ V ) ∧ (θ1 ≤V θ2)

2.3 Operations on substitutions
An equational constraint is a finite set (conjunction) of equa-
tions of the form t1 = t2 with ti for i = 1, 2 being terms.
Define mgu(E) as the ∼V(E) equivalence class of most gen-
eral unifiers for E if E is unifiable. Otherwise, mgu(E) = �.

One operation performed during program execution is to
conjoin constraints represented by substitutions. The uni-
fication operation � : SubstU × SubstV 7→ SubstU∪V ∪ {�}
is defined by [θ1]U � [θ2]V = mgu(eq(θ′1) ∪ eq(θ′2)) where
eq(θ) = {x = θ(x) | x ∈ dom(θ)} and θ′1 and θ′2 are respec-
tively canonical representatives of [θ1]U and [θ2]V such that
(U ∪ V(θ′1)) ∩ (V ∪ V(θ′2)) ⊆ U ∩ V . Another operation is
projection πX : SubstU 7→ SubstU\X for X ∈ ℘f (V) defined
as πX([θ]U ) = [θ]U\X . The operator πX hides variables in
X. A third operation is renaming defined as follows. If
~x ∩ ~y = ∅ then R~x7→~y(η) = π~x(mgu({~x = ~y}) � η). Oth-
erwise, R~x7→~y(η) = R~z 7→~y(R~x7→~z(η)) where ~z ∩ (~x ∪ ~y) = ∅.
The operation R~x7→~y(·) transforms an equational constraint
on ~x to one on ~y.

2.4 S-Semantics
The S-semantics is a bottom-up and fixpoint definition of
the set of computed answers of a program [3]. The com-
puted answer for a predicate p(~x) is a set of ( ∼~x-equivalence
classes of) substitutions. Given a computed answer for p(~x),
one can obtain a computed answer for p(~y) via renaming.
Thus, we reserve a set of special variables Λ = {λ1, · · · , λn}
where n is the maximum arity of the predicates in Π and
define the meaning of a predicate p of arity m as the set of
computed answers for p(λ1, · · · , λm). We further denote the
sequence of arguments in p(λ1, · · · , λm) as Λ(p).



An interpretation is a set of pairs 〈p, η〉 where p is a predicate
and η is an element of SubstΛ(p). The domain of interpreta-
tions is

Int = ℘({〈p, η〉 | p ∈ Π and η ∈ SubstΛ(p)})

Interpretations are ordered by set inclusion ⊆ and 〈Int,⊆〉
is a complete lattice.

For the purpose of calculating computed answers, we can
assume that a clause have the form p(~x) ← E,A1, · · · , An

where n ≥ 0, E is an equational constraint and each Ai an
atom. This is a direct consequence of the computational rule
independence result [15]. We may further assume that the
equational constraint E is unifiable for otherwise the clause
is useless. The S-semantics of a program P is lfp TP where
TP : Int 7→ Int is defined

TP (I) =8>>>>>>>>>>>>><>>>>>>>>>>>>>:
〈p, η〉

p ∈ Π,
(p(~x0)← E, p1(~x1), · · · , pn(~xn)) ∈ P,
〈p1, η1〉 ∈ I,
· · · ,
〈pn, ηn〉 ∈ I,
ζ1 = RΛ(p1) 7→~x1(η1),
· · · ,
ζn = RΛ(pn) 7→~xn(ηn),
L = (V(E) ∪

S
1≤i≤n ~xi) \ ~x0,

η = R~x0 7→Λ(p)(πL(mgu(E)� ζ1 � · · · � ζn))

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
The computed answers for an atom p(~x0) are computed from
the computed answers for the bodies of its defining clauses.
Consider a clause p(~x0) ← B. If σ is a computed answer
for B then πV(B)\~x0(σ) is a computed answer for p(~x0). The
computed answer for B is computed by conjoining those for
the atoms in B and the most general unifier of the equational
constraint in B through �.

3. TYPE SYSTEM
A type denotes a set of terms that is closed under instantia-
tion [4]. A type is represented by a ground term constructed
from type constructors in Cons∪{t,1,0}. Thus, a type is a
term in RT = Term(Cons ∪ {t,1,0}, ∅). It is assumed that
(Cons ∪ {t,1,0}) ∩ Σ = ∅.

We assume an infinite set of type parameters Para. Types
are defined by type rules [11]. A type rule is of the form
c(β1, · · · , βm)_f(τ1, · · · , τn) where c ∈ Cons, f ∈ Σ and
β1, · · · , βm are different type parameters, and each τj is
either in {β1, · · · , βm} or of the form d(β′1, · · · , β′k) with
β′1, · · · , β′k being different type parameters in {β1, · · · , βm}
and d ∈ Cons. A type parameter may appear in τi and
τj for different 1 ≤ i, j ≤ n. Every type parameter in the
righthand side of a type rule must occur in its lefthand side.
This restriction has been adopted in all type definition for-
malisms. Overloading of function symbols is permitted as a
function symbol can appear in the righthand sides of mul-
tiple type rules. We assume that each function symbol in
Σ occurs in at least one type rule. A poly-type is a term
in Term(Cons∪{t,1,0},Para) denoted Poly. Let Para(o) be
the set of type parameters occurring in a syntactic object o.

Example 3.1. Let Σ = {0, s(), [ ], [ | ]} and
Cons = {nat , even, odd , `()}. This set of type rules defines

natural numbers, even numbers, odd numbers, and lists.

∆ =

8>><>>:
nat_0, nat_s(nat),
even_0, even_s(odd),
odd_s(even),
`(β)_[ ], `(β)_[β|`(β)]

9>>=>>;
A type substitution κ is a mapping from Para to Poly with
a finite domain dom(κ) = {β | κ(β) 6= β}. The application
of k to a syntactic object o is to replace each occurrence
of β in o with k(β). For instance, {β1 7→ `(nat), β2 7→
nat}(`(β1)) = `(`(nat)) and {β 7→ nat}(`(β)_[β|`(β)] =
(`(nat)_[nat |`(nat)]. The join κ1gκ2 of type substitutions
κ1 and κ2 is defined

(κ1gκ2)(β) =

8>><>>:
κ1(β)tκ2(β), β ∈ (dom(κ1) ∩ dom(κ2))
κ1(β), β ∈ (dom(κ1) \ dom(κ2))
κ2(β), β ∈ (dom(κ2) \ dom(κ1))
β, β 6∈ (dom(κ1) ∪ dom(κ2))

Note that dom(κ1gκ2) = dom(κ1) ∪ dom(κ2). A type val-
uation κ is a type substitution such that κ(β) ∈ RT for
each β ∈ dom(κ), i.e., κ maps each type parameter in
its domain to a type. Let T1 and T2 be poly-types. Let
match(T1, T2) = κ if there is a type substitution κ such that
κ(T1) = T2. Otherwise, match(T1, T2) = �.

Given a set of type rules ∆, the meaning of a type is defined
as follows.

[[1]]∆ = Term
[[0]]∆ = ∅

[[R1tR2]]∆ = [[R1]]∆ ∪ [[R2]]∆
[[c(R1, · · · ,Rm)]]∆ =8<:f(t1, · · · , tn)

(c(β1, · · · , βm)_f(τ1, · · · , τn)) ∈ ∆,
κ = {βj 7→ Rj | 1 ≤ j ≤ m},
∀1 ≤ i ≤ n.( ti ∈ [[κ(τi)]]∆)

9=;
The semantic function [[·]]∆ interprets the type constructor t
as set union, 1 as Term and 0 as the empty set. Every type
in RT denotes a regular term language [17]. Furthermore,
types are closed under instantiation in that if t ∈ [[R]]∆ then
σ(t) ∈ [[R]]∆ for any term t, type R, and substitution σ [17].

Example 3.2. Let ∆ be that in example 3.1. Then

[[nat ]]∆ = {0, s(0), s(s(0)), · · · }
[[`(0)]]∆ = {[ ]}
[[`(1)]]∆ = {[ ], [x], · · · } where x ∈ V

4. ABSTRACT SUBSTITUTIONS
During analysis, substitutions are described by abstract sub-
stitutions formed of type conditions x ∈ T with x ∈ V and
T ∈ Poly, and connectives ∧ and ⇐.

Definition 4.1. A type dependency is a formula of the
form (x0 ∈ T0)⇐ (x1 ∈ T1) ∧ · · · ∧ (xm ∈ Tm) such that

• Para(Tj) ⊆ Para(T0) for all 1 ≤ j ≤ m;

• Tj contains no occurrence of t for all 1 ≤ j ≤ m and



• Para(Ti) ∩ Para(Tj) = ∅ for all 1 ≤ i, j ≤ m such that
i 6= j.

A type dependency is normalized if xi 6= xj for all 0 ≤
i, j ≤ m such that i 6= j. The above restrictions on the
form of a normalized type dependency are preserved by all
analysis operations defined later. If m = 0 then the above
type dependency is written as (x0 ∈ T0)⇐ ε or simply (x0 ∈
T0).

An abstract substitution is a set of normalized type depen-
dencies. An abstract substitution describes a set of substitu-
tions. For instance, the abstract substitution y ∈ `(nat) ⇐
x ∈ `(nat) describes all those substitutions θ such that if
θ(x) is a list of natural numbers then θ(y) is a list of natural
numbers. This is formalized by the following satisfiability
relation |=.

• θ |= (x ∈ R) iff θ(x) ∈ [[R]]∆ where x ∈ V and R ∈ RT.

• θ |= ((x0 ∈ T0) ⇐ (x1 ∈ T1) ∧ · · · ∧ (xm ∈ Tm))
iff, for each type valuation κ such that dom(κ) ⊇
∪0≤j≤mPara(Tj), either θ |= (x0 ∈ κ(T0)) or θ 6|= (xi ∈
κ(Ti)) for some 1 ≤ i ≤ m;

• θ |= {c1, · · · , cn} iff θ |= ci for all 1 ≤ i ≤ n.

Note that each type valuation in the definition of satisfiabil-
ity of a type dependency instantiates each poly-type in the
type dependency into a type. We write φ1 4 φ2 iff θ |= φ1

implies θ |= φ2 for every substitution θ and φ1 ≈ φ2 iff
φ1 4 φ2 and φ2 4 φ1. We say that φ1 and φ2 are equivalent
if φ1 ≈ φ2. It follows that renaming of type parameters in a
type dependency results in an equivalent type dependency.
That is, {c} ≈ {c[β′/β]} where β′ is a type parameter that
does not occur in c and c[β′/β] is obtained from replacing
each occurrence of β in c with β′. Let [φ]≈ denote the equiv-
alence class of ≈ that contains φ. Define [φ1]≈ ≤ [φ2]≈ iff
φ1 4 φ2. Then ≤ is a partial order on equivalence classes of
≈. Define θ |= [φ]≈ iff θ |= φ. Let U be a set of variables.
An abstract substitution φ on U is such that all variables in
φ are contained in U . Let TDCU be the set of ≈-equivalence
classes of abstract substitutions on U .

There are type dependencies that do not contain useful infor-
mation in that they are satisfied by all substitutions. Such
type dependencies are called tautologies. Formally, a type
dependency c is a tautology iff θ |= c for any substitution
θ. Let c be (xs ∈ `(β1tβ2) ⇐ xs ∈ `(β1)). Let θ be an
arbitrary substitution and R1 and R2 be arbitrary types. If
θ 6|= (xs ∈ `(R1)) then θ |= (xs ∈ `(R1tR2) ⇐ xs ∈ `(R1))
by the definition of |=. Otherwise, θ |= (xs ∈ `(R1tR1))
and hence θ |= (xs ∈ `(R1tR2) ⇐ xs ∈ `(R1)) since
[[`(R1)]]∆ ⊆ [[`(R1tR2)]]∆. Therefore, θ |= c for any substi-
tution θ and hence c is a tautology. Removal of tautologies
from an abstract substitution results in an equivalent ab-
stract substitution.

4.1 Operations on abstract substitutions
During analysis, operations on substitutions are simulated
by operations on abstract substitutions. We first define the
operations on abstract substitutions and then present the
correctness of these operations.

4.1.1 Abstract Unification
The unification operation � is simulated by an abstract uni-
fication operation �] : TDCU × TDCV 7→ TDCU∪V defined
as φ1 �] φ2 = φ1 ∪ φ2.

4.1.2 Abstract Projection
The concrete projection operation πX is simulated by an ab-
stract operation π]

X which is defined in terms of an unfolding
operation which is in turn defined in terms of a normaliza-
tion operation. The normalization operation takes a type
dependency whose body contains at most two type condi-
tions for each variable and normalizes it. The unfolding
operation unfolds a normalized type dependency with an-
other to obtain a new normalized type dependency. The
normalization operation is defined

norm(h⇐ ε) = (h⇐ ε)

norm(h⇐ (x ∈ T ∧ µ)) = fold(x ∈ T, norm(h⇐ µ))

where

fold(x ∈ T1, y ∈ T ⇐ µ)

=

8>>>>>>>>><>>>>>>>>>:

(y ∈ T ⇐ (x ∈ T1 ∧ µ)), If x 6∈ V(µ),
(y ∈ κ(T )⇐ µ1 ∧ x ∈ T2 ∧ µ2),

If

„
µ = (µ1 ∧ x ∈ T2 ∧ µ2)
κ = match(T1, T2) 6= �

«
,

(y ∈ κ(T )⇐ µ1 ∧ x ∈ T1 ∧ µ2),

If

„
µ = (µ1 ∧ x ∈ T2 ∧ µ2)
κ = match(T2, T1) 6= �

«
,

(y ∈ 1), Otherwise.

The operation fold(x ∈ T1, y ∈ T ⇐ µ) adds x ∈ T1 to µ if x
does not occur in µ. Otherwise, µ contains x ∈ T2 for some
T2. If there is κ 6= � such that either κ = match(T1, T2)
or κ = match(T2, T1) then κ is applied to T and x is con-
strained by T2 in the former case and by T1 in the latter
case. Otherwise, (y ∈ T ⇐ x ∈ T1 ∧ µ) is approximated by
y ∈ 1.

Example 4.2. norm(zs ∈ `(β1tβ2tβ3) ⇐ xs ∈ `(β3) ∧
xs ∈ `(β1) ∧ ys ∈ `(β2)) = zs ∈ `(β1tβ2) ⇐ xs ∈ `(β1) ∧
ys ∈ `(β2).

Unfolding. Let c1 = (y ∈ T ⇐ µ1 ∧ (x ∈ T1) ∧ µ2) and
c2 = ((x ∈ T2) ⇐ ν) be normalized type dependencies such
that they do not share any type parameter. Assume that y
does not occur in ν. If there is a type substitution κ such
that κ1(T1) = T2, the unfolding of c1 with c2 is defined as
unf(c1, c2) = norm(y ∈ κ1(T ) ⇐ µ1 ∧ ν ∧ µ2). If there
is a type substitution κ2 such that κ2(T2) = T1, then the
unfolding of c1 with c2 is defined as unf(c1, c2) = norm(y ∈
T ⇐ µ1∧κ2(ν)∧µ2). Otherwise, the unfolding of c1 with c2
is defined as (y ∈ 1) which is a tautology. Note that κi for
i = 1, 2 are not applied to µ1 or µ2 since they do not share
any type parameter with T1, κ1 is not applied to ν since it
does not bind any type parameter in T2, κ2 is not applied
to T since it does not bind any type parameter in T1. If c1
and c2 share type parameters, then unfolding of c1 with c2
is defined as the unfolding of c1 and c′2 where c′2 ≈ c2 such
that c1 and c2 do not share type parameters. The unfolding



operation is formally defined as follows.

unf(c1, c2) =8>>>>>>>>><>>>>>>>>>:

let

0BBB@
c′2 ≈ c2 s.t. Para(c2) ∩ Para(c′2) = ∅
c1 = (y ∈ T ⇐ µ1 ∧ (x ∈ T1) ∧ µ2)
c′2 = (x ∈ T2 ⇐ ν)
κ1 = match(T1, T2),
κ2 = match(T2, T1)

1CCCA in

8<: (y ∈ 1), If y ∈ V(ν) or κi = � for all i ∈ {1, 2}
norm(y ∈ κ1(T )⇐ µ1 ∧ ν ∧ µ2), If κ1 6= �
norm(y ∈ T ⇐ µ1 ∧ κ2(ν) ∧ µ2), Otherwise.

Note that unf(c1, c2) is normalized since both c1 and c2 are.
If κ1 6= � and κ2 6= � then T1 and T2 are renaming variants
and the last two cases of the above definition yield the same
result.

Example 4.3. Let c1 = (zs ∈ `(β1tβ2) ⇐ xs ∈ `(β1) ∧
zs1 ∈ `(β2)) and c2 = (zs1 ∈ `(β1tnat)⇐ ys ∈ `(β1)). We
have c2 ≈ c′2 where c′2 = (zs1 ∈ `(βtnat) ⇐ ys ∈ `(β)).
The type condition (zs1 ∈ `(β2)) occurs in the body of c1
and the type condition (zs1 ∈ `(βtnat)) in the head of c′2.
Then κ1 = match(`(β2), `(βtnat)) = {β2 7→ (βtnat)} and
hence unf(c1, c2) = unf(c1, c

′
2) = (zs ∈ `(β1tβtnat) ⇐

xs ∈ `(β1) ∧ ys ∈ `(β)).

Proposition 4.4. Let c1 = (y ∈ T ⇐ µ1 ∧ (x ∈ T1)∧µ2)
and c2 = (x ∈ T2 ⇐ ν) be normalized type dependencies.
For any substitution η ∈ Subst∼, if η |= c1 and η |= c2 then
η |= unf(c1, c2).

Abstract Projection. To project out a variable x in an ab-
stract substitution φ. Each of those type dependencies c1 in
φ whose bodies contain x is unfolded with each of those type
dependencies c2 in φ whose heads contain x. Define predi-
catesHx and Bx byHx(c) = true iff x occurs in the head of c
and Bx(c) = true iff x occurs in the body of c. Let ψ[[−x]] be
the resultant from removing from ψ all the type dependen-
cies c such that Hx(c) is true and then removing all the type
conditions on x from the remaining type dependencies in ψ.
The abstract projection operation π]

X : TDCU 7→ TDCU\X

is defined

π]
{x1,··· ,xn}(φ) = π]

x1 ◦ · · ·π
]
xn

(φ)

where π]
x : TDCU 7→ TDCU\{x} for a single variable x is de-

fined π]
x(φ) = (φ∪{unf(c1, c2) | c1 ∈ φx

1 and c2 ∈ φx
2})[[−x]]

with φx
1 = {c ∈ φ | Bx(c)} and φx

2 = {c ∈ φ | Hx(c)} ∪ {(x ∈
1)}. Unfolding is applied by π]

x to propagate type depen-
dency information before it eliminates the variable x.

Example 4.5. Let φ = {c1, c2, c3} where c1 = (xs ∈
`(β) ⇐ x ∈ β), c2 = (x ∈ β ⇐ ys ∈ `(β)) and c3 = (zs ∈
`(β1tβ2tβ3)⇐ x ∈ β1∧xs ∈ `(β2)∧ys ∈ `(β3)). Then φx

1 =
{c1, c3} and φx

2 = {c2, (x ∈ 1)}. We calculate unf(c1, c2) =
(xs ∈ `(β) ⇐ ys ∈ `(β)) and unf(c1, (x ∈ 1)) = (xs ∈
`(1)) and unf(c3, (x ∈ 1)) = (zs ∈ `(1tβ2tβ3) ⇐ xs ∈
`(β2)∧ ys ∈ `(β3)) which is equivalent to (zs ∈ `(1)⇐ xs ∈

`(β1) ∧ ys ∈ `(β2)). We continue to compute

unf(c3, c2))

= norm

0BBB@zs ∈ `(β1tβ2tβ3)⇐

0BBB@
ys ∈ `(β1)
∧

xs ∈ `(β2)
∧

ys ∈ `(β3)

1CCCA
1CCCA

= (zs ∈ `(β1tβ2tβ1)⇐ ys ∈ `(β1) ∧ xs ∈ `(β2))

which is equivalent to (zs ∈ `(β1tβ2) ⇐ xs ∈ `(β1) ∧ ys ∈
`(β2)). Note also that type dependency (zs ∈ `(β1tβ2) ⇐
xs ∈ `(β1) ∧ ys ∈ `(β2)) implies type dependency (zs ∈
`(1)⇐ xs ∈ `(β1) ∧ ys ∈ `(β2)). Therefore,

π]
x(φ) =


(xs ∈ `(β)⇐ ys ∈ `(β)), (xs ∈ `(1)),

(zs ∈ `(β1tβ2)⇐ xs ∈ `(β1) ∧ ys ∈ `(β2))

ff
4.1.3 Abstract Renaming
The renaming operationR~x7→~y(·) is simulated by an abstract

renaming operation R]
~x7→~y(·). If ~x ∩ ~y = ∅ then R]

~x7→~y(φ) =

φ[~y/~x]. Otherwise, R]
~x7→~y(φ) = R]

~z 7→~y(R]
~x7→~z(φ)) where ~z ∩

(~x ∪ ~y) = ∅.

The following theorem states that the abstract unification,
projection and renaming operations simulate correctly cor-
responding concrete operations.

Theorem 4.6. If η |= φ and ζ |= ψ then (a) (η � ζ) |=
(φ�]ψ); (b) πX(η) |= π]

X(φ); and (c) R~x7→~y(η) |= R]
~x7→~y(φ).

5. ABSTRACT SEMANTICS
The following append program and type definitions are used
for illustration throughout the section.

a(xs,ys,zs) :- xs=[], ys=zs. (C1)

a(xs,ys,zs) :- xs=[x|xs1], zs=[x|zs1],

a(xs1,ys,zs1). (C2)

∆ = {`(β)_[ ], `(β)_ [β|`(β)]}

The clauses in the program will be referred to as C1 and C2.

5.1 Abstraction of Equational Constraints
A key step in analysis is to abstract an equational constraint
to a set of type dependencies. The abstraction of an equa-
tional constraint is derived from type rules. Let 〈τ1, · · · τn〉
be a sequence of poly-types. We use ren(τ1, · · · τn) to denote
a sequences of renaming type substitutions 〈κ1, · · · , κn〉 such
that dom(κi) = Para(τi) and Para(κi(τi))∩Para(κj(τj)) = ∅
for all 1 ≤ i, j ≤ n such that i 6= j. The poly-types are
renamed apart from each other by the renaming type sub-
stitutions. The abstraction function α∆ to be defined ap-
proximates polymorphic type dependencies among variables
in equations. After unification, the two sides of an equation
are instantiated into the same term and therefore have the
same type. In the simpler case y = x, both x and y have
the same type after unification but there is no constraint on
the type. This fact is expressed by the abstract substitution
{(y ∈ β ⇐ x ∈ β), (x ∈ β ⇐ y ∈ β)}.



Example 5.1. Consider the equation ys = zs in the clause
C1. Its abstraction is {(ys ∈ β ⇐ zs ∈ β), (zs ∈ β ⇐ ys ∈
β)}.

Now consider the more complex case y = f(x1, · · · , xn). The
unification propagates type information from y to x1, . . . , xn

and vice versa. Each type definition rule δ for f/n gives rise
to two sets of type dependencies lfrt(y, f(x1, · · · , xn), δ) and
rtlf (y, f(x1, · · · , xn), δ). The set lfrt(y, f(x1, · · · , xn), δ) de-
scribes type propagation from y to x1, . . . , xn while
rtlf (y, f(x1, · · · , xn), δ) describes type propagation from x1,
. . ., xn to y. The former is defined

lfrt(y, f(x1, · · · , xn), τ_f(τ1, · · · , τn)) =

{xi ∈ τi ⇐ y ∈ τ | 1 ≤ i ≤ n}

Example 5.2. We have lfrt(xs, [x|xs1], `(β)_[β|`(β)]) =
{(x ∈ β ⇐ xs ∈ `(β)), (xs1 ∈ `(β) ⇐ xs ∈ `(β))} and
lfrt(zs, [x|zs1], `(β)_[β|`(β)]) = {(x ∈ β ⇐ zs ∈ `(β)),
(zs1 ∈ `(β)⇐ zs ∈ `(β))}.

Type propagation from x1, . . . , xn to y is more complicated.
For instance, if h is of type int and t of type `(`(int)) then
the type of [h|t] is `(intt`(int)). Thus, after unification
l = [h|t] succeeds, l is of type `(intt`(int)). Without set
union as a type constructor, the type of l would have to
be approximated by `(1) that does not capture information
on the type of elements in the list. Type propagation from
x1, · · · , xn to y is described by the following singleton set.

rtlf (y, f(x1, · · · , xn), τ_f(τ1, · · · , τn)) =8<:
0@ let 〈κ1, · · · , κn〉 = ren(〈τ1, · · · , τn〉)

κ = κ1g · · ·gκn

in (y ∈ κ(τ)⇐
Vn

i=1(xi ∈ κi(τi)))

1A9=;
Example 5.3. We have that

rtlf (xs, [ ], `(β)_[ ]) = {(xs ∈ `(0))}
rtlf (xs, [x|xs1], `(β)_[β|`(β)]) =

{(xs ∈ `(β1tβ2)⇐ x ∈ β1 ∧ xs1 ∈ `(β2))}
rtlf (zs, [x|zs1], `(β)_[β|`(β)]) =

{(zs ∈ `(β1tβ2)⇐ x ∈ β1 ∧ zs1 ∈ `(β2))}

Definition 5.4. The abstraction of an equational con-
straint is defined α∆(E) =

S
e∈E{α∆(e)} where the abstrac-

tion of an equation is defined

α∆(y = x) =


(y ∈ β ⇐ x ∈ β),
(x ∈ β ⇐ y ∈ β)

ff
α∆(y = f(x1, · · · , xn)) =S

δ∈∆f/n


lfrt(y, f(x1, · · · , xn), δ),
rtlf (y, f(x1, · · · , xn), δ)

ff
and ∆f/n is the set of all the type rules in ∆ that are of the
form τ_f(τ1, · · · , τn).

For a clause C of the form p(~x0) ← E, p1(~x1), · · · , pn(~xn),
let χC be α∆(E).

Example 5.5. We have that χC1 = α∆(xs = [ ], ys =
zs) = {(xs ∈ `(0)), (ys ∈ β ⇐ zs ∈ β), (zs ∈ β ⇐ ys ∈ β)}
and χC2 = α∆(xs=[x|xs1], zs=[x|zs1]) = {(x ∈ β ⇐
xs ∈ `(β)), (xs1 ∈ `(β)⇐ xs ∈ `(β)), (xs ∈ `(β1tβ2)⇐ x ∈
β1 ∧ xs1 ∈ `(β2)), (x ∈ β ⇐ zs ∈ `(β)), (zs1 ∈ `(β) ⇐ zs ∈
`(β)), (zs ∈ `(β1tβ2)⇐ x ∈ β1 ∧ zs1 ∈ `(β2))}.

5.2 Abstract Interpretations
The proposed analysis infers a set of success patterns that
are pairs consisting of a predicate p and an abstract sub-
stitution φ ∈ TDCΛ(p). We say a success pattern 〈p, φ〉
is subsumed by another 〈p, ψ〉 iff φ ≤ ψ. Two different
sets of success patterns may contain the same information.
For instance {〈p, {λ1 ∈ `(1)}〉} contains the same informa-
tion as {〈p, {λ1 ∈ `(1)}〉, 〈p, {λ1 ∈ `(nat)}〉} since 〈p, {λ1 ∈
`(nat)}〉 is subsumed by 〈p, {λ1 ∈ `(1)}〉. Let Φ ⊆ {〈p, φ〉 |
p ∈ Π and φ ∈ TDCΛ(p)} and define ↓(Φ) = {〈p, ψ〉 | 〈p, φ〉 ∈
Φ and ψ ≤ φ}. The domain of abstract interpretations is

Int] = {↓ (I]) | I] ∈ ℘({〈p, φ〉 | p ∈ Π and φ ∈ TDCΛ(p)}) }

Note that 〈Int],⊆〉 is a complete lattice and an abstract in-
terpretation can be represented by the collection of its suc-
cess patterns that are not subsumed by other success pat-
terns in it. In the sequel, we will omit the operator ↓ and
simply write ↓ I] as I] since both I] and ↓ I] describe the
same set of computed answers. A connection between Int
and Int] is characterized by γ : Int] 7→ Int defined as

γ(I]) = {〈p, η〉 | p ∈ Π and 〈p, φ〉 ∈ I] and η |= φ}

Lemma 5.6. The function γ is a complete meet-morphism.

5.3 Abstract Semantics
The abstract semantic of a program P is lfp T ]

P where T ]
P :

Int] 7→ Int] is defined

T ]
P (I]) =8>>>>>>>>>>><>>>>>>>>>>>:

〈p, φ〉

p ∈ Π,
(p(~x0)← E, p1(~x1), · · · , pn(~xn)) ∈ P,
〈p1, φ1〉 ∈ I], . . . , 〈pn, φn〉 ∈ I],

ψ1 = R]
Λ(p1) 7→~x1

(φ1),

· · · ,
ψn = R]

Λ(pn) 7→~xn
φn,

L = (V(E) ∪
S

1≤i≤n ~xi) \ ~x0,

φ = R]
~x0 7→Λ(p) ◦ π

]
L(α∆(E)�] ψ1 �] · · · �] ψn)

9>>>>>>>>>>>=>>>>>>>>>>>;
Note that α∆(E) can be computed before the least fixpoint
computation. The abstract domain Int] is infinite, which
may lead to non-termination of analysis. Termination can be
achieved by limiting the depth of poly-types in an abstract
substitution as is done in [14].

Theorem 5.7. The abstract semantics approximates the
concrete semantics correctly, i.e., (lfp TP ) ⊆ γ(lfp T ]

P ).

5.4 Analysis of Append
We now illustrate the analysis with the append program.
The least fixpoint computation generates a series of iter-
ates I]

0, · · · , I
]
i , I

]
i+1 until I]

i = I]
i+1. The initial iterate



is I]
0 = {} that describes the empty set of computed an-

swers. Each later iterate I]
i+1 is computed as T ]

P (I]
i ). Let

~λ = (λ1, λ2, λ3), ~v = (xs,ys,zs) and ~v′ = (xs1,ys,zs1).

Calculating I]
1. I]

1 = T ]
P (I]

0) = {〈a,R]

~v 7→~λ
(π]
∅(χC1))〉} =

{〈a, φ1〉} where φ1 = {(λ1 ∈ `(0)), (λ2 ∈ β ⇐ λ3 ∈
β), (λ3 ∈ β ⇐ λ2 ∈ β)}.

Calculating I]
2.

I]
2 = T ]

P (I]
1)

=

(
〈a,R]

~v 7→~λ
(π]
∅(χC1))〉,

〈a,R]

~v 7→~λ
◦ π]

{xs1,zs1,x}(χC2 �] R]
~λ 7→~v′(φ1))〉

)
= {〈a, φ1〉, 〈a, φ2〉}

where φ2 = R]

~v 7→~λ
◦ π]

{xs1,zs1,x}(χC2 �] R]
~λ 7→~v′(φ1)) is cal-

culated as follows. During the computation, tautologies are
removed from an abstract substitution and so is a type de-
pendency that is implied by another in the same abstract
substitution. Let L = {xs1, zs1, x}. We first calculate

π]
L(χC2 �] R]

~λ 7→~v′(φ1))

= π]
L

0BBBBBBBBBBB@

8>>>>>>>>>>><>>>>>>>>>>>:

(x ∈ β ⇐ xs ∈ `(β)),
(xs1 ∈ `(β)⇐ xs ∈ `(β)),

(xs ∈ `(β1tβ2)⇐ x ∈ β1 ∧ xs1 ∈ `(β2)),
(x ∈ β ⇐ zs ∈ `(β)),

(zs1 ∈ `(β)⇐ zs ∈ `(β)),
(zs ∈ `(β1tβ2)⇐ x ∈ β1 ∧ zs1 ∈ `(β2)),

(xs1 ∈ `(0)),
(ys ∈ β ⇐ zs1 ∈ β),
(zs1 ∈ β ⇐ ys ∈ β)

9>>>>>>>>>>>=>>>>>>>>>>>;

1CCCCCCCCCCCA

= π]
{zs1,x}

0BBBBBBB@

8>>>>>>><>>>>>>>:

(x ∈ β ⇐ xs ∈ `(β)),
(x ∈ β ⇐ zs ∈ `(β)),

(zs1 ∈ `(β)⇐ zs ∈ `(β)),
(xs ∈ `(β)⇐ x ∈ β)

(zs ∈ `(β1tβ2)⇐ x ∈ β1 ∧ zs1 ∈ `(β2)),
(ys ∈ β ⇐ zs1 ∈ β),
(zs1 ∈ β ⇐ ys ∈ β)

9>>>>>>>=>>>>>>>;

1CCCCCCCA

= π]
{x}

0BBB@
8>>><>>>:

(x ∈ β ⇐ xs ∈ `(β)),
(x ∈ β ⇐ zs ∈ `(β)),

(ys ∈ `(β)⇐ zs ∈ `(β)),
(xs ∈ `(β)⇐ x ∈ β),

(zs ∈ `(β1tβ2)⇐ x ∈ β1 ∧ ys ∈ `(β2))

9>>>=>>>;
1CCCA

=

8>><>>:
(xs ∈ `(1)), (xs ∈ `(β)⇐ zs ∈ `(β)),

(ys ∈ `(β)⇐ zs ∈ `(β)),
(zs ∈ `(β1tβ2)⇐ xs ∈ `(β1) ∧ ys ∈ `(β2)),

(zs ∈ `(1)⇐ ys ∈ `(β))

9>>=>>;
Thus, φ2 = {c1, c2, c3, c4, c5} where

c1 = (λ1 ∈ `(1))

c2 = (λ1 ∈ `(β)⇐ λ3 ∈ `(β))

c3 = (λ2 ∈ `(β)⇐ λ3 ∈ `(β))

c4 = (λ3 ∈ `(β1tβ2)⇐ λ1 ∈ `(β1) ∧ λ2 ∈ `(β2))

c5 = (λ3 ∈ `(1)⇐ λ2 ∈ `(β))

Calculating I]
3. It can be shown that I]

3 = I]
2.

The success patterns for a/3 state that when a(xs, ys, zs)
succeeds, (1) xs is an empty list and ys and zs are of the
same type; or (2) xs is a list (c1), both xs and ys are lists
of elements of type β if zs is (c2 and c3), zs is a list of
elements of type β1tβ2 if xs is a list of elements of type β1

and ys is a list of elements of type β2 (c4), and zs is a list
if ys is (c5). Let c′4 = (zs ∈ `(β) ⇐ xs ∈ `(β) ∧ ys ∈ `(β))
and φ′2 = {c2, c3, c′4} where c1, c2 are the same as in φ2. The
analysis result for the append program in [14] is {〈a, φ1∨φ′2〉}
which is equivalent to {〈a, φ1〉, 〈a, φ′2〉}. The result from the
new analysis is more precise than that in [14] since φ2 is more
precise than φ′2 as follows. Firstly, c1 and c5 are missing from
φ′2. Secondly, if c′ = (λ1 ∈ `(int)) and c′′ = (λ1 ∈ `(`(int)))
then (zs ∈ `(intt`(int))) is implied by {c′, c′′, c4} but not
{c′, c′′, c′4}. Hence, c4 is more precise than c′4.

5.5 Analysis of Quicksort
The quicksort program has three user-defined predicates.
One of them is the append predicate a/3 in the previous
section. The two others are as follows.

pt(V,Xs,Ys,Zs) :- Xs=[ ], Ys=[ ], Zs=[ ]. (C3)
pt(V,Xs,Ys,Zs) :- Xs=[X|Xs1], Ys=[X|Ys1],

X<V, pt(V, Xs1,Ys1,Zs). (C4)
pt(V,Xs,Ys,Zs) :- Xs=[X|Xs1], Zs=[X|Zs1],

X>=V, pt(V, Xs1,Ys,Zs1). (C5)
sort(Xs,Ys) :- Xs=[ ], Ys=[ ]. (C6)
sort(Xs,Ys) :- Xs=[X|Xs1], Ys3=[X|Ys2],

pt(X,Xs1,Xs2,Xs3),
sort(Xs2,Ys1),
sort(Xs3,Ys2),
a(Ys1,Ys3,Ys). (C7)

Builtin Predicates. The quicksort program uses two builtin
predicates </2 and >=/2. Builtin predicates are handled by
pre-computing success patterns for each builtin predicate
and collecting them in the initial iterate I]

0. For instance,

I]
0 = {〈<, {(λ1 ∈ number), (λ2 ∈ number)}〉, 〈>=, {(λ1 ∈

number), (λ2 ∈ number)}〉} for the quicksort program where
the builtin type number denotes the set of numbers and will
be abbreviated as n. Note that success patterns for builtin
predicates are independent of the program to be analyzed
and can be pre-calculated and incorporated into an imple-
mentation of the analysis.

Analysis result. The analysis is done by first computing
the success patterns for a/3 and pt/4 and then those for
sort/2. The details of the computation are omitted. The
set of success patterns of the quicksort program is

I] =
˘
〈a, φ1〉, 〈a, φ2〉, 〈pt, φ3〉, 〈pt, φ4〉, 〈sort, φ5〉

¯
where φ1 and φ2 are the same as in section 5.4 and

φ3 = {λ2 ∈ `(0), λ3 ∈ `(0), λ4 ∈ `(0)}

φ4 =

8<: λ1 ∈ n, λ2 ∈ `(n), λ3 ∈ `(n), λ4 ∈ `(n),
λ2 ∈ `(β1tβ2)⇐ λ3 ∈ `(β1) ∧ λ4 ∈ `(β2),

λ3 ∈ `(β)⇐ λ2 ∈ `(β), λ4 ∈ `(β)⇐ λ2 ∈ `(β),

9=;
φ5 =


λ1 ∈ `(1), λ2 ∈ `(1),

λ1 ∈ `(β)⇐ λ2 ∈ `(β), λ2 ∈ `(β)⇐ λ1 ∈ `(β)

ff



The analysis result indicates that when sort(Xs,Ys) suc-
ceeds, both Xs and Ys are lists of elements of the same type.
The result is precise since queries like sort([a], [a]) succeed
with the program. Nevertheless, the result is different from
the intended use of the quicksort program whereby both Xs
and Ys are expected to be lists of numbers. The differ-
ence between the inferred and the expected success patterns
stems from clause C3 which may succeeds with argument V
being any term. If it is modified into

pt(V,Xs,Ys,Zs) :- number(V),

Xs=[ ], Ys=[ ], Zs=[ ]. (C3’)

then the analysis result becomes

J] =
˘
〈a, φ1〉, 〈a, φ2〉, 〈pt, φ4〉, 〈sort, φ6〉

¯
where

φ6 =


λ1 ∈ `(n), λ2 ∈ `(n),

λ1 ∈ `(β)⇐ λ2 ∈ `(β), λ2 ∈ `(β)⇐ λ1 ∈ `(β)

ff
Note that there is now only one success pattern for pt/4
since the success pattern computed from clause C3’ is
〈pt, {λ1 ∈ n, λ2 ∈ `(0), λ3 ∈ `(0), λ4 ∈ `(0)}〉 which is sub-
sumed by 〈pt, φ4〉. The inferred success pattern for sort/2
now agrees with the expected one. Type dependencies λ1 ∈
`(β) ⇐ λ2 ∈ `(β) and λ2 ∈ `(β) ⇐ λ1 ∈ `(β) in φ6 capture
information that is not expressed by the two other type de-
pendencies in φ6. For example, they inform that if sort/2
succeeds with its first argument being a list of integers then
its second argument is also a list of integers, and vice versa.

6. SUMMARY
We have presented a new type dependency inference analysis
for logic programs. The analysis infers polymorphic type
dependencies from the program and a set of type rules which
define types. The use of set union as a type constructor
and non-deterministic type definitions enables the analysis
to infer more precise type dependencies than other analyses.

The most related work is [14]. The success patterns inferred
by [14] are similar to those inferred by the new analysis. An
abstract substitution is expressed in [14] as a logic program
whose clauses corresponds to type dependencies in the new
analysis. The new analysis infers more precise type depen-
dencies than [14] for the following two reasons. Firstly, the
new analysis uses set union as a type constructor which is
missing from [14]. Lack of set union as a type constructor
implies that the join operation on types incurs a loss of pre-
cision. Secondly, type definitions are non-deterministic in
the new analysis while they are deterministic in [14]. Con-
sequently, the type language in the new type analysis is more
powerful and allows more types to be defined than in [14].
The above two characteristics also distinguish the new anal-
ysis from those in [2, 6, 7]. For instance, the inferred type
for the concrete atom p([1, [1]]) is p(`(1)) according to [2, 6].
The abstract atom p(`(1)) is less precise than the success
pattern 〈p, λ1 ∈ `(int t `(int))〉 inferred by the new analysis.
The type constructor ⊕ in [7] does not denote set union. For
example, the term [1, [1]] has type `(int)⊕ `(`(int)) accord-
ing to [7] while it has type `(int t `(int)) in the new analysis.
Furthermore, type dependencies are not expressed explicitly
in clausal form in [2, 6, 7]. Instead, they are captured by

type parameters. We contend that an explicit representa-
tion of type dependencies in both [14] and the new analysis
provides better insight into the behavior of the program for
development activities such as debugging.

The type analysis in [16] is a goal-dependent analysis and
captures type dependencies between the input and the out-
put states through type parameters. It suffers the same
limitation as [2, 6, 7]. The set union as a type constructor
and non-deterministic type definitions have been employed
in a goal-dependent analysis [17]. The analysis, however,
does not trace type dependencies. Type inference anal-
ysis can also be performed without given type definitions.
An example of such an analysis is [12] that approximates
the success set of the program by a unary regular logic pro-
gram [18]. The analysis infers both type definitions and
types and is incorporated into the Ciao System [13]. Type
inference analyses that infer type definitions do not trace
type dependencies. A notable exception is [5] that captures
type dependencies via type parameters. The analysis infers
parametric type definitions and type signatures for the pred-
icates in the program so that the program is well typed. The
inferred type signatures approximates the set of well typed
calls instead of the success set.
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APPENDIX
A. PROOFS
A.0.1 Proposition 4.4
Let c1 = (y ∈ T ⇐ µ1 ∧ (x ∈ T1) ∧ µ2) and c2 = (x ∈ T2 ⇐
ν) be normalized type dependencies. For any substitution
η ∈ Subst∼, if η |= c1 and η |= c2 then η |= unf(c1, c2).

Proof. Without loss of generality, we assume Para(c1)∩
Para(c2) = ∅. Let κ1 = match(T1, T2) and κ2 = match(T2, T1).
There are three cases to consider: case (i) y ∈ V(ν) or
κi = � for i = 1, 2; case (ii) y 6∈ V(ν) and κ1 6= �; and
case (iii) y 6∈ V(ν) and κ1 = � and κ2 6= �. In the case
(i), unf(c1, c2) = (y ∈ 1) is a tautology and hence the
lemma holds. Now consider the case (ii). Let κ be an arbi-
trary type valuation such that dom(κ) ⊇ V(unf(c1, c2)).
Then dom(κ) ⊇ V(ci) \ {x} for i = 1, 2. Assume that
η |= κ(µ1 ∧ ν ∧ µ2). Since η |= c2 and η |= κ(ν), we have
that η |= (x ∈ κ(T2)) and hence η |= (x ∈ κ ◦ κ1(T1)). Since
c1 is normalized, dom(κ1)∩Para(µj) = ∅ for j = 1, 2. Thus,
η |= κ ◦ κ1(µj) for j = 1, 2 since η |= κ(µj) for j = 1, 2.
Since η |= c1, η |= κ ◦ κ1(µj) and η |= (x ∈ κ ◦ κ1(T1)), we
have that η |= κ ◦ κ1(T ). Therefore, by the definition of |=,
η |= (y ∈ κ1(T )⇐ µ1 ∧ ν ∧ µ2). Case (iii) is similar to case
(ii).

Observe that η |= c implies η |= κ′′(c) for any c and κ′′.
From the definition of norm, κ′′(c) ≤ norm(c) for some κ′′.
So, η |= unf(c1, c2) = norm(y ∈ κ′(T )⇐ µ1 ∧ ν ∧ µ2).

A.0.2 Theorem 4.6
If η |= φ and ζ |= ψ then

(a) (η � ζ) |= (φ�] ψ);

(b) πX(η) |= π]
X(φ); and

(c) R~x7→~y(η) |= R]
~x7→~y(φ).

Proof. • Consider (a) first. We have that (η � ζ) ≤
η and (η � ζ) ≤ ζ. Let η |= φ and ζ |= ψ. Then
(η � ζ) |= φ and (η � ζ) |= ψ because types are closed
under instantiation. Thus, (η � ζ) |= φ ∪ ψ = φ�] ψ.

• Now consider (b). Observe that η |= ψ implies π{x}(η) |=
ψ[[−x]] for any substitution η, abstract substitution ψ
and variable x. Since η |= φ, by proposition 4.4, η |= ψ
where ψ = φ ∪ {unf(c1, c2) | c1 ∈ φx

1 and c2 ∈ φx
2}

and φx
1 and φx

2 are the same as those in the defini-
tion of π]

x. Therefore, π{x}(η) |= ψ[[−x]] and hence

π{x}(η) |= π]
x(φ) from which the thesis follows.

• We now prove (c). We first prove that if ~x∩~y = ∅ then

φ[~y/~x] = π]
~x(α∆(~x = ~y)�] φ). Let ~x = x1x2 · · ·xn and

~y = y1y2 · · · yn. Then ~x = ~y stands for x1 = y1, x2 =
y2, · · · , xn = yn. This is done be induction.

Basis. n=0. Then φ = φ[~y/~x] = π]
∅(∅ �

] φ) = φ.

Induction. By the definitions of π] and α∆ and �], we have

π]
x~x(α∆(x~x = y~y)�] φ)

= π]
x ◦ π]

~x(α∆(x = y) ∪ α∆(~x = ~y) ∪ φ)

= π]
x(α∆(x = y) ∪ π]

~x(α∆(~x = ~y) ∪ φ))

by the induction hypothesis,

= π]
x(α∆(x = y) ∪ φ[~y/~x])

= π]
x({x ∈ β ⇐ y ∈ β, y ∈ β ⇐ x ∈ β} ∪ φ[~y/~x])

= φ[~y/~x][y/x]

= φ[y~y/x~x]

The case where ~x∩~y 6= ∅ is reduced into the above
case by applying (a) and (b).

A.0.3 Lemma 5.6
The function γ is a complete meet-morphism.

Proof. By definition, we have γ({〈p, φ〉 | p ∈ Π and φ ∈
TDCΛ(p)}) = {〈p, η〉 | p ∈ Π and η ∈ SubstΛ(p)}. It remains

to prove that γ(I]∩J]) = γ(I])∩γ(J]) for any I], J] ∈ Int].

Assume that 〈p, η〉 ∈ γ(I] ∩ J]). By the definition of γ,
there is a φ such that 〈p, φ〉 ∈ (I] ∩ J]) and η |= φ. Then
〈p, φ〉 ∈ I] and 〈p, φ〉 ∈ J] and hence 〈p, η〉 ∈ γ(I]) and
〈p, η〉 ∈ γ(J]). Thus, γ(I] ∩ J]) ⊆ γ(I]) ∩ γ(J]).

Assume that 〈p, η〉 ∈ γ(I]) ∩ γ(J]). By the definition of
γ, there are φ and ψ such that 〈p, φ〉 ∈ I], 〈p, ψ〉 ∈ J],
η |= φ and η |= ψ. By the definition of |=, we have that
η |= (φ ∪ ψ). Furthermore, 〈p, (φ ∪ ψ)〉 ∈ I] and 〈p, (φ ∪
ψ)〉 ∈ J] since I] =↓ I] and J] =↓ J]. By the definition
of γ, 〈p, η〉 ∈ γ(I] ∩ J]). So, γ(I]) ∩ γ(J]) ⊆ γ(I] ∩ J]),



which, together with γ(I] ∩ J]) ⊆ γ(I]) ∩ γ(J]), implies
γ(I]) ∩ γ(J]) = γ(I] ∩ J]).

A.0.4 Theorem 5.7
The abstract semantics approximates the concrete semantics
correctly, i.e., (lfp TP ) ⊆ γ(lfp T ]

P ).

Proof. It suffices to prove that TP ◦ γ(I]) ⊆ γ ◦ T ]
P (I])

for an arbitrary I] ∈ Int] [10]. Assume that 〈p, η〉 ∈ TP ◦
γ(I]). By the definition of TP , there are p ∈ Π, (p(~x0) ←
E, p1(~x1), · · · , pn(~xn)) ∈ P and 〈pi, ηi〉 ∈ γ(I]) for i = 1..n
such that η = R~x0 7→Λ(p)(πL(mgu(E)�RΛ(p1) 7→~x1(η1)�· · ·�
RΛ(pn) 7→~xn(ηn)) where L = (V(E)∪

S
1≤i≤n ~xi)\~x0. By the

definition of γ, there are 〈pi, φi〉 ∈ I] for i = 1..n such
that ηi |= φi. We also have mgu(E) |= α∆(E). Let φ =

R]
~x0 7→Λ(p)(π

]
L(α∆(E)�]R]

Λ(p1) 7→~x1
(η1)�]· · ·�]R]

Λ(pn) 7→~xn
(ηn)).

By theorem 4.6.(a),(b) and (c), we have η |= φ. By the

definition of T ]
P , 〈p, φ〉 ∈ T ]

P (I]). By the definition of γ,

〈p, η〉 ∈ γ ◦ T ]
P (I]). Therefore, TP ◦ γ(I]) ⊆ γ ◦ T ]

P (I]) and

hence (lfp TP ) ⊆ γ(lfp T ]
P ) according to [10].

B. CALCULATION OF I]
3 IN SECTION 5.4

By the definition of T ]
P ,

I]
3 = T ]

P (I]
2)

=

8><>:
〈a,R]

~v 7→~λ
(π](χC1))〉,

〈a,R]

~v 7→~λ
◦ π]

{xs1,zs1,x}(χC2 �] R]
~λ 7→~v′(φ1))〉,

〈a,R]

~v 7→~λ
◦ π]

{xs1,zs1,x}(χC2 �] R]
~λ 7→~v′(φ2))〉

9>=>;
=

 〈a, φ1〉, 〈a, φ2〉,
〈a,R]

~v 7→~λ
◦ π]

{xs1,zs1,x}(χC2 �] R]
~λ 7→~v′(φ2))〉

ff
Let L = {xs1, zs1, x}. We now calculate

π]
{xs1,zs1,x}(χC2 �] R]

~λ 7→~v′(φ2))

= π]
L(χC2 �] R]

~λ 7→~v′(φ2))

= π]
L

0BBBBBBBBBBBBBBB@

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

(x ∈ β ⇐ xs ∈ `(β)),
(xs1 ∈ `(β)⇐ xs ∈ `(β)),

(xs ∈ `(β1tβ2)⇐ x ∈ β1 ∧ xs1 ∈ `(β2)),
(x ∈ β ⇐ zs ∈ `(β)),

(zs1 ∈ `(β)⇐ zs ∈ `(β)),
(zs ∈ `(β1tβ2)⇐ x ∈ β1 ∧ zs1 ∈ `(β2)),

(xs1 ∈ `(1)),
(xs1 ∈ `(β1)⇐ zs1 ∈ `(β1)),

(ys ∈ `(β)⇐ zs1 ∈ `(β)),
(zs1 ∈ `(β1tβ2)⇐ xs1 ∈ `(β1) ∧ ys ∈ `(β2)),

(zs1 ∈ `(1)⇐ ys ∈ `(β2))

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;

1CCCCCCCCCCCCCCCA

= π]
{zs1,x}

0BBBBBBBBBBB@

8>>>>>>>>>>><>>>>>>>>>>>:

(x ∈ β ⇐ xs ∈ `(β)),
(x ∈ β ⇐ zs ∈ `(β)),

(zs1 ∈ `(β)⇐ zs ∈ `(β)),
(xs ∈ `(1)⇐ x ∈ β),

(xs ∈ `(β1tβ2)⇐ x ∈ β1 ∧ zs1 ∈ `(β2)),
(zs ∈ `(β1tβ2)⇐ x ∈ β1 ∧ zs1 ∈ `(β2)),

(zs1 ∈ `(β1tβ2)⇐ xs ∈ `(β1) ∧ ys ∈ `(β2)),
(zs1 ∈ `(1)⇐ ys ∈ `(β2)),
(ys ∈ `(β)⇐ zs1 ∈ `(β))

9>>>>>>>>>>>=>>>>>>>>>>>;

1CCCCCCCCCCCA

= π]
{x}

0BBBBBBBBBBBBBBB@

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

(x ∈ β ⇐ xs ∈ `(β)),
(x ∈ β ⇐ zs ∈ `(β)),

(xs ∈ `(β1tβ2)⇐ x ∈ β1 ∧ zs ∈ `(β2)),
(xs ∈ `(1)⇐ x ∈ β1)

(zs ∈ `(β1tβ2tβ3)⇐

0BBB@
x ∈ β1

∧
xs ∈ `(β2)
∧

ys ∈ `(β3)

1CCCA),

(zs ∈ `(1)⇐ x ∈ β1 ∧ ys ∈ `(β2)),
(ys ∈ `(β)⇐ zs ∈ `(β))

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;

1CCCCCCCCCCCCCCCA

=

8>><>>:
(xs ∈ `(1)), (xs ∈ `(β)⇐ zs ∈ `(β)),

(ys ∈ `(β)⇐ zs ∈ `(β)),
(zs ∈ `(β1tβ2)⇐ xs ∈ `(β1) ∧ ys ∈ `(β2)),

(zs ∈ `(1)⇐ ys ∈ `(β))

9>>=>>;
= π]

{xs1,zs1,x}(χC2 �] R]
~λ 7→~v′(φ1))

Therefore, R]

~v 7→~λ
◦π]

{xs1,zs1,x}(χC2�]R]
~λ 7→~v′(φ2)) = φ2 and

hence I]
3 = I]

2.


