
Inverting Abstract Unification for Set-Sharing

Xuan Li
Oakland University

Rochester, MI 48309, USA

x2li@oakland.edu

Lunjin Lu
Oakland University

Rochester, MI 48309, USA

l2lu@oakland.edu

ABSTRACT
This paper presents an inversion of the abstract unification
operator for forward set-sharing analysis of logic programs.
The inverted operator, called a backward abstract unifica-
tion operator, computes all maximal pre-conditions for a
given equation and its post-condition. It is a key operator
in a backward analysis. The maximal preconditions are ob-
tained by first calculating a superset of all preconditions and
then generating all maximal pre-conditions from the super-
set. The latter step is transformed to the problem of finding
all maximal models of a Boolean formula.

Categories and Subject Descriptors
F.3.2 [LOGICS AND MEANINGS OF PROGRAMS]:
Semantics of Programming Languages—Program analysis ;
D.2.8 [PROGRAMMING LANGUAGES]: Processors—
Compilers

General Terms
Algorithms, Languages

Keywords
Backward Analysis, Set-Sharing, Logic Programs, Maximal
Models and Boolean Formulas

1. INTRODUCTION
If a programmer wants to call a predicate in a third party

program and knows what must hold after the call, it is natu-
ral to ask whether there is any condition on the call. This is a
point where backward analysis [17, 18] comes to play. Given
a post-condition and a goal, backward analysis infers a pre-
condition that guarantees satisfaction of the post-condition.
Once we know the pre-condition and the post-condition, we
can treat the third party library as a black box and use it
without inspecting it line by line. Another popular appli-
cation of backward analysis is software verification [3]. By

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPDP’05,July 11–13, 2005, Lisbon, Portugal.
Copyright 2005 ACM 1-59593-090-6/05/0007 ...$5.00.

inferring the pre-condition and comparing it with the pro-
grammer’s specification, the analyzer can tell whether the
program satisfies the specification [10]. Backward analysis
is goal independent and derives all information in one appli-
cation.

A backward analysis can be designed by abstract interpre-
tation of a backward collecting semantics in the same way a
forward analysis is. An alternative approach is to obtain a
backward analysis by inverting a forward analysis. This will
reduce the design effort when there exists a forward analy-
sis for the program property of interest because the correct-
ness of the backward analysis follows from the correctness of
the forward analysis [11]. Inverting a forward analysis boils
down to inverting its primitive operators. A forward anal-
ysis analyzes a primitive program construct C by applying
a primitive operator f that abstracts the execution of C.
Given a property φ that describes the program state before
the execution of C, forward analysis computes a property
ψ that describes the program state after the execution of
C by applying f to φ, that is, ψ = f(φ). The properties
φ and ψ are called pre and post conditions respectively. [6,
7, 9] In a backward analysis, this computation is inverted.
The backward analysis computes all pre-conditions φ for C
such that a given post-condition ψ is satisfied. The set of
those pre-conditions is {φ|f(φ) v ψ} where v is partial or-
der on properties. Let Φ be a set of properties. The set
of maximal elements in Φ with respect to v is denoted by
max(Φ). Due to monotonicity of f , {φ|f(φ) v ψ} is down-
closed with respect to v and contains the same information
as max({φ|f(φ) v ψ}). Thus, given a post-condition ψ, it
is only necessary to compute those maximal pre-conditions
φm such that f(φm) v ψ.

In a set-sharing analysis [12, 13] for logic programs, in-
formation on aliasing dependencies and groundness depen-
dencies between variables is described by a set of sets of
variables where each set of variables is called a group. The
most important operator in the analysis is a forward ab-
stract unification operator. This paper presents an inverse
of the forward abstract unification operator. The inverted
operator, called a backward abstract unification operator,
computes max({φ|amgux=t(φ) v ψ}) where amgux=t is the
forward abstract unification operator and x = t is an equa-
tion in the program. We assume that x is a variable and t
a term such that x does not occur in t.

A brute-force approach to computing the set of pre-conditions
for an equation and a post-condition is to apply forward ab-
stract unification to all sharings. The pre-conditions are
those sharings on which the output of forward abstract uni-

fication is contained in the post-condition. However, this
will result in an inefficient algorithm. The proposed back-
ward abstract unification algorithm avoids applying forward
abstract unification on all sharings. It first computes a
superset of all pre-conditions and then generates maximal
pre-conditions by removing sharing groups from the super-
set. The main contribution of this paper is a backward ab-
stract unification operator for set-sharing that is obtained
by inverting the forward abstract unification operator for
set-sharing.

The remainder of the paper is organized as follows. Sec-
tion 2 contains basic concepts and recalls the set-sharing
domain. Section 3 informally introduces the algorithm via
an example. Sections 4-7 present the backward abstract uni-
fication operator in details. Given an equation and its post-
condition, the backward abstract unification operator first
normalizes the post-condition by filtering out those groups
that can not be generated by the forward abstract unifica-
tion operator. Section 4 presents the normalization step. It
also computes two special pre-conditions that are maximal
among those pre-conditions that are not relevant to both
sides of the equation. The remaining maximal pre-condit-
ions are generated from the union of all the pre-conditions
that are relevant to both sides of the equation. Section 5
shows how to compute the union without applying the for-
ward abstract unification operator. Section 6 reduces the
problem of finding those maximal pre-conditions to the prob-
lem of computing maximal models of a Boolean formula.
Section 7 puts together the overall backward abstract uni-
fication operator. Section 8 discusses related work and sec-
tion 9 concludes.

2. PRELIMINARIES
This section recalls some basic concepts that will be used

in the following sections.
Assume that there are a set of variables V of interest. Let

var(o) be the set of variables in the syntactic object o. An
equation over V is a formula of the form a = b with a and b
are terms such that var(a), var(b) ⊆ V .

Let B = {1, 0}. A Boolean function is a function f :
Bn → B. It is well known that the domain of Boolean func-
tions is isomorphic to the domain of Boolean formulas. We
will not distinguish between Boolean formulas and Boolean
functions. A truth assignment Int assigns truth value to
variables. We say a truth assignment Int is a model for f ,
denoted as Int |= f , if f evaluates to 1 after each variable
x in f is replaced by Int(x). We sometimes write a truth
assignment as a set M = {X|Int(X) = true}. A Boolean
function is said to be satisfiable if it has at least one model.
Let m and m′ be two models, we say m ≤ m′ if m(X) = 1
implies m′(X) = 1. We say a model m is a maximal model
if there is no other model m′ such that m ≤ m′.

Sharing analysis [13, 12, 24, 2, 19, 4, 16, 5, 23] is an
important topic in static analysis of logic programs. There
are two widely used abstract domains: set-sharing [12] and
pair-sharing [24]. Inverting pair-sharing is presented in [21].
Inverting set-sharing is more complex than inverting pair-
sharing because of the complexity of the set-sharing domain
and its associated operators.

Set-sharing is due to Dean Jacobs and Anno Langen [12].
The abstract domain Sharing is {S ∈ ℘(℘(V)) | ∅ ∈ S}.
The downward closure of a sharing S is ↓ S = {G | ∃G′ ∈

S, G ⊆ G
′}. The most important operator is the forward ab-

stract unification operator amgux=t. The operator amgux=t

is defined in term of three auxiliary operations. The closure
under union of a sharing φ is denoted φ∗, which is the small-
est superset of φ satisfying X ∈ φ∗ ∧ Y ∈ φ∗ =⇒ X ∪ Y ∈
φ∗. The set of groups in φ that are relevant to term t is
rel(t, φ) = {G ∈ φ | var(t) ∩ G 6= ∅}. Let rel(x = t, φ) =
rel(x, φ) ∪ rel(t, φ). We say that a sharing φ is relevant to
a term t iff rel(t, φ) 6= ∅. The cross union of two sharings
defined as φ1 and φ2 is φ1]φ2 = {G∪H|G ∈ φ1 ∧H ∈ φ2}.

In this paper, we assume that the equation is of the form
x = t where x is a variable and t is a term that does not
contains x, because other situations can be reduced to this
basic case. The following definition of the forward abstract
unification is adapted from [12].

Definition 1. (Jacobs and Langen) [13, 12]
amgux=t(φ) = φ\rel(x, φ)\rel(t, φ)∪(rel(x, φ)∗]rel(t, φ)∗)

3. WORKED EXAMPLE
This section informally introduces the proposed algorithm

for backward abstract unification. Given an equation and
its post-condition, the brute-force approach tries all possible
sharings in order to find all maximal pre-conditions. Sup-
pose that there are k variables of interest. Then there are

22k−1 possible sharings. The brute-force approach applies

for 22k−1 times the forward abstract unification that is itself
exponential [1]. Thus the brute-force approach is impracti-
cal since it is prohibitively expensive even for a small k, say
5.

The algorithm proposed in this paper is much more ef-
ficient than the brute-force approach. For a given equa-
tion and its post-condition, the algorithm first computes
two special pre-conditions that are maximal among those
pre-conditions that are not relevant to both x and t. Sec-
ondly, it computes the union of the pre-conditions that are
relevant to both x and t and then generates maximal pre-
conditions that are relevant to both x and t from the union.
The union, called the cover for the equation and the post-
condition can be computed without applying the forward
abstract unification operator. We now illustrate this pro-
cess via an example.

Normalizing the post-condition
The first step in calculating the maximal pre-conditions is to
normalize the post-condition by filtering out sharing groups
that can never occur in the result produced by forward ab-
stract unification. This is done by making use of the follow-
ing property: a sharing group in the result of an application
of the forward abstract unification operator is relevant to
both sides of the equation or to neither side of the equation.

Example 1. Let the equation be x1 = f(x2, x3) and its
post-condition {∅, {x4}, {x2, x5}, {x1, x2, x3}} denoted ω. Ob-
serve that sharing group {x2, x5} is relevant to f(x2, x3)
but not to x1. Therefore, it cannot occur in the result
of a forward abstract unification. In other words, letting
ψ = ω \ {{x2, x5}}, any pre-condition for x1 = f(x2, x3)
and ω is also a pre-condition for x1 = f(x2, x3) and ψ and
vice versa. So, we can normalize ω into ψ and computing
maximal pre-conditions using the smaller sharing ψ as the
post-condition instead of the bigger sharing ω.

Computing special pre-conditions
We observe that there are two special pre-conditions:

φx = {∅, {x4}} ∪ {{x1}, {x1, x4}, {x1, x5}, {x1, x4, x5}}
and

φt = {∅, {x4}}∪

{x2}, {x3}, {x2, x3}, {x2, x4},
{x2, x5}, {x3, x4}, {x3, x5},

{x2, x3, x4}, {x2, x3, x5}, {x2, x4, x5},
{x3, x4, x5}, {x2, x3, x4, x5}

φx is only relevant to x1 but not f(x2, x3) and φt is only rel-
evant to f(x2, x3) but not x1. These two pre-conditions are
maximal among those pre-conditions that are not relevant
to both x1 and f(x2, x3). All other maximal pre-conditions
are relevant to both x1 and f(x2, x3).

Calculating the cover
The cover φc for an equation x = t and its post-condition
ψ is computed without applying the forward abstract uni-
fication operator amgux=t. Assume that ψ is normalized.
The computation is accomplished by making use of several
properties about amgux=t that will be proved later. Firstly,
each maximal pre-condition for x = t and ψ contains all
those groups in ψ that are not relevant to either x or t. Sec-
ondly, if a group G in a pre-condition for x = t and ψ is
relevant to both x and t then G occurs in ψ. Thirdly, if G
is relevant to one of x and t but not the both and G is in a
pre-condition φ that is relevant to both x and t then G is in
↓ rel(x = t, ψ). So, the cover is union of ψ and the result of
removing from ↓ rel(x = t, ψ) those groups that are relevant
to both x and t and those groups that are relevant to neither
x nor t.

Example 2. Continue with example 1.

ψ = {∅, {x4}, {x1, x2, x3}}
then

rel(x1 = f(x2, x3), ψ) = {{x1, x2, x3}}

↓ rel(x1 = f(x2, x3), ψ) =

∅, {x1}, {x2}, {x3},
{x1, x2}, {x1, x3},
{x2, x3}, {x1, x2, x3}

The cover for x1 = f(x2, x3) and ψ is then obtained by re-
moving ∅, {x1, x2}, {x1, x3} and {x1, x2, x3} from ↓ rel(x1 =
f(x2, x3), ψ) and joining the result with ψ, resulting in

φc = {∅, {x4}, {x1}, {x2}, {x3}, {x2, x3}, {x1, x2, x3}}
Any pre-condition that is relevant to both x and t is a subset
of φc.

Generating a Boolean formula
The remainder of the computation is reduced into the prob-
lem of computing maximal models of a Boolean formula that
is generated as follows. The forward abstract unification op-
erator amgux=t is first applied to the cover φc. The result
amgux=t(φc) may contain groups that are not in the post-
condition ψ. Then a sufficient and necessary condition about
a pre-condition that is a subset of φc is generated from these
extra groups.

Example 3. Continue with examples 1 and 2. We have

amgux1=f(x2,x3)(φc) \ ψ
= {∅, {x4}, {x1, x2}, {x1, x3}, {x1, x2, x3}} \ ψ
= {{x1, x2}, {x1, x3}}

Maximal pre-conditions are obtained by removing sharing
groups from φc so that the extra sharing groups {x1, x2}
and {x1, x3} are not generated by the forward abstract unifi-
cation. In other words, a sharing φ ⊆ φc is a pre-condition iff
I 6∈ amgux=t(φ) holds for each extra group I in amgux=t(φc)\
ψ.

Consider the extra group {x1, x3} first. By the defini-
tion of amgu, the formula {x1, x3} 6∈ amgux1=f(x2,x3)(φ)
is equivalent to {x1, x3} 6∈ φ1] φ2 since {x1, x3} is rele-
vant to x1 = f(x2, x3) where φ1 = rel(x1, φ)∗ and φ2 =
rel(f(x2, x3), φ)∗. By the definition of] and the condi-
tion φ ⊆ φc, {x1, x3} 6∈ φ1] φ2 is equivalent to that for
any pair of non-empty groups 〈G, H〉 such that G is rele-
vant to x1, H is relevant to f(x2, x3), G ∈ φc, H ∈ φc and
G ∪ H = {x1, x3}, either G 6∈ φ1 or H 6∈ φ2. There are
one such pair: 〈{x1}, {x3}〉. We thus obtain the following
formula that is equivalent to {x1, x3} 6∈ amgux1=f(x2,x3)(φ).

{x1} 6∈ rel(x1, φ)∗ ∨ {x3} 6∈ rel(f(x2, x3), φ)∗

The above formula is then transformed into an equivalent
one that consists of primitive formulas of the form G 6∈ φ
and logical operations ∧ and ∨ where G ∈ φc. For instance,
{x1} 6∈ rel(x1, φ)∗ is transformed to {x1} 6∈ φ. The details
of this transformation will be described in section 6. In
this way, {x1, x3} 6∈ amgux1=f(x2,x3)(φ) is transformed and
simplified into

{x1} 6∈ φ ∨ {x3} 6∈ φ

Let B be an 1-1 function that maps a group in φc to a
Boolean variable. Assigning a Boolean variable the truth
value 1 means the corresponding group is in φ. Assigning
a Boolean variable the truth value 0 indicates that corre-
sponding group is not in φ. The above formula corresponds
to the following Boolean formula.

B({x1}) ∨B({x3}) (1)

which is equivalent to {x1, x3} 6∈ amgux1=f(x2,x3)(φ). In the
same way, we can show that {x1, x2} 6∈ amgux1=f(x2,x3)(φ)
is equivalent to

(B({x1}) ∨B({x2}) (2)

Conjoining (1) and (2), we obtain the following sufficient
and necessary condition for a pre-condition φ for x1 = f(x2, x3)
and ψ such that φ ⊆ φc

((B({x1}) ∨B({x3}))) ∧ ((B({x1}) ∨B({x2}))) (3)

Computing Maximal Models
The Boolean formula generated from a given equation and
its post-condition in the previous steps expresses the suf-
ficient and necessary condition on pre-conditions that are
contained in φc. A pre-condition that is contained in φc

corresponds to a model of the Boolean formula. Since φc

contains each and every pre-condition that is relevant to
both x and t, the maximal pre-conditions that are relevant
to both x and t corresponds to the maximal models of the

Boolean formula. How to generate all maximal models of a
Boolean function is a well known problem [15], which can
be transformed to the problem of generating all maximal
independent sets [14, 25].

Example 4. Continue with example 3. Applying an ex-
isting algorithm [15], we get all maximal models of (3) as
follows.

M1 =

B({x1}) = 0, B({x2}) = 1,
B({x3}) = 1, B({x4}) = 1,

B({x2, x3}) = 1, B({x1, x2, x3}) = 1

M2 =

B({x1}) = 1, B({x2}) = 0,
B({x3}) = 0, B({x4}) = 1,

B({x2, x3}) = 1, B({x1, x2, x3}) = 1

Maximal model M1 and M2 correspond to maximal pre-
conditions µ1 and µ2 in that µi = {G ∈ φc|Mi(B(G)) = 1}
and

µ1 = {∅, {x2}, {x3}, {x4}, {x2, x3}, {x1, x2, x3}}
µ2 = {∅, {x1}, {x4}, {x2, x3}, {x1, x2, x3}}

Observe that µ1∪µ2 equals φc which is not a pre-condition.

All maximal pre-conditions
We now have maximal pre-conditions that are relevant to
both x and t. We also have two special pre-conditions φx

and φt that are maximal among those pre-condition that
are not relevant to both x and t. So, the set of all maximal
pre-condition is max({µ1, µ2, φx, φt}).
max({µ1, µ2, φx, φt}) =

{∅, {x2}, {x3}, {x4}, {x2, x3}, {x1, x2, x3}},
{∅, {x1}, {x4}, {x2, x3}, {x1, x2, x3}},

{∅, {x4}, {x1}, {x1, x4}, {x1, x5}, {x1, x4, x5}},

∅, {x2}, {x3}, {x4}, {x2, x3}, {x2, x4},
{x2, x5}, {x3, x4}, {x3, x5},

{x2, x3, x4}, {x2, x3, x5}, {x2, x4, x5},
{x3, x4, x5}, {x2, x3, x4, x5}

In summary, given an equation x = t and its post-condition
ω, maximal pre-conditions are obtained by normalizing the
post-condition, calculating two special pre-conditions, cal-
culating the cover, generating a Boolean formula that ex-
presses the sufficient and necessary for pre-conditions that
are contained in φc and generating maximal models of the
Boolean formula. The next sections present these steps in
details.

4. NORMALIZING POST-CONDITION
For a given equation x = t and its post-condition ω, back-

ward abstract unification computes max({φ | amgux=t(φ) ⊆
ω}). Since the post-condition ω is not necessarily the result
of an application of the forward abstract unification opera-
tor, it may contain groups that can never be generated by
the forward abstract unification. Such groups can be re-
moved from ω without missing any maximal pre-condition.
Let ψ = amgux=t(φ) for some sharing φ. Then each group
G in ψ is either related to both x and t or neither of them.
Thus, the first step in the backward abstract unification is
to filter out groups in ω that is relevant to either x or t but
not the both. Let

ψ = ω \ rel(x, ω) \ rel(t, ω) ∪ (rel(x, ω) ∩ rel(t, ω))

Then {φ | amgux=t(φ) ⊆ ψ} is equal to {φ | amgux=t(φ) ⊆
ω}. The sharing ψ is called a normalized post-condition.

Example 5. Let the equation be x2 = x4 and its post-
condition

ω =

{ ∅, {x5}, {x1, x2, x3, x4}, {x1, x2, x3},
{x2, x4}, {x2, x3}, {x1, x3, x4}, {x2, x3, x4}

}

Then the normalized post-condition is

ψ = {∅, {x5}, {x2, x4}, {x2, x3, x4}, {x1, x2, x3, x4}}
Maximal pre-condition for x = t and ψ is maximal pre-
condition of x = t and ω and vice verse.

It follows that for a normalized post-condition ψ, rel(x, ψ) =
rel(t, ψ). In the sequel, we assume that post-conditions are
normalized and thus rel(x, ψ) = rel(t, ψ).

The following lemmas states that each and every maximal
pre-conditions contains a fixed part that can be computed
from x = t and ψ.

Lemma 1. If φ is a pre-condition for x = t and ψ then
φ ∪ (ψ \ rel(x, ψ)) is a pre-condition for x = t and ψ.

Proof. We have that amgux=t(φ ∪ (ψ \ rel(x, ψ))) =
amgux=t(φ)∪(ψ\rel(x, ψ)). Since amgux=t(φ) ⊆ ψ and (ψ\
rel(x, ψ)) ⊆ ψ, we have that amgux=t(φ∪ (ψ \ rel(x, ψ))) ⊆
ψ.

For instance, in example 5, ψ \ rel(x, ψ) = {∅, {x5}} is in
every maximal pre-condition.

A pre-condition for x = t and ψ is either relevant to both
x and t or it is not. The following lemma allows us to focus
on those pre-conditions that are relevant to both x and t.

Theorem 1. Let φx = ψ \ rel(x, ψ) ∪ {G ∈ ℘(V)|G ∩
var(t) = ∅∧x ∈ G} and φt = ψ \ rel(x, ψ)∪{G ∈ ℘(V)|G∩
var(t) 6= ∅ ∧ x 6∈ G}. Then,

(a) amgux=t(φx) ⊆ ψ and if rel(t, φ) = ∅ and amgux=t(φ) ⊆
ψ then φ ⊆ φx; and

(b) amgux=t(φt) ⊆ ψ and if rel(x, φ) = ∅ and amgux=t(φ) ⊆
ψ then φ ⊆ φt.

Proof. We only prove (a) since (b) is symmetric to (a).
Let η = {G ∈ ℘(V)|G ∩ var(t) = ∅ ∧ x ∈ G}. Then φx =
(ψ \ rel(x, ψ)) ∪ η. We first prove that amgux=t(φx) ⊆ ψ.
We have that rel(x, φx) = η and that rel(t, φx) = ∅. So,
amgux=t(φx) = φx \ η = ψ \ rel(x, ψ) ⊆ ψ.

The rest of the proof is done by contradiction. Assume
that rel(t, φ) = ∅, amgux=t(φ) ⊆ ψ and φ 6⊆ φx. Then there
is a G ∈ φ and G 6∈ φx. Since G ∈ φ, G ∩ var(t) = ∅.
Since G 6∈ φx, G 6∈ η that together with G ∩ var(t) = ∅
implies x 6∈ G. So, G ∈ amgux=t(φ), implying G ∈ ψ. Since
G 6∈ φx, G 6∈ (ψ\rel(x, ψ)) together with G ∈ ψ implies that
x ∈ G. Both x ∈ G and x 6∈ G, which is a contradiction.

Theorem 1 implies that φx and φt are pre-conditions for
x = t and ψ. Furthermore, any pre-condition for x = t and
ψ that is not relevant to both x and t is contained in either
φx or φx. In the case where a pre-condition φ for x = t and
ψ is not relevant to either x or t, φ is contained in both φx

and φt.

Example 6. Continue with example 5. Let

V = {x1, x2, x3, x4, x5}
Then

φx = {∅, {x1, x5}} ∪

{x2}, {x1, x2}, {x2, x3}, {x2, x5},

{x1, x2, x3}, {x1, x2, x5},
{x2, x3, x5}, {x1, x2, x3, x5}

φt = {∅, {x5}} ∪

{x4}, {x1, x4}, {x3, x4},
{x4, x5}, {x1, x3, x4, }, {x1, x4, x5},

{x3, x4, x5}, {x1, x3, x4, x5}

Lemma 2. If rel(x, ψ) = ∅ then max({φ | amgux=t(φ) ⊆
ψ}) = max({φx, φt}), where φx, φt are defined in theorem 1.

Proof. Since rel(x, ψ) = rel(t, ψ) = ∅ by assumption,
we have rel(t, φx) = ∅ and rel(x, φx) = {G ∈ ℘(V)|G ∩
var(t) = ∅ ∧ x ∈ G}. Therefore, amgux=t(φx) = ψ. Sim-
ilarly, we can prove that amgux=t(φt) = ψ. It remains to
prove that φx and φt are the only maximal pre-conditions
for x = t and ψ. By way of contradiction, assume that
φ 6⊆ φx and φ 6⊆ φt and amgux=t(φ) ⊆ ψ. Since φ 6⊆ φx and
φ 6⊆ φt, there is a group G in φ such that either (i) x ∈ G and
G∩vars(t) 6= ∅ or (ii) G 6∈ ψ and x 6∈ G and G∩vars(t) = ∅.
Consider the case (i) first. We have that G ∈ rel(x, φ) and
G ∈ rel(t, φ) and hence, by the definition of amgux=t, we
have that G ∈ amgux=t(φ). This implies that G ∈ ψ and
rel(x, ψ) 6= ∅ that is a contradiction to that rel(x, ψ) = ∅.
In the case (ii), G 6∈ rel(x, φ) and G 6∈ rel(t, φ). We have
that G ∈ φ\rel(x, φ)\rel(x, φ) and hence G ∈ amgux=t(φ).
This implies G ∈ ψ that contradicts that G 6∈ ψ.

Observe that if ψ = {∅} then rel(x, ψ) = ∅ and the above
lemma applies.

Example 7. Let V = {x1, x2, x5}, equation be x1 = x5

and ψ = {∅, {x2}}. Then

φx = {∅, {x2}, {x1}, {x1, x2}}
and

φt = {∅, {x2}, {x5}, {x5, x2}}

φt is contained in φx if var(t) = ∅ as shown in following
example. This explains why max is used in lemma 2.

Example 8. Consider the equation x1 = a and its post-
condition be ψ = {∅, {x2}} where a is a constant. According
to lemma 2, we have max({φ | amgux1=a(φ) ⊆ ψ}) equals
{∅, {x2}} ∪ {G ∈ ℘(V)|x1 ∈ G}

5. CALCULATING COVER
The remaining task in backward abstract unification is to

find those maximal pre-conditions for x = t and ψ that are
relevant to both x and t. The following lemma states that
any group in such a pre-condition is either in the downward
closure of rel(x, ψ) or it is not relevant to x = t.

Lemma 3. Let φ be a sharing such that rel(x, φ) 6= ∅ ∧
rel(t, φ) 6= ∅. If amgux=t(φ) ⊆ ψ then G is in ↓ rel(x, ψ) for
each G in rel(x = t, φ).

Proof. Let G ∈ rel(x = t, φ). Then G ∈ φ and either
x ∈ G or G ∩ var(t) 6= ∅. Without loss of generality, we
assume that x ∈ G. By the definition of amgux=t and the
condition that rel(t, φ) 6= ∅, there is an H ∈ rel(t, φ) such
that G ∪H ∈ rel(x, ψ). So, G ∈↓ rel(x, ψ).

Maximal pre-conditions for x = t and ψ that are relevant
to both x and t are generated from a sharing that is their
union. The sharing is called the cover for x = t and ψ and
defined as

Cov(x = t, ψ) =
⋃

φ

(amgux=t(φ) ⊆ ψ)
∧

(rel(x, φ) 6= ∅) ∧ (rel(t, φ) 6= ∅)

The following theorem gives a method that computes cover
Cov(x = t, ψ) without applying the forward abstract unifi-
cation operator amgux=t.

Lemma 4.
Cov(x = t, ψ) =
ψ ∪ {

G ∈↓ rel(x = t, ψ) (x ∈ G)⊕ (var(t) ∩G 6= ∅) }
where ⊕ is exclusive disjunction.

Proof. (⊆) We first assume that amgux=t(φ) ⊆ ψ and
rel(x, φ) 6= ∅ and rel(t, φ) 6= ∅. Let H ∈ φ. If H 6∈
rel(x = t, φ) then H ∈ amgux=t(φ) and hence H ∈ ψ.
If H is only relevant to x or only relevant to t then
according to lemma 3, H ∈ {G ∈↓ rel(x = t, ψ)|(x ∈
G) ⊕ (var(t) ∩ G 6= ∅)}. Otherwise, H is relevant to
both x and t and we have that H ∈ amgux=t(φ) and
hence H ∈ ψ.

(⊇) We first prove that Cov(x = t, ψ) ⊇ ψ. Let H be
an arbitrary group in ψ. If H ∈ ψ \ rel(x, ψ) then
H ∈ Cov(x = t, ψ) by lemma 1 that states that ev-
ery maximal pre-condition contains ψ \rel(x, ψ). Oth-
erwise, H ∈ rel(x, ψ). We have amgux=t({H}) =
{H} ⊆ ψ since rel(x, {H}) = rel(t, {H}) = {H} 6= ∅.
So, H ∈ Cov(x = t, ψ). Therefore, Cov(x = t, ψ) ⊇ ψ.

Let H be an arbitrary group in {G ∈↓ rel(x = t, ψ)|(x ∈
G)⊕(var(t)∩G 6= ∅)}. There is an G in ↓ rel(x = t, ψ)
such that H ⊆ G. Also H is relevant to one and
only one of x and t. Without loss of generality, as-
sume that H is relevant to only x. We then have
rel(x, {H, G}) = {H, G} and rel(t, {H, G}) = {G}.
It follows that amgux=t({H, G}) = ({H, G}\{H, G}\
{G}) ∪ {H, G}∗] {G}∗ = {G} ⊆ ψ. Recall that G is
relevant to both x and t. Thus, H ∈ Cov(x = t, ψ).

Example 9. Continue with example 5. We have

ψ = {∅, {x5}, {x2, x4}, {x2, x3, x4}, {x1, x2, x3, x4}}
{
G ∈↓ rel(x = t, ψ) (x ∈ G)⊕ (var(t) ∩G 6= ∅) }

=

{x2}, {x4}, {x1, x2}, {x1, x4},

{x2, x3}, {x3, x4},
{x1, x2, x3}, {x1, x3, x4}

Hence

Cov(x = t, ψ) =

∅, {x2}, {x4}, {x5}, {x2, x4},
{x1, x2}, {x1, x4}, {x2, x3},
{x3, x4}, {x1, x2, x3},

{x1, x3, x4},
{x2, x3, x4}, {x1, x2, x3, x4}

which is denoted by φc in subsequence examples.

6. GENERATING BOOLEAN FORMULA
Let φc = Cov(x = t, ψ). We now present a method for

computing those maximal pre-conditions for x = t and ψ
that are relevant to both x and t. If amgux=t(φc) ⊆ ψ
then the cover φc is the only maximal pre-condition that is
relevant to both x and t. If amgux=t(φc) 6⊆ ψ, we generate
a Boolean formula whose models corresponds to each and
every pre-condition that is contained in φc and generate all
maximal models of the boolean formula.

Let φ ⊆ φc. If amgux=t(φ) ⊆ ψ then I 6∈ amgux=t(φ)
for each I in the set amgux=t(φc) \ ψ since amgux=t is
monotonic. In the other direction, if I 6∈ amgux=t(φ) for
each I in the set amgux=t(φc) \ ψ then amgux=t(φ) ⊆ ψ,
for otherwise, there is a contradiction as follows. That
amgux=t(φ) 6⊆ ψ implies that there is a group I ′ such that
I ′ ∈ amgux=t(φ) and I ′ 6∈ ψ. By the monotonicity of
amgux=t, I ′ ∈ amgux=t(φc) which together with I ′ 6∈ ψ
implies I ′ 6∈ amgux=t(φ). Therefore, a sharing φ satisfying
φ ⊆ φc is pre-condition for x = t and ψ iff I 6∈ amgux=t(φ)
for all I ∈ amgux=t(φc)\ψ. The groups in amgux=t(φc)\ψ
are used to generate a Boolean formula whose maximal mod-
els corresponds to maximal pre-conditions that are relevant
to both x and t. Each group I in amgux=t(φc) \ ψ is the
union of one group G in rel(x, φc)

∗ and another group H in
rel(t, φc)

∗. Let

Π(I) =

(G, H)

(G ∈ rel(x, φc)
∗)

∧
(H ∈ rel(t, φc)

∗) ∧ (I = G ∪H)
∧

(G ⊂ I) ∧ (H ⊂ I)

Example 10. Continue with example 9.

amgux=t(φc) =

{ ∅, {x5}, {x2, x4}, {x1, x2, x4},
{x2, x3, x4}, {x1, x2, x3, x4}

}

amgux=t(φc) \ ψ = {{x1, x2, x4}}

Π({x1, x2, x4}) =

({x2}, {x1, x4}),
({x1, x2}, {x4}),

({x1, x2}, {x1, x4}),
({x1, x2}, {x2, x4}),
({x2, x4}, {x1, x4})

The lemma below states that the following condition is
both sufficient and necessary for any subset φ of φc to be a
pre-condition for x = t and ψ.

∧

I∈amgux=t(φc)\ψ

 ∧

(G,H)∈Π(I)

G 6∈ rel(x, φ)∗

∨
H 6∈ rel(t, φ)∗

 (4)

Lemma 5. Let φ ⊆ φc. Then amgux=t(φ) ⊆ ψ iff condi-
tion (4) holds.

Proof. Since amgux=t is monotonic and φ ⊆ φc, we
have amgux=t(φ) ⊆ amgux=t(φc). If condition (4) holds,
I 6∈ amgux=t(φ) for any I ∈ amgux=t(φc) \ ψ and hence
(amgux=t(φc)\ψ)∩amgux=t(φ) = ∅, implying amgux=t(φ) ⊆
ψ. In the other direction, if amgux=t(φ) ⊆ ψ then

(amgux=t(φc) \ ψ) ∩ amgux=t(φ) = ∅
Thus, for each I ∈ amgux=t(φc) \ ψ, I 6∈ amgux=t(φ). So
condition (4) is true.

Example 11. Continue with example 10. The condition (4)
is:

({x2} 6∈ rel(x2, φ)∗ ∨ {x1, x4} 6∈ rel(x4, φ)∗)
∧

({x1, x2} 6∈ rel(x2, φ)∗ ∨ {x4} 6∈ rel(x4, φ)∗)
∧

({x1, x2} 6∈ rel(x2, φ)∗ ∨ {x1, x4} 6∈ rel(x4, φ)∗)
∧

({x1, x2} 6∈ rel(x2, φ)∗ ∨ {x2, x4} 6∈ rel(x4, φ)∗)
∧

({x2, x4} 6∈ rel(x2, φ)∗ ∨ {x1, x4} 6∈ rel(x4, φ)∗)

The condition (4) is not in a form that can be directly
used to find maximal pre-conditions for x = t and ψ that
are relevant to both x and t. It has subformulas of the
form H 6∈ rel(t, φ)∗ in which H is not necessary in φc. We
transform each subformula of the form H 6∈ rel(t, φ)∗ into a
formula that consists of primitive formulas of the form G 6∈ φ
and logical operators ∨ and ∧ where G is in φc. We first
introduce an operation that decomposes a group H relevant
to t into pairs of groups (H1, H2) such that H = H1 ∪ H2

and both H1 and H2 are relevant to t.

∪−1(H, t) =

(H1, H2)

(H = H1 ∪H2)
∧

(H1 ∩ var(t) 6= ∅)
∧

(H2 ∩ var(t) 6= ∅)
∧

(H1 ⊂ H) ∧ (H2 ⊂ H)

For instance, let H be {x2, x3} and t = f(x2, x3). Then
∪−1({x2, x3}, t) = {({x2}, {x3})}. The following function
transforms the formulas of the form H 6∈ rel(t, φ)∗ where t
is either a variable or a term.
Γ(H 6∈ rel(t, φ)∗) =

(H 6∈ φ) ∧ ∧(H1,H2)∈πσ(H1, H2) if H ∈ φc

∧(H1,H2)∈πσ(H1, H2) if H 6∈ φc

where π = ∪−1(H, t), σ(H1, H2) =

Γ(H1 6∈ rel(t, φ)∗)
∨

Γ(H2 6∈ rel(t, φ)∗)

Example 12. Continue with examples 9 and 11.
Let consider {x2, x4} 6∈ rel(x4, φ)∗. Since {x2, x4} ∈ φc

and ∪−1({x2, x4}, x4) = ∅, So Γ({x2, x4} 6∈ rel(x4, φ)∗) =
{x2, x4} 6∈ φ

We give another example about function Γ.

Example 13. Let V = {x1, x2, x3, x4}, φc = ℘(V), t =
f(x1, x2) and H = {x1, x2, x3}. We have

∪−1({x1, x2, x3}, t) =

({x1}, {x2, x3}),
({x1, x2}, {x1, x3}),
({x1, x2}, {x2, x3}),
({x1, x3}, {x2, x3}),

({x1, x3}, {x2})

and

∪−1({x1, x2}, t) = {({x1}, {x2})}

Then
Γ({x1, x2, x3} 6∈ rel(f(x1, x2), φ)∗) =

{x1, x2, x3} 6∈ φ
∧

({x1} 6∈ φ ∨ {x2, x3} 6∈ φ)
∧

(({x1, x2} 6∈ φ ∧ ({x1} 6∈ φ ∨ {x2} 6∈ φ)) ∨ {x1, x3} 6∈ φ)
∧

(({x1, x2} 6∈ φ ∧ ({x1} 6∈ φ ∨ {x2} 6∈ φ)) ∨ {x2, x3} 6∈ φ)
∧

({x1, x3} 6∈ φ ∨ {x2, x3} 6∈ φ)
∧

({x1, x3} 6∈ φ ∨ {x2} 6∈ φ)

Lemma 6. Let φ ⊆ φc and H ∩ var(t) 6= ∅. Then H 6∈
rel(t, φ)∗ is true iff Γ(H 6∈ rel(t, φ)∗) is.

Proof. The proof is done by induction on the number of
elements in H.

Basis. H contains only one element. There are two cases
to consider: (i) H ∈ φc or (ii) H 6∈ φc. Consider case
(i). That H 6∈ rel(t, φ)∗ is equivalent to that H 6∈ φ since
H ∩ var(t) 6= ∅. We have that ∪−1(H, t) = ∅ and Γ(H 6∈
rel(t, φ)∗) reduces to H 6∈ φ. So, the lemma holds in the
case (i). Similarly, it can be verified that the lemma holds
in the case (ii).

Now assume that H contains n elements and that H ′ 6∈
rel(t, φ)∗ ⇔ Γ(H ′ 6∈ rel(t, φ)∗) holds for any H ′ that has less
than n elements. There are two cases to consider: (i) H ∈ φc

or (ii) H 6∈ φc. Consider case (i). H 6∈ rel(t, φ)∗ is true iff
that H 6∈ rel(t, φ) is true and for all H1 ⊂ H and H2 ⊂
H that H = H1 ∪ H2, (H1 6∈ rel(t, φ)∗ ∨ H1 6∈ rel(t, φ)∗)
holds. Observe that if Hi ∩ var(t) = ∅ then H1 6∈ rel(t, φ)∗

holds. Note that H 6∈ rel(t, φ) is equivalent to H 6∈ φ since
H ∩var(t) 6= ∅. So, That H 6∈ rel(t, φ)∗ is true iff (H 6∈ φ)∧
∧(H1,H2)∈∪−1(H,t)(H1 6∈ rel(t, φ)∗ ∨ H2 6∈ rel(t, φ)∗) holds.
By the induction hypothesis, Hi 6∈ rel(t, φ)∗ is equivalent
to Γ(Hi 6∈ rel(t, φ)∗) for i = 1, 2. Therefore, That H 6∈
rel(t, φ)∗ is true iff (H 6∈ φ) ∧ ∧(H1,H2)∈∪−1(H,t)(Γ(H1 6∈
rel(t, φ)∗) ∨ Γ(H2 6∈ rel(t, φ)∗)) is true. By the definition of
Γ, H 6∈ rel(t, φ)∗ is true iff Γ(H 6∈ rel(t, φ)∗) is true. The
case (ii) is similar.

The formula Γ(H 6∈ rel(t, φ)∗) does not contain any ap-
plication of the functions rel(·) and (·)∗. Lemma 6 allows
us to transform condition (4) into

∧

I∈amgux=t(φc)\ψ

 ∧

(G,H)∈Π(I)

Γ(G 6∈ rel(x, φ)∗)
∨

Γ(H 6∈ rel(t, φ)∗)

 (5)

that consists of logical operators ∨ and ∧ and primitive for-
mulas of the form G 6∈ φ where G is in φc. The above
condition is then translated into a Boolean formula as fol-
lows. Each group G in φc is encoded by a Boolean variable
denoted B(G). Assigning the truth value 1 to B(G) indi-
cates that G is in φ; and assigning the truth value 0 to
B(G) means that G is not in φ. A sharing φ corresponds
to a truth assignment µ in that φ contains a group in φc

iff µ(B(G)) = 1. The sharing that corresponds to a truth
assignment µ is denoted [µ]. The condition (5) can be trans-
formed into the following Boolean formula by a mapping β

that replaces G 6∈ φ with B(G) where · is the negation
operator.

β

 ∧

I∈φ1

 ∧

(G,H)∈Π(I)

Γ(G 6∈ rel(x, φ)∗)
∨

Γ(H 6∈ rel(t, φ)∗)

 (6)

where φ1 = amgux=t(φc) \ ψ

Example 14. Continue with example 11.
The formula (5) is

({x2} 6∈ φ ∨ {x1, x4} 6∈ φ)
∧

({x1, x2} 6∈ φ ∨ {x4} 6∈ φ)
∧

({x1, x2} 6∈ φ ∨ {x1, x4} 6∈ φ)
∧

({x1, x2} 6∈ φ ∨ {x2, x4} 6∈ φ)
∧

({x2, x4} 6∈ φ ∨ {x1, x4} 6∈ φ)

and the formula (6) is

(B({x2}) ∨B({x1, x4}))
∧

(B({x1, x2}) ∨B({x4}))
∧

(B({x1, x2}) ∨B({x1, x4}))
∧

(B({x1, x2}) ∨B({x2, x4}))
∧

(B({x2, x4}) ∨B({x1, x4}))

The Boolean formula (6) is equivalent to the logical for-
mula (5) in that a sharing is a model of (5) iff its correspond-
ing true assignment is a model of (6). Maximal models of
(6) corresponds to maximal models of (5).

The following theorem gives a method for computing max-
imal pre-conditions for x = t and ψ.

Theorem 2. Let M be the set of maximal models of (6).
Then the set of maximal pre-conditions for x = t and ψ is
max({[µ] | µ ∈M}∪ {φx, φt}) where φx and φt are defined
in theorem 1.

Proof. Let φ be a maximal pre-condition for x = t and
ψ. If φ is not related to both x and t, by theorem 1, φ ⊆ φx

or φ ⊆ φt. Assume that φ ⊆ φx without loss of generality.
Since φ is a maximal pre-condition for x = t and ψ, φ = φx

and φx ∈ max({[µ] | µ ∈M}∪{φx, φt}). So, φ ∈ max({[µ] |
µ ∈M}∪ {φx, φt}). Otherwise, φ is relevant to both x and
t. By lemmas 4, 5 and 6, φ corresponds to a maximal model
of (6) and hence φ ∈ max({[µ] | µ ∈M} ∪ {φx, φt}).

In the other direction, assume that φ ∈ max({[µ] | µ ∈
M}∪ {φx, φt}). If φ = φsi for any i = 1, 2 then by the defi-
nition of max and theorem 1, φ is a maximal pre-condition
for x = t and ψ. Otherwise, φ corresponds to a maximal
model of (6) that is not contained in either φx or φt. Then
φ is relevant to both x and t, for otherwise, φ is contained
in φx or φt by theorem 1. By lemmas 4, 5 and 6, φ is a
maximal pre-condition for x = t and ψ.

Example 15. Continue with example 14.
The set of maximal models of formula (6) in this example
corresponds to following set of sharings

∅, {x2}, {x4}, {x5},
{x2, x3}, {x2, x4}, {x3, x4},
{x1, x2, x3}, {x1, x3, x4},

{x2, x3, x4}, {x1, x2, x3, x4},

,

∅, {x4}, {x5}, {x1, x4}, {x2, x3},
{x3, x4}, {x1, x2, x3}, {x1, x3, x4},
{x2, x3, x4}, {x1, x2, x3, x4}

 ,

∅, {x2}, {x5}, {x1, x2}, {x2, x3},
{x3, x4}, {x1, x2, x3}, {x1, x3, x4},
{x2, x3, x4}, {x1, x2, x3, x4}

How to generate all maximal models of a Boolean formula
is well known [15]. The Boolean formula (6) can be put into
a purely negative CNF (conjunctive normal form). Finding
all maximal models of purely negative CNF can be trans-
ferred to the problem of generating all maximal independent
sets [14, 25]. Applying an algorithm in [15], we can generate
all maximal models for the Boolean formula (6) and obtain
all maximal pre-conditions for x = t and ψ using theorem 2.

7. BACKWARD ABSTRACT UNIFICATION
We are now ready to put together the results in previous

sections and present the backward abstract unification oper-
ator. Given an equation x = t and its post-condition ω, the
backward abstract unification function first normalizes the
post-condition ω to ψ and then computes the maximal pre-
conditions for x = t and ψ applying results in theorems 1
and 2.

Definition 2. (backward abstract unification)

amgu−1
x=t(ψ) = max({[µ] | µ ∈M} ∪ {φx, φt})

where ψ = ω \ rel(x, ω) \ rel(t, ω) ∪ (rel(x, ω) ∩ rel(t, ω)),
ω is an arbitrary post-condition, M is the set of maximal
models of (6), φx and φt are given in theorem 1.

Example 16. Continue with example 15 and 6.
max({[µ] | µ ∈M} ∪ {φx, φt}) =

∅, {x2}, {x4}, {x5},
{x2, x3}, {x2, x4}, {x3, x4},
{x1, x2, x3}, {x1, x3, x4},

{x2, x3, x4}, {x1, x2, x3, x4},

,

∅, {x4}, {x5}, {x1, x4}, {x2, x3},
{x3, x4}, {x1, x2, x3}, {x1, x3, x4},
{x2, x3, x4}, {x1, x2, x3, x4}

 ,

∅, {x2}, {x5}, {x1, x2}, {x2, x3},
{x3, x4}, {x1, x2, x3}, {x1, x3, x4},
{x2, x3, x4}, {x1, x2, x3, x4}

 ,

∅, {x2}, {x5}, {x1, x2}, {x2, x3}, {x2, x5},

{x1, x2, x3}, {x1, x2, x5},
{x2, x3, x5}, {x1, x2, x3, x5}

 ,

∅, {x4}, {x5}, {x1, x4}, {x3, x4},
{x4, x5}, {x1, x3, x4, }, {x1, x4, x5},

{x3, x4, x5}, {x1, x3, x4, x5}

8. RELATED WORK
Backward analysis propagates properties against control

flow. It infers a pre-condition that satisfies assertions at-
tached to the source code. Forward analysis manipulates

the properties in the direction of the control flow. It checks
whether those assertions could be violated. Both forward
and backward analysis are useful in software verification.

Termination inference [8] proposed by Genaim and Codish
generalizes traditional termination analysis. It infers modes
for which a logic program is guaranteed to terminate. One
of the key components in [8] is the backward groundness
analysis proposed in [17].

In [17], King et al. show how a backward analysis can
infer the pre-condition that ensure satisfaction of the post-
condition. The analysis is composed of a least fixpoint
component and a greatest fixpoint component. Least fix-
point component calculates success patterns and greatest
fixpoint component uses these success patterns to infer the
pre-condition. They use a pseudo-complement operator to
infer mode requirement from right to left. The pseudo-
complement operator, however, requires the domain to be
condensing.

In a type inference presented in [20], the post-condition
is a set of type signatures for selected predicates such as
built-ins. Then the analysis infers all valid type signatures
for other predicates that guarantee satisfaction of the type
signatures for the selected type signatures.

Determinacy inference for logic program [22] infers de-
terminacy conditions on a call that ensures it computes at
most one answer and that answer is generated only once.
One principal component in [22] generates post-condition
first and then backward analysis computes pre-conditions.

Hughes and Launchbury [11] shows how to invert a func-
tion in abstract domain. Although their object language is
functional language, they argue the reversal of a semantic
of function should not refer to the concrete semantics. This
paper shows this can be done for set-sharing analysis of logic
programs.

In [21], a backward pair-sharing analysis is obtained by in-
verting abstract operators for a corresponding forward pair-
sharing analysis. The domain and operators for forward
pair-sharing analysis are much simpler than those for for-
ward set-sharing analysis. There are also properties of pair-
sharing that are not possessed by set-sharing. For instance,
if t is not ground, then for pair-sharing, amgux=t(S) ⊆ T
implies S ⊆ T . Thus, a pre-condition is a subset of a given
post-condition and the maximal pre-conditions can be gen-
erated by removing sharing pairs from the post-condition.
The forward set-sharing analysis has a more complex domain
and more complex abstract operators; making it difficult to
invert.

There have been much research in sharing analysis of logic
programs [12, 24, 2, 19, 4, 16, 5, 23]; Set-sharing analysis
is one of the well studied analysis for logic programs. Set-
sharing captures variable alias and groundness. Rather than
designing a backward set-sharing analysis from scratch, this
paper shows how an abstract operator for backward set-
sharing analysis can be obtained by inverting a correspond-
ing abstract operator for forward set-sharing analysis.

9. CONCLUSIONS
We have presented a backward abstract unification opera-

tor for set-sharing by inverting forward abstract unification.
The inversion is realized by transforming the problem of
finding all maximal pre-conditions into the problem of find-
ing all maximal models of a Boolean formula. The backward
abstract unification operator can be plugged into a backward

analysis engine to perform backward set-sharing analysis.

Acknowledgements
This work was supported by the National Science Foun-
dation under grants CCR-0131862 and INT-0327760. We
would like to thank Enea Zaffanella and other referees of a
previous version of this draft for their insightful comments.
We would also like to thank Andy King for helpful discus-
sions on backward analysis.

10. REFERENCES
[1] R. Bagnara, P. M. Hill, and E. Zaffanella. Sharing

revisited. In M. Falaschi, M. Navarro, and A. Policriti,
editors, APPIA-GULP-PRODE’97: Proceedings of the
1997 Joint Conference on Declarative Programming,
pages 69–80, Grado, Italy, June 1997.

[2] R. Bagnara, E. Zaffanella, and P. M. Hill. Enhanced
sharing analysis techniques: A comprehensive
evaluation. Theory and Practice of Logic
Programming, 5(1&2):1–43, 2005.

[3] Francisco Bueno, Pierre Deransart, Wlodzimierz
Drabent, Gérard Ferrand, Manuel V. Hermenegildo,
Jan Maluszynski, and German Puebla. On the role of
semantic approximations on validation and diagnosis
of contraint logic programs. In Mariam Kamkar,
editor, AADEBUG: Proceeding of the 3rd Automated
and Algorithmic Debugging, pages 155–169, 1997.

[4] Michael Codish, Harald Søndergaard, and Peter J.
Stuckey. Sharing and groundness dependencies in logic
programs. ACM Transactions on Programming
Languages and Systems, 21(5):948–976, 1999.

[5] Agostino Cortesi and Gilberto Filé. Sharing is optimal.
Journal of Logic Programming, 38(3):371–386, 1999.

[6] P. Cousot and R. Cousot. Induction principles for
proving invariance properties of programs. In D. Néel,
editor, Tools and Notions for Program Construction:
an Advanced Course, pages 75–119. Cambridge
University Press, Cambridge, UK, 1982.

[7] Robert W. Floyd. Assigning meaning to programs. In
J. T. Schwartz, editor, Mathematical Aspects of
Computer Science, volume 19 of Proceedings of
Symposia in Applied Mathematics, pages 19–32.
American Mathematical Society, 1967.

[8] Samir Genaim and Michael Codish. Inferring
termination conditions for logic programs using
backwards analysis. Theory and Practice of Logic
Programming, 5(1&2):75–91, 2005.

[9] C. A. R. Hoare. An axiomatic basis for computer
programming. Communications of the ACM,
12(10):576–580, 1969.

[10] Jacob M. Howe, Andy King, and Lunjin Lu.
Analysing logic programs by reasoning backwards. In
Maurice Bruynooghe and Kung-Kiu Lau, editors,
Program Development in Computational Logic, volume
3049 of Lecture Notes in Computer Science, pages
152–188. Springer, 2004.

[11] John Hughes and John Launchbury. Reversing
abstract interpretations. Science of Computer
Programming, 22(3):307–326, 1994.

[12] Dean Jacobs and Anno Langen. Accurate and efficient
approximation of variable aliasing in logic programs.
In Ross A. Overbeek Ewing L. Lusk, editor, NACLP:

Proceedings of the North American Conference on
Logic Programming, pages 154–165. MIT Press, 1989.

[13] Dean Jacobs and Anno Langen. Static analysis of logic
programs for independent and-parallelism. Journal of
Logic Programming, 13(2&3):291–314, 1992.

[14] David S. Johnson and Christos H. Papadimitriou. On
generating all maximal independent sets. Information
Processing Letters, 27(3):119–123, 1988.

[15] Dimitris J. Kavvadias, Martha Sideri, and Elias C.
Stavropoulos. Generating all maximal models of a
boolean expression. Information Processing Letters,
74(3-4):157–162, 2000.

[16] Andy King. Pair-sharing over rational trees. Journal
of Logic Programming, 46(1-2):139–155, 2000.

[17] Andy King and Lunjin Lu. A backward analysis for
constraint logic programs. Theory and Practice of
Logic Programming, 2(4-5):517–547, 2002.

[18] Andy King and Lunjin Lu. Forward versus backward
verification of logic programs. In Catuscia Palamidessi,
editor, Proceedings of 19th International Conference
on Logic Programming, volume 2916 of Lecture Notes
in Computer Science, pages 315–330. Springer, 2003.

[19] Vitaly Lagoon and Peter J. Stuckey. Precise
pair-sharing analysis of logic programs. In PPDP ’02:
Proceedings of the 4th ACM SIGPLAN International
Conference on Principles and Practice of Declarative
Programming, pages 99–108. ACM Press, 2002.

[20] Lunjin Lu and Andy King. Backward type inference
generalises type checking. In Manuel V. Hermenegildo
and German Puebla, editors, Proceedings of 9th Static
Analysis Symposium, volume 2477 of Lecture Notes in
Computer Science, pages 85–101. Springer, 2002.

[21] Lunjin Lu and Andy King. Backward pair sharing
analysis. In Yukiyoshi Kameyama and Peter J.
Stuckey, editors, Proceedings of 7th Fuji International
Symposium on Functional and Logic Programming,
volume 2998 of Lecture Notes in Computer Science,
pages 132–146. Springer, 2004.

[22] Lunjin Lu and Andy King. Determinacy Inference for
Logic Programs. In Mooly Sagiv, editor, Proceedings
of the 14th European Symposium on Programming,
volume 3444 of Lecture Notes in Computer Science,
pages 108–123. Springer-Verlag, 2005.

[23] Kalyan Muthukumar and Manuel V. Hermenegildo.
Combined determination of sharing and freeness of
program variables through abstract interpretation. In
Koichi Furukawa, editor, Proceedings of the 8th
International Conference on Logic Programming,
pages 49–63, 1991.

[24] Harald Søndergaard. An application of abstract
interpretation of logic programs: Occur check
reduction. In Bernard Robinet and Reinhard Wilhelm,
editors, Proceedings of the 1st European Symposium
on Programming, volume 213 of Lecture Notes in
Computer Science, pages 327–338. Springer, 1986.

[25] Shuji Tsukiyama, Mikio Ide, Hiromu Ariyoshi, and
Isao Shirakawa. A new algorithm for generating all the
maximal independent sets. SIAM Journal on
Computing, 6(3):505–517, 1977.

