
Pattern-Based Transformation Rules

for Developing Interaction Models of Access
Control Systems

Dae-Kyoo Kim and Lunjin Lu

Department of Computer Science and Engineering
Oakland University, Rochester, MI 48309, USA

{kim2,l2lu}@oakland.edu

Abstract. This paper presents a set of transformation rules for trans-
forming a non-secure interaction model to a secure interaction model us-
ing an access control pattern. The transformation rules resolve conflicts,
uncertainties and type mismatches that may arise during pattern appli-
cation. We demonstrate a case study using the Mandatory Access Con-
trol pattern and a defense messaging system in the military domain, and
discuss about an analysis of the resulting model for pattern conformance.

1 Introduction

Access control provides integrity, confidentiality and availability of shared re-
sources in a system. The development of an access control system involves high
complexity due to the cross-cutting nature of access control. The complexity
can be effectively managed by systematic use of access control models (e.g., see
[2,4,10]) which describe a mechanism for governing access requests to shared
resources at a high level of abstraction. We view an access control model as a
design pattern that provides a generic solution for access control problems. This
view promotes the reusability of an access control model and helps in detecting
errors at earlier stages.

In this paper, we present a set of transformation rules for transforming a non-
secure interaction model to a secure interaction model using an access control
pattern. The transformation rules are used to resolve uncertainties, conflicts
and type mismatches that may arise during pattern application. In our work,
we describe interaction models in the Unified Modeling Language (UML) [7],
a de facto standard language for modeling software systems, and access control
patterns in the Role-Based Metamodeling Language (RBML) [5], a sub-language
of the UML for precisely specifying design patterns. Use of precise specifications
of access control patterns enables systematic reuse of access control patterns.

A major contribution of this paper is the transformation rules that 1) resolve
uncertainties in determining the location to add pattern behavior in the model,
2) handle conflicts associated with operator fragments (e.g., alt, break, opt) in
UML 2.0, and 3) address the problem of type mismatches where the type of a
model element is different from that of its corresponding pattern element.

H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 306–317, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Pattern-Based Transformation Rules for Developing Interaction Models 307

We demonstrate how the presented transformation rules can be used for trans-
forming a model of a defense messaging system using the Mandatory Access
Control (MAC) pattern [7]. The transformed model is analyzed for conformance
to the applied pattern and the transformation rules. The remainder of the pa-
per is organized as follows. Section 2 relates our work to other work. Section 3
describes an RBML specification of the behavior of the MAC pattern. Section 4
presents transformation rules. Section 5 demonstrates a case study using the
technique, and Section 6 concludes the paper.

2 Related Work

Model transformation has gained great attention in aspect-oriented modeling
[1,8,9] where cross-cutting concerns are modeled as design aspects separately
from functional aspects. Clarke and Walker [1] proposed composition patterns
to decompose and compose cross-cutting aspects based on subject-oriented tech-
niques. The composition patterns are described in UML templates and composed
with a functional model through parameter binding. Their work suffers from du-
plication problem [8] caused by one-to-one binding when a pattern is instantiated
multiple times. The concept of roles in our work overcomes this limitation.

Reddy et al. [9] proposed a tag-based approach for composing sequence di-
agrams. Similar to Clarke and Walker’s work, they use a variation of UML
templates to design a cross-cutting behavior as a design aspect. The sequence
diagram being composed can have two types of tags (simpleAspect and compos-
iteAspect) that specify insertion points of the aspect in the model. A composite
aspect includes position fragments (e.g., begin, end) which constrain the loca-
tion of the fragment interactions that are added to the sequence diagram. Aspect
parameters are bound to corresponding elements of the sequence diagram based
on an implicit binding semantics. Their work has a similar limitation to Clark
and Walker’s work due to use of templates. The position fragments influenced
the position directives in our work for designating insertion points.

Klein and Plouzeau [8] proposed a three-step approach for composing sequence
diagrams. In the first step, the sequence diagram to be composed is decomposed
into basic sequence diagrams which contain only sending and receiving messages
and high-level sequence diagrams which contain fragment operators. In the sec-
ond step, interface sequence diagrams that capture the common behaviors of
the basic sequence diagrams are designed. In the third step, the designer de-
termines if the pattern sequence diagram can be simply added into high-level
sequence diagrams, or should be composed with the basic sequence diagrams.
They accurately point out the problem of duplicate behaviors with templates
when multiple instantiations are made. To address this issue, they use the in-
terface sequence diagrams from the second step to exclude duplicate behaviors.
However, use of interface sequence diagrams introduces places for potential er-
rors and makes the composition process complicated. The concept of interface
sequence diagrams is similar to the interaction patterns in our work in that they
capture a common behavior.

308 D.-K. Kim and L. Lu

3 Specifying Mandatory Access Control

Mandatory Access Control (MAC) is an access control model that governs access
based on security levels [10]. We presented MAC as an access control pattern [7],
and henceforth refer to MAC as the MAC pattern. The MAC pattern consists of
the following concepts: User, Subject, Object, Operation, Security Level, Category
and Reference Monitor [7]. User represents a user or a group of users who interact
with the system. A user is assigned a hierarchical security level (e.g., SECRET,
CONFIDENTIAL) and a non-hierarchical category (e.g., U.S., Allies). A user
may have multiple login IDs which can be active simultaneously. A user may
also create or delete one or more subjects. Subject represents a computer process
which acts on behalf of the user to request an operation on the target object.
Object represents any information resource in the system that can be accessed
by user. Like a subject, an object is assigned a hierarchical security level and a
non-hierarchical category. Operation is an action invoked by a subject to perform
a task on the target object. Security Level represents a hierarchical classification
assigned to users (subjects) and objects. Category represents any value from a
non-hierarchical set. Reference Monitor checks the accessibility of the user by
enforcing the following constraints. Given that L(s) is the security level of a
subject s and L(o) is the security level of an object o:

• Simple Security property: A subject s can read an object o only if L(s) ≥ L(o).
• Restricted *-property: A subject s can write an object o only if L(s) ≤ L(o).

We use the Role-Based Metamodeling Language (RBML) [5] to specify the MAC
pattern. RBML is a UML-based pattern specification language developed in our
previous work [5] to precisely specify design patterns. The RBML defines a
pattern in terms of roles which are played by UML model elements. Every role
has a base metaclass in the UML metamodel and metamodel-level constraints
which specialize the base metaclass to restrict the type of the model elements
that can play the role. Every role has a realization multiplicity to constrain
the number of elements playing the role. If the realization multiplicity is not
specified, the default multiplicity 1..* is used requiring that there be at least one
element playing the role.

Interaction Pattern Specifications (IPSs) are a type of RBML specifications cap-
turing the interaction behavior of a pattern in a sequence diagram view. An IPS
consists of lifeline roles and message roles whose base is the Lifeline metaclass
and the Message metaclass in the UML metamodel. In the UML metamodel
view, an IPS defines a specialization of the UML metamodel which characterizes
a family of sequence diagrams. A member in the family is said to conform to
the IPS [5]. A conforming sequence diagram must have lifelines that can play
the lifeline roles in the IPS. A lifeline conforms to a lifeline role if the lifeline
has messages whose sequence of incoming and outgoing messages is the same as
that of the incoming and outgoing message roles on the lifeline role.

Figure 1 shows an IPS for the MAC pattern where roles are denoted by
the symbol “|”, and their base metaclass is shown implicitly by the graphical

Pattern-Based Transformation Rules for Developing Interaction Models 309

r2=|checkAccess(|s,|obj,|op)

alt

ALT
4

5

|performOperation(|op) 1

{cascade}

ALT

6

3

STRICT

|delegateRequest(|s,|obj)

{cascade}

ALT

1
|s:|Subject 1 :|SubjectLiaison 2..* |op:|Operation 1 :|ReferenceMonitor 1 :|SecurityLevel 1 :|ObjectLiaison 2..* |obj:|Object 1

2

STRICT

[|ObjectLiaison not exists]

[r2=authorized]

|performOperation(|op)

[else] |initiateOperation(|op) 1
|delegateOperation(|op)

[else]

|access_denied

[|SubjectLiaison not exists]

|access_denied_1 [else]

|access_denied_2
|access_denied_3

|requestOperation(|s,|obj) 1

|checkDominance(|s,|obj)
r2=|checkAccess(|s,|obj,|op)

|initiateRequest(|s,|obj) 1[else]

[|SubjectLiaison not exists]

|requestOperation(|s,|obj)

|checkDominance(|s,|obj)

Fig. 1. MAC IPS

notation. The roles that have a realization multiplicity other than the default
multiplicity 1..* are explicitly specified. The IPS shows use of two metamodel
operators, ALT and STRICT which are defined in the RBML to constrain the
structure of a conforming sequence diagram. The ALT operator is used to define
alternative scenarios with a guard condition for conforming sequence diagrams.
Only one scenario that satisfies the guard condition can appear in a conforming
model. The STRICT operator preserves the message sequence in the fragment
which should not to be disturbed by any other messages in a conforming model.
This operator preserves a critical sequence of pattern behaviors. Note that these
operators are different from the UML model operators (e.g., alt, strict) which
design the behavior of objects at runtime. The RBML metamodel operators
are distinguished in capital letters from UML model operators. An IPS may
also have UML model operators as shown in Figure 1 (e.g., alt). Use of the alt
operator requires a conforming model to have a corresponding operator that
exhibits lifelines and messages that play the lifeline roles and message roles in
the alt operator in the MAC IPS.

Given the notational background, the MAC IPS describes the following. A
subject requests an operation with parameters including itself and the target
object. There are two ways of sending the request as specified in the ALT frag-
ment ①. One way is to send the request directly to the operation lifeline, and the
other way is to send the request through subject liaisons which are intermediate

310 D.-K. Kim and L. Lu

lifelines delegating the request to the operation object. Only one scenario may
appear in a conforming model. It should be noted that the |SubjectLiaison life-
line role and its associated message roles (|initiateRequest(), |delegateRequest(),
|requestOperation()) are required only in the second scenario of the fragment ①.
The message roles have the following dependencies:

• An |initiateRequest() operation requires a |requestOperation() operation.
• A |delegateOperation() operation requires a |requestOperation() operation.

The cascade constraint on the |delegateRequest() role specifies that an ini-
tialRequest() message is delegated through intermediate lifelines playing the
|:SubjectLiaison lifeline role until a requestOperation message is invoked on the
op:Operation lifeline. A lifeline role that has a cascade constraint must have a
realization multiplicity with a lower bound greater than or equal to 2 so as to ob-
tain a meaningful delegation as shown in the |:SubjectLiaison role. The request is
checked for accessibility by the checkDominance() operation which enforces the
simple security property and restricted-* property, as described in the STRICT
fragments ② and ③. These fragments mandate the interaction sequences not to
be interfered by any other interactions in a conforming model. The alt fragment
④ describes the authorized case and denied case. If the request is authorized, it
can be sent directly to the target object or through object liaisons (intermedi-
ate lifelines delegating the requests) as specified in the ALT fragment ⑤. If the
access is denied, the request is sent back to the subject, which is described in
the ALT fragment ⑥. A conforming sequence diagram must have an alt frag-
ment corresponding to the alt fragment ④ with the same relative sequence of
interactions as specified in the fragment ④.

4 Transformation Rules

Pattern-based model transformation is a process of transforming a model using a
design pattern to improve a certain quality of the system. During transformation,
conflicts, uncertainties or type mismatches may occur. To handle these issues,
we define the following rules:

Unmapped Message Roles (UMR). Given a mapping, the location of the
mapped message roles in the model is automatically determined to be where the
mapped messages are present. However, the location for unmapped roles may
not be determined. For example, in Figure 2(a) while the location of the |m1’()
role is determined at the mapped message m1() in the transformed model, the
location for the unmapped role |m2’() is not determined. According to the IPS,
an instance (m2’()) of the |m2’() must be placed after the m1() message playing
the m1’() role. However, the sequence diagram has another message m2() after
m1() which should be taken into account in determining the location of m2’().
In consideration of m2(), m2’() can be placed either before m2() or after m2(),
which is nondeterministic.

To resolve such an uncertainty, we define two position directives, [(message|m-
essage role) before (message|message role)] and [(message|message role) after

Pattern-Based Transformation Rules for Developing Interaction Models 311

[m2() before |m2’()]

mapped_to

:ClassB :ClassA op:Op

instantiated

:ClassB:ClassA :|RoleA

op(p1,p2,..)

m1’()

Sequence Diagram

|m2’()

|m1’() call()
do(op)

m2’()

Transformed Sequence DiagramIPS

(b) Type Conversion: Message to Lifeline

Sequence Diagram

|m1’()

|m2’()

instantiated

mapped_to

:ClassA :|ClassA :|ClassB:ClassB :ClassA :ClassB

alt m1’()

m2’()

alt

IPS Transformed Sequence Diagram

(d) Prohibited Alternatives Transformation

break

:ClassB

Sequence Diagram

(e) Prohibited Break Transformation

IPS Transformed Sequence Diagram

break m1’()

m2’()

|m1’()

|m2’()

:ClassA :|ClassA:ClassB :|ClassB

instantiated

:ClassA

mapped_to

:ClassB

Sequence Diagram IPS

|m1’()

|m2’()

m1’()

m2’()opt
opt

:ClassA :|ClassA

mapped_to

:|ClassB :ClassA

instantiated

:ClassB

Transformed Sequence Diagram

(f) Prohibited Optional Transformation

:ClassA :ClassB

mapped_to

:ClassB:ClassA:|ClassA :|ClassB

:ClassD:ClassC:ClassA :ClassB

m1()

m2()

:|RoleA :ClassA b:ClassC

m1()

instantiatedmapped_to

|op(|p1,|p2...)
op(p1,p2,...)

m2()

(c) Type Conversion: Lifeline to Message

Sequence Diagram IPS Transformed Sequence Diagram

instantiated

m2()

m1()
m2()

m1()

m2’()
|m2’()

|m1’()

(a) Unmapped Message Role Ordering

Transformed Sequence DiagramSequence Diagram IPS

Fig. 2. Transformation Rules

(message|message role)] to designate a particular location for a message or a
role instance. For example, [a() before |b()] stipulates that the message a() be
placed immediately before an instance of the |b() role. Using position directives,
the problem in Figure 2(a) can be resolved by specifying [m2() before |m2’()]
which places the m2() message right before an instance of the |m2’() role (m2’()).
Note that position constraints should not violate the pattern behavior. For ex-
ample, having [|m2’() before m1()] would violate the pattern behavior due to
the reverse sequence of the messages playing the |m1’() and |m2’() roles.

Type Mismatches (TM). Given a mapping, an element may be mapped to
a role whose base is different from the type of the element. In such a case, a
type conversion is required. A concrete example is found in the Visitor design
pattern [3] where cross-cutting operations over an object structure are captured
as visitor classes. In general, these operations are designed as operations, and
use of the Visitor pattern requires transforming them to classes. To handle a
message-to-lifeline type mismatch, we define the following rule:

Mapping a message op() to a lifeline role |:RoleA creates a new lifeline op:Op
(an instance) of the |:RoleA role and adds a call() message from the source
lifeline of op() to the new lifeline op:Op and a do() message from the new
lifeline op:Op to the target lifeline of op().

312 D.-K. Kim and L. Lu

Figure 2(b) illustrates the rule. In the figure, the op() message whose type is
the Message metaclass is mapped to the :|RoleA role whose type is the Lifeline
metaclass. This requires to transform the op() message to a lifeline (op:Op) that
can play the :|RoleA role.

The TM rule reestablishes the interaction between the new lifeline op:Op
and the source lifeline (:ClassA) and the target lifeline (:ClassB) of the op()
message in the original sequence diagram using two auxiliary messages call()
and do(). The call() message captures the operation call invoked by the source
lifeline :ClassA and is added between the source lifeline :ClassA and the new life-
line op:Op. The do() message captures execution of the call on the target lifeline
:ClassB and is added between the new lifeline op:Op and the target lifeline
:ClassB. The do() message takes the new lifeline :op:Op as a parameter to exe-
cute it on the target lifeline :ClassB. There are two issues involved in a message-
to-lifeline transformation. One is determining locations for the call() and the
do() messages in the transformed model, which requires considering the message
sequence in the sequence diagram and the sequence of the unmapped message
roles in the IPS. To address this issue, we use the before and after directives
presented in the UMR rule as follows:

op() �→ :|RoleA ([call() after |m1’()],[do() before |m2’()])

This constraint specifies that the call() operation must be placed immediately
after an instance of the m1’() role, and the do() operation immediately before an
instance of the m2’() role. If there are multiple instances of the |m1’() role, the
after directive places the call() message after the last instance. Similarly, if there
are multiple instances of |m2’(), the before directive places the do() message
before the first instance. The call() and the do() messages may be specified to
play the |m1’() and the |m2’() roles, respectively, as follows:

op() �→ :|RoleA ([call() �→ |m1’()],[do() �→ |m2’()])

In this case, the |m1’() and the |m2’() roles are not instantiated. If the mes-
sage roles mapped to the call() and the do() messages involve parameter roles,
they must be instantiated in the signature of the call() and the do() messages.
The other issue to address is handling the parameters of the message being
transformed. In Figure 2(b), the op message has two parameters (p1, p2). Since
the message is transformed to a lifeline, the parameters of the message should
be handled in some way. We assume that the parameters are transformed to
attributes of the corresponding class of the new lifeline in the class diagram de-
rived from the transformed sequence diagram (not shown in Figure 2(b)). This
makes the parameters no longer expressive in the sequence diagram.

The opposite conversion from a lifeline to an operation is also possible. For
example, a creator lifeline in a sequence diagram may be mapped to a creator
message in a pattern (e.g., the Abstract Factory pattern [3]). To handle such a
conversion, we define the following rule:

Mapping a lifeline :ClassA to a message role |op() creates a new message
op() (an instance) of the |op() role and a new lifeline :ClassB (an instance) of

Pattern-Based Transformation Rules for Developing Interaction Models 313

the target lifeline role of the |op() role, and redirects the incoming and outgoing
messages of the :ClassA lifeline to the new lifeline :ClassB.

Figure 2(c) illustrates the rule. In the figure, the :ClassB lifeline is mapped to
the |op() message role. The transformation rule creates instances (op(), :ClassD)
of the |op() role and its target lifeline role :|RoleA, and redirects the messages
m1() and m2() of the :ClassB lifeline to the new lifeline :ClassD. However,
the location of the op() message in the transformed sequence diagram is not
determined yet. There are three places where the op() message can be placed:
before m1(), after m2, in between m1() and m2(). To designate a location, the
following constraint is defined, placing the op() message in the third option:

:ClassB �→ |op() ([|op() after m1()],[|op() before m2()])

In a lifeline-to-message transformation, we assume that the properties of the
lifeline become properties of the target lifeline of the transformed message.

Operator Fragments (OF). The model being transformed may have frag-
ments of the alt, break and opt operators [11] whose execution depends on
a guard condition. If a pattern behavior is composed with a fragment of these
operators, the pattern behavior cannot be guaranteed to be executed because of
the conditional execution. To prevent this, we define the following rules:

– alt Rule. An alt fragment describes alternative scenarios determined by a
guard condition. If the pattern behavior is split into the two choices of an alt
fragment, the pattern behavior exhibited in the unselected choice at runtime
will not be executed. To prevent this, the following rule is defined:

A pattern cannot be split into the alternatives in an alt fragment.

Figure 2(d) shows a prohibited transformation for an alt fragment. In the
figure, the m1’() instance of the |m1’() role is composed with the first choice
of an alt fragment, while the (m2’() instance of the |m2’() role is composed
with the second choice. This is invalid because either of m1’() or m2’() in
the alt fragment will not be executed, which violates the pattern.

– break Rule. A break fragment describes a terminating scenario for the se-
quence diagram. If a pattern behavior is composed with a break fragment,
the pattern behavior will not be executed if the guard condition of the frag-
ment is false. To prevent this, the following rule is defined:

A pattern cannot be split into a break fragment and the normal scenarios
(the scenarios outside of the break fragment).

Figure 2(e) shows a prohibited transformation for a break fragment. The
transformation shows that the m1’() instance of the |m1’() role is composed
with the break fragment while the m2’() instance of the |m2’() role is com-
posed with the normal scenarios. This should be prohibited because m2’()
cannot be executed when the break fragment is enabled or vice versa.

– opt Rule. An opt fragment describes a choice of behavior depending on a
guard condition. An opt fragment is similar to a break fragment in terms of

314 D.-K. Kim and L. Lu

structure, but does not require to break out the normal scenario. As a matter
of fact, an option is semantically equivalent to an alternative fragment where
the first choice has non-empty content and the second choice is empty [11].
A similar rule to the break rule is defined for opt fragments as follows:

A pattern cannot be split into an opt fragment and the regular scenarios
(the scenarios outside of the opt fragment).

Figure 2(f) shows a prohibited transformation for an opt fragment. In the
figure, the (m1’()) instance of the |m1’() role is composed with the regular
scenario, while the (m2’()) instance of the |m2’() role is composed with an
opt fragment. This violates the pattern because the m2’() message will not
be executed when the guard condition of the fragment is false.

5 A Case Study

We demonstrate the transformation rules using the MAC pattern applied to a
defense messaging system (DMS) in the military domain. The DMS allows a
user to create a new message, set up a sensitivity level for the message, and send
and receive the message. Only an authorized and uniquely identified user can
use the system. A sent message is sorted by the message sorter to identify the
recipient. The recipient is checked for accessibility to the message based on MAC
policies before receiving. If the sensitivity level of the recipient does not satisfy
the sensitivity level set in the message, the recipient cannot receive the message,
and the message is sent back to the sender. Every successful and erroneous
transaction must be logged in persistence. In this case study, we assume that the
security level of the message is same as the sender’s. Figure 3 shows a sequence
diagram describing sending a message without access control. We apply the MAC
pattern to the sequence diagram based on the following mapping:

(o:MsgSender �→ |s:|Subject), (sendMsg 1() �→ |initiateRequest()),
(:MsgSorter �→ :|SubjectLiaison), (:Delivery �→ :|SubjectLiaison),
(sendMsg 2() �→ |delegateRequest()), (r:MsgRecipient �→ |obj:|Object),
(sendMsg 3() �→ |op:|Operation ([call() �→ |requestOperation()],[do() �→ |perform-
Operation()])).

The mapping is given as input to the transformation algorithm [6] to evaluate
conformance of the elements to the mapped roles by enforcing the metamodel-
level constraints of the roles. If any nonconformance exists, the element is trans-
formed to be conformant by the algorithm. The only metamodel-level constraint
in the MAC IPS is the base metaclass which requires type matching. The only vi-
olating mapping of this constraint is (sendMsg 3() �→ |op:|Operation) where the
type of sendMsg 3() is the Message metaclass, while the type of the |op:|Operation
role is the Lifeline metaclass. The transformation algorithm applies the TM rule
to this pair to convert the type of sendMsg 3() to the Lifeline metaclass.

Applying the rule results in creation of a lifeline op:sendMsg 3 and two mes-
sages call() and do(). The mappings of (call() �→ |requestOperation()) and (do()

Pattern-Based Transformation Rules for Developing Interaction Models 315

sortMsg(r,m)

m:Message

:Delivery

alt [sorted] sendMsg_2(r,m)
sendMsg_3(m)

logMessage(r,m)

[else] logMessage(r,m)
return message

:MsgSorter

createMsg()

:Transactions:MsgSender r:MsgRecipient

create

sendMsg_1(r,m)

Fig. 3. Defense Messaging System

�→ |performOperation()) require the parameter roles (|s, |obj, |op) of the requestO-
pration() and performOperation() roles to be instantiated into the signature of
the call() and do() messages.

The mapping determines which scenario in the ALT fragments ①, ⑤ and
⑥ in Figure 1 the DMS model should conform to. The mappings (:MsgSorter
�→ :|SubjectLiaison) and (sendMsg 2() �→ |delegateOperation()) determine the
second scenario in the ALT fragment ① which describes delegation of the re-
quest through subject liaisons. This also determines the second scenario in the
fragment ⑥. Similarly, the mapping (do() �→ |performOperation()) determines
the first scenario in the ALT fragment ⑤ which describes sending the request
directly to the target object. These require the DMS model to have message
sequences conforming to the second scenario of the ALT fragment ① and the
first scenario of the ALT fragment ⑤.

The unmapped roles (:|ReferenceMonitor, :|SecurityLevel, |requestOperation(),
|checkAccess(), |checkDominance(), |access denied 1, |access denied 2, |access de-
nied 3) in the MAC IPS are instantiated to be added into the model. The UMR rule
is applied to determine the location of the unmapped message roles in the trans-
formed model. In Figure 1, the |requestOperation(), |checkAccess() and
|checkDominance() roles are specified in aSTRICT fragmentwhich requires their
sequence to be preserved. Thus, instances of the roles are treated as one block. The
location of the block can be determined relative to the locations of the messages
mapped to the |delegateRequest() and |performOperation() roles which are imme-
diately before and after the block. The above mapping shows that the two roles
are mapped to the sendMsg 2() message and the do() message, respectively. This
determines that the instance block must be placed between the sendMsg 2() and
the do() messages. The return message roles in the second scenario of the fragment
⑥ are instantiated according to the mapping for the |s:|Subject, :|SubjectLiaison
and |op:|Operation roles. Note that the unmapped roles in the unselected scenario
in ①, ⑤ and ⑥ should not be instantiated unless they participate in the selected
scenario.

The DMS model has one alt fragment for which the OF rule should be applied.
The OF rule prohibits the MAC IPS from being split into the two different
scenarios in the alt fragment. Given the mapping and enforcement of the UMR
rule, the OF rule is observed.

316 D.-K. Kim and L. Lu

createMsg()

alt

5

6

3

alt

4
from the second
scenario of

1scenario of
from the second

s:MsgSender :MsgSorter op:sendMsg_3:Delivery :ReferenceMonitor :SecurityLevel :Transaction r:MsgRecipient

do(op,m)

access_denied_2

access_denied_1
[else]

access_denied_3

logMessage(r,m)

[else]
logMessage(r,m)

return message

[r2=authorized]

scenario of

scenario of
from the second

from the firstcheckDominance(s,r,op) from
r2=checkAccess(s,r,op)

call(s,r,m)

sendMsg_2(s,r,m)
[sorted]

sortMsg(s,r,m)

sendMsg_1(s,r,m)

m:Message
create

Fig. 4. Case 1: Defense Messaging System with MAC

Figure 4 shows the resulting sequence diagram where the pattern behaviors
are highlighted. In the model, the MAC pattern intercepts the request from
Delivery to the recipient to check dominance of the recipient’s security level over
the security level set on the message. If the recipient’s security level is higher
than the message’s security level, the request is authorized, and the message is
delivered to the recipient. Otherwise, the request is denied, and the message is
sent back to the sender. The outer alt fragment is added by the alt fragment
④. The sequence of the call(), checkAccess() and checkDomination() messages
in the outer alt fragment preserves the sequence in the STRICT fragment ③.

The transformed model should be checked for conformance to the pattern
to ensure correct incorporation of the pattern behavior. We have conducted a
conformance evaluation for the transformed model using logic programming. In
the evaluation, we implemented the MAC pattern as a query and the transformed
model as a logic program. The logic program is executed with the query to
compute all feasible mappings by enforcing the conformance rules described in
Section 4. The details of the approach are beyond the scope of this paper.

6 Conclusion

We have presented a set of transformation rules for developing interaction mod-
els using design patterns and demonstrated the application of the transforma-
tion rules via a defense messaging system and the MAC pattern. In addition
to the case study presented in this paper, we have conducted two other case
studies for a healthcare system and a database access system. The presented
transformation rules are developed based on these case studies. We expect the

Pattern-Based Transformation Rules for Developing Interaction Models 317

rules to be extended as more case studies are conducted. A possible extension
would be converting an operation parameter to a lifeline or vice versa. Rigorous
transformation rules presented in this paper together with a precise RBML spec-
ification of an access control pattern provides a solid foundation for mechanical
pattern application. Also, the metamodeling design of a pattern facilitates the
development of a prototype. We are currently developing a prototype tool for
the proposed technique. Such a tool would enable not only automatic pattern
application, but also automatic rollback of an applied pattern when necessary.

Acknowledgements

This material is based upon work supported by the National Science Foundation
under Grant No. CCF-0523101.

References

1. Clarke, S., Walker, R.: Composition Patterns: An Approach to Designing Reusable
Aspects. In: Proceedings of International Conference on Software Engineering,
Toronto, Canada, pp. 5–14 (2001)

2. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed
NIST Standard for Role-Based Access Control. ACM Transactions on Information
and Systems Security 4(3) (2001)

3. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading (1995)

4. Harrison, M.H., Ruzzo, W.L., Ullman, J.D.: Protection in Operating Systems.
Communications of the ACM 19(8), 461–471 (1976)

5. Kim, D.: The Role-Based Metamodeling Language for Specifying Design Patterns.
In: Taibi, T. (ed.) Design Pattern Formalization Techniques, pp. 183–205. Idea
Group Inc. (2007)

6. Kim, D., Gokhale, P.: A Pattern-Based Technique for Developing UML Models of
Access Control Systems. In: Proceedings of the 30th Annual International Com-
puter Software and Applications Conference, Chigaco, IL, pp. 317–324. IEEE Com-
puter Society Press, Los Alamitos (2006)

7. Kim, D., Mehta, P., Gokhal, P.: Describing Access Control Patterns Using Roles. In:
Proceedings of Pattern Languages of Programming Conference (PLoP), Portland,
OR (2006)

8. Klein, J., Plouzeau, N.: Transformation of Behavioral Models Based on Composi-
tions of Sequence Diagrams. In: Proceedings of Model-Driven Architecture: Foun-
dations and Applications 2004 (MDAFA), Linkoping, Sweden, p. 255 (2004)

9. Reddy, R., Solberg, A., France, R., Ghosh, S.: Composing Sequence Models using
Tags. In: Proceedings of MoDELS workshop on Aspect Oriented Modeling, Genova,
Italy (2006)

10. Sandhu, R., Samarati, P.: Access Control: Principles and Practice. IEEE Commu-
nications 32(9), 40–48 (1994)

11. The Object Management Group (OMG). Unified Modeling Language: Superstruc-
ture. Version 2.0 Formal/05-07-04, OMG (August 2005), http://www.omg.org

http://www.omg.org

	Introduction
	Related Work
	Specifying Mandatory Access Control
	Transformation Rules
	A Case Study
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

