
Detecting Determinacy in Prolog Programs

Andy King1, Lunjin Lu2, and Samir Genaim3

1 University of Kent, Canterbury, CT2 7NF, UK
2 Oakland University, Rochester, MI 48309, USA

3 Universidad Politécnica de Madrid, Spain

Abstract. In program development it is useful to know that a call to a
Prolog program will not inadvertently leave a choice-point on the stack.
Determinacy inference has been proposed for solving this problem yet the
analysis was found to be wanting in that it could not infer determinacy
conditions for programs that contained cuts or applied certain tests to
select a clause. This paper shows how to remedy these serious deficiencies.
It also addresses the problem of identifying those predicates which can
be rewritten in a more deterministic fashion. To this end, a radically new
form of determinacy inference is introduced, which is founded on ideas
in ccp, that is capable of reasoning about the way bindings imposed by
a rightmost goal can make a leftmost goal deterministic.

1 Introduction

Understanding the determinacy behaviour of a logic program is important in
program development. To this end, determinacy inference [13] has been pro-
posed as an analysis for inferring conditions on goals that are sufficient to assure
determinacy. The key difference between determinacy checking [12, 14, 16] and
determinacy inference is that the former verifies that a given goal will generate at
most one answer at most once (if it yields any at all) whereas the latter infers, in
a single application of the analysis, a class of goals that are deterministic. In ad-
dition to ensuring the determinacy of the initial goal, the conditions inferred by
[13] ensure the determinacy of each intermediate atomic sub-goal that is invoked
whilst solving the initial goal. Therefore, any call that satisfies its determinacy
condition cannot (unintentionally) leave a choice-point on the stack.

Determinacy inference is most insightful when it infers a class of calls that
differs from what the programmer expects. If the class is smaller than expected,
then either the predicate is unintentionally non-deterministic (i.e. buggy), or the
analysis is insufficiently precise. If the class is larger than anticipated, then either
the predicate possesses properties that the programmer overlooked (i.e. subtle
sub-goal interactions that induce determinacy), or it has been coded incorrectly.
Alas, determinacy inference was found to be insufficiently precise for programs
which used the cut to enforce determinacy. This is because determinacy condi-
tions are derived from conditions, known as mutual exclusion conditions, that
are sufficient to ensure that at most one clause of a predicate can derive an
answer to a call. These conditions are derived by analysing the constraints that

arise in the different clauses of a predicate. Cuts are often introduced so as to
avoid applying a test in a clause whose outcome is predetermined by a test in
an earlier clause. The absence of such a test prevented a mutual exclusion con-
dition from being inferred. This paper shows that, although this problem may
appear insurmountable, that determinacy inference can be elegantly extended
to support cuts. The paper also reports how the machinery used to infer mutual
exclusion conditions can be refined so as to reason about tests that operate, not
on the arguments of a clause, but sub-terms of the arguments. This is also key
to inferring accurate mutual exclusion conditions for realistic programs.

As well as enhancing an existing analysis, the paper introduces a new form
of determinacy inference. To illustrate the contribution, consider the database:

q(a). q(b). r(a).

and compound goal q(X), r(X) which is not dissimilar to a number of goals
that we have found in existing programs [19]. The compound goal generates at
most one answer, no matter how it is called, due to the way the bindings gener-
ated by the rightmost sub-goal constrain the leftmost sub-goal. The analysis of
[13] would only infer that the goal is deterministic if called with X ground. Yet
the vacuous groundness condition of true is sufficient for the goal to be determi-
nate (even though it employs backtracking). The value in knowing that the goal
is actually determinate is that it alerts the programmer to where the program
can be improved. If the programmer can verify that the determinacy conditions
hold (which is often straightforward) then the goal can be executed under a
once meta-call without compromising correctness. Equivalently, the goal could
be replaced with q(X), r(X), !. Either approach would remove any choice-
points that remain unexplored and thereby eliminate a performance bug. Alter-
natively, the programmer might observe that the goal can be reordered to obtain
r(X), q(X) which will not generate any choice-points at all (though such a re-
ordering might compromise termination).

The new form of determinacy inference reported in this paper can locate
these opportunities for optimisation when it is used in conjunction with the
existing analysis [13]. The new form of analysis can detect determinacy in the
presence of right-to-left flow of bindings; the existing analysis cannot. Hence,
any discrepancy between the results of the two analyses identifies a goal that
is deterministic, yet could possibly leave choice-points on the stack. Such goals
warrant particularly close scrutiny. Without this form of pinpointing, it would
be necessary to manually inspect large numbers of non-deterministic predicates.

One technical contribution is in the way the new analysis is realised using
suspension inference [4]. The intuition is to add delay declarations to the pro-
gram so that a goal can only be selected if no more than one clause in the
matching predicate can generate an answer. The sub-goals r(X) and q(X) are
thus selected when, respectively, the groundness conditions of true and X are
satisfied. Suspension inference then deduces that the condition true is sufficient
for the compound goal not to suspend. A correctness result reported in the paper
shows that non-suspension conditions can then be reinterpreted as determinacy
conditions. In addition to its use in debugging, the analysis has application in

the burgeoning area of semi-offline program specialisation (see the discussion in
section 6). The paper is organised as follows. Section 2 presents a worked ex-
ample that illustrates the new form of determinacy inference. Section 3 explains
the main correctness result. (The proofs and all the supporting lemmata are all
given in [6]). Sections 4 and 5 explain how to support cuts and tests between
the sub-terms of arguments. Sections 6 surveys the related work.

2 Worked Example

Since the correctness argument is necessarily theoretical, this section illustrates
the key ideas in the new approach to determinacy inference by way of an example:

(1) rev([],[]).

(2) rev([X|Xs],Ys) :- rev(Xs,Zs), app(Zs,[X],Ys).

(3) app([],X,X).

(4) app([X|Xs],Ys,[X|Zs]) :- app(Xs,Ys,Zs).

2.1 The common ground

The chief novelty in the previous approach to determinacy inference [13] was in
the way success patterns for the individual clauses of a predicate were used to
infer mutual exclusion conditions for a call to that predicate. The new analysis
builds on these mutual exclusion conditions. Such a condition, when satisfied
by a call, ensures that no more than one clause of the matching predicate can
lead to a successful derivation. To illustrate, consider characterising the success
patterns with an argument-size analysis in which size is measured as list-length:

(1) rev(x1, x2) :- x1 = 0, x2 = 0.
(2) rev(x1, x2) :- x1 ≥ 1, x1 = x2.

(3) app(x1, x2, x3) :- x1 = 0, x2 ≥ 0, x2 = x3.

(4) app(x1, x2, x3) :- x1 ≥ 1, x2 ≥ 0, x1 + x2 = x3.

An algorithm that takes, as input, success patterns and produces, as output,
mutual exclusion conditions is detailed in our previous paper [13]. Rather than
repeating the algorithm, we give the intuition of how rigidity relates to mutual
exclusion. If a call rev(x1, x2) succeeds with x1 bound to a rigid list, then so
does a new call rev(x1, x2) to the new version of the predicate in which x1

is bound to the length of the list. Hence, if the original clause succeeds with
the original clause (1), then so does the new call to the new version of that
clause. The presence of the constraint x1 = 0 in the new clause implies that
the argument x1 of the new call was initially zero. The new clause (2) cannot
then also succeed because of the constraint x1 ≥ 1. Hence the original clause
(2) cannot also succeed with the original call. The argument follows in the other
direction, hence the rigidity condition x1 on the original call is sufficient for
mutual exclusion. By similar reasoning, the rigidity of x2 is also sufficient hence
the combined condition x1 ∨ x2 is also a mutual exclusion condition. Repeating
this argument for app(x1, x2, x3) yields x1 ∨ (x2 ∧ x3) [13].

2.2 The problem

The value of mutual exclusion conditions is that if all sub-goals encountered
whilst solving a goal satisfy their conditions, then the goal is deterministic [13].
This motivates the application of backward analysis [5] which infers conditions
on goals which ensure that a given set of assertions are not violated. By adding
assertions that check calls meet their mutual exclusion conditions, the backward
analysis will infer conditions on goals that assure determinacy. To illustrate
backward analysis, consider clause (2) on the previous page. Since [X] is rigid,
it is enough for d2 = Zs ∨ Ys to hold for app(Zs,[X],Ys) to satisfy its condi-
tion. By inspecting the success patterns of rev it follows that after the sub-goal
rev(Xs,Zs) the rigidity property f1 = Xs ∧ Zs holds. Thus, if the condition
f1 → d2 holds before the sub-goal, then (f1 → d2)∧ f1, hence d2, holds after the
sub-goal, and thus the mutual exclusion condition for app(Zs,[X],Ys) is satis-
fied. Since d1 = Xs ∨ Zs is the mutual exclusion condition for the rev(Xs,Zs),
d1 ∧ (f1 → d2) = (Xs ∨ Zs) guarantees that both sub-goals of the body satisfy
their conditions when encountered. To satisfy this condition, it is enough for
[X|Xs] to be rigid, that is, for rev to be called with a rigid first argument.

The astute reader will notice that rev is determinate when called with a rigid
second argument. To see this, observe that each answer to rev(Xs, Zs) will in-
stantiate Zs to a list of different size. Now consider executing the compound goal
app(Zs,[X],Ys), rev(Xs, Zs) with Ys rigid. The rigidity of Ys ensures that
app(Zs,[X],Ys) is deterministic and thus Zs has at most one solution of fixed
size. This, in turn, guarantees that rev(Xs, Zs) can yield at most one answer,
hence the compound goal is deterministic. (Actually, rev gives one answer and
then loops in this mode, though this does not compromise determinacy and such
goals can always be executed under once without compromising correctness). It
is therefore disappointing that [13] only discovers one deterministic mode.

2.3 The solution

The two deterministic modes stem from different flows of bindings between the
sub-goals. This motivates an analysis that considers different schedulings of sub-
goals and selects a sub-goal only when its mutual exclusion condition is satisfied.
In effect, mutual exclusion conditions are interpreted as delay conditions like so:

delay rev(X, Y) until rigid list(X) ; rigid list(Y).

rev([],[]).

rev([X|Xs],Ys) :- rev(Xs,Zs), app(Zs,[X],Ys).

delay app(X, Y, Z) until rigid list(X) ; (rigid list(Y) , rigid list(Z)).

app([],X,X).

app([X|Xs],Ys,[X|Zs]) :- app(Xs,Ys,Zs).

The delay declarations, which are reminiscent of Gödel syntax, block rev and
app goals until combinations of their arguments are bound to rigid lists. Suspen-
sion inference [4] (which can be considered to be a black-box) is then applicable
to this transformation of the original program and, for this derived program, can

infer classes of initial goals which cannot lead to suspending states. For these
initial goals, the program cannot reduce to a state that only contains suspend-
ing sub-goals, that is, sub-goals which violate their mutual exclusion conditions.
Since each sub-goal satisfies its condition when executed, the computation is
deterministic. Furthermore, executing any such initial goal under left-to-right
selection (and we conjecture any selection) will also generate at most one an-
swer [6] — it may not terminate but again this will not undermine determinacy.
Applying suspension inference [4] to the above program yields the rigidity condi-
tions of x1∨x2 and x1∨(x2∧x3) for rev(x1, x2) and app(x1, x2, x3) respectively,
as desired. Note that the delay conditions are not left in the program after anal-
ysis; they are only introduced for the purpose of applying suspension inference.

3 The semantics and the transformation

This section builds toward stating a result which explains how suspension infer-
ence can be applied to realise determinacy inference. Rather unusually, the result
relates three different semantics. Firstly, a semantics that maps a single call to a
Prolog program to a multiset of possible answers. This semantics is rich enough
to observe non-determinacy. Secondly, a semantics for success patterns which
can express the concept of a mutual exclusion condition. Thirdly, a semantics
for ccp that is rich enough for observing non-suspension. In order to express the
transformation of a Prolog program, all three semantics have been formulated
in terms of a common language syntax and a common computational domain of
constraints. This domain is detailed in section 3.1. The semantics (which them-
selves possess a number of novel features) are presented in sections 3.2 and 3.3.
Finally the transformation and the result itself is presented in section 3.4.

3.1 Computational domain of constraints

The computational domain is a set of constraints Con that is ordered by an
entailment (implication) relation |=. The set Con is assumed to contain equality
constraints of the form x = y where x and y are vectors of variables. Syntac-
tically different constraints may entail one another and therefore a relation ≡
is introduced to express equivalence which is defined by θ1 ≡ θ2 iff θ1 |= θ2

and θ2 |= θ1. Since we do not wish to distinguish between constraints that are
semantically equivalent but syntactically different, we base our semantics on a
domain of equivalence classes Con/≡ in which a class is denoted by [θ]≡ where θ
is a representative member of the class. This domain is ordered by [θ1]≡ |= [θ2]≡
iff θ1 |= θ2. The domain is assumed to come equipped with a conjunction op-
eration [θ1]≡ ∧ [θ2]≡ and a projection operation ∃x([θ]≡) where x is a vector of
variables, both of which are assumed to posses normal algebraic properties [18].
The former conjoins constraints whereas the latter hides information in [θ]≡ that
pertains to variables not contained within x.

Equality constraints such as x = y provide a way of connecting the actual
arguments x of a call with the formal arguments y of the matching proce-
dure. However, equality is doubly useful since, when combined with projection,

it provides a way of renaming constraints — an action which is inextricably
linked with parameter passing. To systematically substitute each variable in x
with its corresponding variable in y within the constraint [θ]≡ it is sufficient
to compute ∃y(∃x([θ]≡) ∧ [x = y]≡) provided that var(x) ∩ var(y) = ∅. Since
renaming is commonplace, we introduce an abbreviation — ρx,y([θ]≡) — which
is defined ρx,y([θ]≡) = ∃y(∃x([θ]≡) ∧ [x = y]≡) if var(x) ∩ var(y) = ∅ and
ρx,y([θ]≡) = ρz,y(ρx,z([θ]≡)) otherwise, where z is a vector of fresh variables.
Note that ρx,y([θ]≡) removes any variables that are not renamed.

Although the domain of equivalence classes Con/≡ and its associated op-
erators is adequate for the purposes of constructing the three semantics, it is
actually simpler to work within a domain of sets of constraints where each set
is closed under implication [18]. This domain is ℘↓(Con) = {Θ ⊆ Con |↓Θ = Θ}
where ↓Θ = {θ1 ∈ Con | ∃θ2 ∈ Θ.θ1 |= θ2}. The crucial point is that oper-
ations over Con/≡ can be simulated within ℘↓(Con) which has a less compli-
cated structure. For example, consider the conjunction [θ1]≡ ∧ [θ2]≡ for some
θ1, θ2 ∈ Con. If Θi =↓{θi} for i = 1, 2 then the conjunction can be modeled
by just Θ1 ∩ Θ2 since [θ1]≡ ∧ [θ2]≡ = [θ]≡ iff θ ∈ Θ1 ∩ Θ2. The projection
and renaming operators straightforwardly lift to closed sets of constraints by
∃x(Θ) = ↓{∃x([θ]≡) | θ ∈ Θ} and ρx,y(Θ) = ↓{ρx,y([θ]≡) | θ ∈ Θ}.

3.2 Multiset and success set semantics for Prolog programs

To express the transformation that maps a Prolog program into a concurrent pro-
gram, it is helpful to express both classes of program within the same language.
Thus we adopt concurrent constraint programming (ccp) [18] style in which a
program P takes the form P ::= ε|p(x) :− A|P1.P2 where A is an agent that is
defined by A ::= ask(Θ) → A|tell(Θ)|A1, A2|

∑n
i=1 Ai|p(x) and Θ ∈ ℘↓(Con) and

throughout x denotes a vector of distinct variable arguments. A Prolog program
is merely a program devoid of agents of the form ask(Θ) → A. In the concur-
rent setting, ask(Θ) → A blocks A until the constraint store Φ entails the ask
constraint Θ, that is, Φ ⊆ Θ. In both settings, the agent tell(Θ) updates the
store from Φ to Φ ∩Θ by imposing the constraints Θ. In a Prolog program, the
composition operator “,” is interpreted as a sequencing operator which induces
left-to-right control, whereas in a concurrent program, the same operator is in-
terpreted as parallel composition. For both classes of program

∑n
i=1 Ai is an

explicit choice operator which systematically searches all Ai agents for answers.
This represents the most radical departure from classic Prolog but it is a useful
construction because, without loss of generality, all predicates can be assumed
to be defined with exactly one definition of the form p(x) :− A.

The rationale of the multiset semantics is to capture whether an answer does
not occur, occurs exactly once or occurs multiply to a given query. In order to
make the semantics as simple as possible, the semantics maps a call, not to an
arbitrary multiset of answers, but to a restricted class of multisets in which no
element occurs more than twice. This restriction still enables non-determinacy
to be observed but assures that the equations that define the multiset semantics
have a least solution and therefore that the semantics is well-defined.

Before we proceed to the semantics, we need to clarify what is meant by a
multiset of answers and how such multisets can be manipulated and written.
A multiset of answers is an element in the space ℘↓(Con) → {0, 1, 2}, that is, a
map which details how many times, if any, that an answer can arise. Henceforth
we shall let Ĉon abbreviate this set of maps. Multiset union over Ĉon is defined
by M1∪̂M2 = λΘ.min(M1(Θ) + M2(Θ), 2). Thus if an element occurs singly in
both M1 and M2 then it occurs twice in M1∪̂M2. However, if it occurs singly
in M1 and twice in M2 then it occurs twice in M1∪̂M2. Henceforth, to simplify
the presentation, we write HI for the multiset λΘ.0 and HΨ,Φ, ΦI, for instance,
for λΘ.if Θ = Ψ then 1 else (if Θ = Φ then 2 else 0). Furthermore, we adopt mul-
tiset comprehensions with the interpretation that the predicate Θ∈̂M succeeds
once/twice iff Θ occurs once/twice in M . For example, if M ′ = HΘ,Θ,ΦI then
HΨ ∪Ω | Ω∈̂M ′I = HΨ ∪Θ,Ψ ∪Θ,Ψ ∪ ΦI.

The multiset semantics is a mapping of type AgeP → ℘↓(Con) → Ĉon where
AgeP denotes the set of agents that can be constructed from calls to predicates
defined within P . The intuition is that, for a given agent A ∈ AgeP , the multiset
semantics maps a closed set Φ to a multiset of closed sets that detail all the
possible answers to A given the input Φ.

Definition 1. The mapping MP : AgeP → ℘↓(Con) → Ĉon is the least solution
to the following system of recursive equations:

MP [[tell(Φ)]](Θ) = if Φ ∩Θ = ∅ then HI else HΦ ∩ΘI
MP [[A1, A2]](Θ) = ∪̂HMP [[A2]](Φ) | Φ∈̂MP [[A1]](Θ)I

MP [[
∑n

i=1 Ai]](Θ) = ∪̂HMP [[Ai]](Θ)In
i=1

MP [[p(x)]](Θ) = HΘ ∩ ρy,x(Φ) | Φ ∈MP [[A]](ρx,y(Θ))I where p(y) :−A∈P

Example 1. Let Θa = ↓{x = a} and Θb = ↓{x = b} and consider the program
P = {q(x) :−

∑3
i=1 Ai, r(x) :− tell(Θa), p(x) :− q(x), r(x)} where A1 = tell(Θa)

and A2 = A3 = tell(Θb) which builds on the example in the introduction. The
closed set Con can be used to express unconstrained input, hence:

MP [[p(x)]](Con)= HΘaI
MP [[q(x)]](Con)= HΘa, Θb, ΘbI
MP [[r(x)]](Con)= HΘaI

MP [[p(x)]](Θa)= HΘaI
MP [[q(x)]](Θa)= HΘaI
MP [[r(x)]](Θa)= HΘaI

MP [[p(x)]](Θb)= HI
MP [[q(x)]](Θb)= HΘb, ΘbI
MP [[r(x)]](Θb)= HI

Although the multiset semantics applies the left-to-right goal selection, it
does not apply the top-down clause selection. This does not mean that it cannot
observe non-determinacy because, in general, if a call has n ≥ 2 answers for
some input in Prolog then it has at least m ≥ n answers for the same input in
the multiset semantics as is illustrated below.

Example 2. Consider a program consisting of the clause p(x) :− x = [|y], p(y)
followed by p(x) :− x = []. Because of top-down clause selection, p(x) will loop in
Prolog, ie. return no answers, if invoked with x unconstrained. In our presenta-
tion, the Prolog program as rendered as a program P consisting of one definition
p(x) :−

∑2
i=1 Ai where A1 = tell(↓{x = [|y]}), p(y) and A2 = tell(↓{x = []}).

Then MP [[p(x)]](Con) = HΘi | i ≥ 0I where Θi = ↓{x = [x1, . . . , xi]} and the
semantics observes that p(x) is not determinate when x is unconstrained.

The following success set semantics is the most conventional. It pins down the
meaning of a success pattern which underlies the concept of mutual exclusion.

Definition 2. The mapping SP : AgeP → ℘↓(Con) is the least solution to the
following system of recursive equations:

SP [[tell(Φ)]] = Φ
SP [[A1, A2]] = SP [[A1]] ∩ SP [[A2]]

SP [[
∑n

i=1 Ai]] = ∪{SP [[Ai]]}n
i=1

SP [[p(x)]] = ρy,x(SP [[A]]) where p(y) :− A ∈ P

3.3 Concurrency semantics for ccp programs

To state the key correctness result, it is necessary to introduce a concurrency
semantics for verifying the absence of suspending agents. Whether suspensions
manifest themselves or not depends on the quiescent (resting) state of the store,
which motivates the following semantics that was inspired by the elegant quies-
cent state semantics that has been advocated for ccp [18].

Definition 3. The mapping QP :AgeP →℘(℘↓(Con)×{0,1}) is the least solution
to the following system of recursive equations:

QP [[ask(Φ)→A]] = {〈Θ, 1〉 |↓Θ = Θ ∧Θ 6⊆ Φ} ∪ {〈Θ, b〉 ∈ QP [[A]] | Θ ⊆ Φ}
QP [[tell(Φ)]] = {〈Θ, 0〉 |↓Θ = Θ ∧Θ ⊆ Φ}
QP [[A1, A2]] = {〈Θ, b1 ∨ b2〉 | 〈Θ, bi〉 ∈ QP [[Ai]]}

QP [[
∑n

i=1 Ai]] = ∪{QP [[Ai]]}n
i=1

QP [[p(x)]] = {〈Θ, b〉 |↓Θ = Θ ∧ 〈Φ, b〉 ∈ QP [[A]] ∧ ρy,x(Φ) = ∃x(Θ)}
where p(y) :− A ∈ P

Since quiescent state semantics are not as well known as perhaps they should
be within the world of program analysis, we provide some commentary on the
recursive equations. The semantics expresses the resting points of an agent [18]
and tags each constraint set with either 1 or 0 to indicate whether or not an agent
contains a suspending sub-agent (in the latter case the agent has successfully
terminated). Consider, for instance, the agent ask(Φ) → A and the closed set
Θ. If Θ 6⊆ Φ then the agent suspends in Θ, and hence quiesces, and thus the
pair 〈Θ, 1〉 is included in the set of quiescent states of the agent. Otherwise, if
Θ ⊆ Φ and 〈Θ, b〉 is a quiescent state of A then 〈Θ, b〉 is also a quiescent state
of ask(Φ)→A. Any set Θ such that Θ ⊆ Φ is a succeeding quiescent state of the
agent tell(Φ). A compound agent A1, A2 quiesces under Θ iff Θ is a quiescent
set of both A1 and A2. The set Θ is tagged as suspending iff either A1 or A2

suspend in Θ. The branching agent
∑n

i=1 Ai inherits quiescent states from each
of its sub-agents. Finally, an agent p(x) that invokes an agent A via a definition
p(y) :− A inherits quiescent states from A by the application of projection and

renaming. The intuition is that the variables x and y act as windows on the
sets of constraints associated with p(x) and A in that they hide information
not pertaining to x and y respectively. If these projected sets coincide under
renaming and the set for A is quiescent, then the set for p(x) is also quiescent.

Example 3. Continuing with the agents A1, A2 and A3 introduced in example 1:

QP [[
∑3

i=1 Ai]] = {〈Θ, 0〉 | Θ ⊆ Θa ∨Θ ⊆ Θb}
QP [[ask(Θa) →

∑3
i=1 Ai]] = {〈Θ, 1〉 | Θ 6⊆ Θa} ∪ {〈Θ, 0〉 | Θ ⊆ Θa}

The second agent can either suspend with Θ 6⊆ Θa or succeed with Θ ⊆ Θa.

3.4 Transforming a Prolog program into a ccp program

Recall that the transformation introduces delay declarations to predicates which
suspend a call until its mutual exclusion condition is satisfied. This idea is
expressed in a transformation that maps each call p(x) to a guarded version
ask(Θ) → p(x) where Θ is set of constraints that enforce mutual exclusion. Re-
call too that the mutual exclusion conditions are derived from success patterns;
the success set semantics provides a multiset of possible answers HΘ1, . . . , ΘnI
for each call p(x) and the mutual exclusion analysis then derives a condition for
p(x) — a constraint Φ — which, if satisfiable with one Θi, is not satisfiable with
any another Θj . This mutual exclusion property is expressed by the function
mux : Ĉon → ℘↓(Con) which represents the analysis component that derives the
mutual exclusion conditions from the success patterns. With these concepts in
place, the transformation is defined thus:

Definition 4. Let SP [[Ai]] ⊆ Θi and suppose mux satisfies the property that if
mux(HΘiIn

i=1) = Φ and Φ ∩Θi 6= ∅ then Φ ∩Θj = ∅ for all i 6= j. Then

T [[P1.P2]] = T [[P1]].T [[P2]]
T [[p(x) :− A]] = p(x) :− T [[A]]

T [[tell(Φ)]] = tell(Φ)
T [[A1, A2]] = T [[A1]], T [[A2]]

T [[
∑n

i=1 Ai]] = ask(mux(HΘiIn
i=1))→

∑n
i=1 T [[Ai]]

T [[p(x)]] = p(x)

The key result is stated below. It asserts that if p(x) is invoked in the transformed
program with the constraint Ω imposed, and p(x) cannot reduce to a suspending
state, then calling p(x) in the original program — again with Ω imposed — will
produce at most one answer and generate that answer at most once.

Theorem 1. Suppose 〈Π, 1〉 6∈ QT [[P]][[tell(Ω), p(x)]] for all Π ∈ ℘↓(Con).
Then |MP [[p(x)]](Ω)| ≤ 1

4 The cut, non-monotonicity and incorrectness

The technique for inferring mutual exclusion conditions [13] is not sensitive to
the clause ordering. This does not compromise correctness but, due to the pres-
ence of cut, the inferred conditions may be overly strong. To avoid refining the

semantics and deriving a new analysis, this section shows how the procedure
which computes the mutual exclusion conditions can be refined to accommodate
this pruning operator.

The correctness of the analysis is founded on theorem 1 which, in turn, is a
consequence of a series of monotonicity results that follows from the definition
of the multiset semantics. Alas, the cut is a source of non-monotonicity as is
illustrated by the r predicate:

r(X, Y) :- X = a, !, Y = b.

r(X, Y) :- atomic(X).

p(X, Y) :- q(X), r(X, Y).

q(a).

q(b).

If r(X, Y) is called under the binding {X 7→ b} then the downward closure of
the set of computed answers is Θ1 =↓{X = b}. However, if r(X, Y) is called with
a more general binding – the empty substitution – the downward closure of the
set of answers is Θ2 =↓{X = a, Y = b}. The predicate is non-monotonic because
Θ1 6⊆ Θ2. The predicate p illustrates the significance of monotonicity in that it
shows how non-monotonicity can undermine correctness. To see this, consider
applying suspension inference in which the r(X, Y) goals are never delayed but
q(X) goals are only selected when X is ground. Suspension inference [4] would
infer the vacuous condition of true for p(X, Y) since the compound goal q(X),
r(X, Y) can be scheduled in right-to-left order without incurring a suspension.
However, this inference is unsafe, since the call p(X, Y) yields two answers.

One may think that the problem of non-monotonicity is insurmountable but
correctness can be recovered by ensuring that the mutual exclusion conditions
enforce monotonicity. The observation is that the occurrence of a cut in a clause
cannot compromise monotonicity if any calls (typically tests) that arise before
the cut are invoked with ground arguments. The idea is thus to strengthen
the condition so as to ensure this. For example, r(X, Y) is monotonic if X is
ground. The justification of this tactic is that in top-down clause selection, if
a clause containing a cut succeeds, then any following clause is not considered.
This behaviour can be modelled by adding negated calls to each clause that
follows the cut (which is sound due to groundness [11]). Consider, for example,
the following predicate:

part([], , [], []).

part([X | Xs], M, [X | L], G) :- X =< M, !, part(Xs, M, L, G).

part([X | Xs], M, L, [X | G]) :- part(Xs, M, L, G).

For the sake of inferring mutual exclusion conditions, observe that the negation
of X =< M can be inserted into the last clause since this clause is reached only
if the test fails. Then, due to the negated test, the second and third clauses are
mutually exclusive if the groundness condition x1 ∧ x2 holds where xi describes
the groundness of the i’th argument. It is not necessary to reason about cut to
deduce that the first and second clauses are mutually exclusive if x1 ∨ x3 holds.
Likewise, a mutual exclusion condition for the first and third clause is x1 ∨ x4.
The cumulative mutual exclusion condition for the whole predicate is therefore

(x1 ∨ x3)∧ (x1 ∨ x4)∧ (x1 ∧ x2) = x1 ∧ x2. Finally, note that when mechanising
this approach, it is not actually necessary to insert the negated calls to deduce
the grounding requirements; the negated tests were introduced merely to justify
the tactic. Finally, applying this technique to r yields the condition x1.

5 Experimental results

An analyser has been constructed in SICStus 3.10.0 in order to assess the scal-
ability of determinacy inference, study precision issues and investigate whether
suspension inference can actually discover bugs. The analyser can be used through
a web interface located at http://www.cs.kent.ac.uk/∼amk/detweb.html. The
analyser is composed of five components: (1) an argument-size analysis and (2)
a depth-k analysis both of which infer success patterns for each clause; (3) an
analysis which infers mutual exclusion conditions from the success patterns; (4)
a suspension inference which computes determinacy conditions; and (5) a back-
ward analysis [13] that infers determinacy conditions by only considering the
left-to-right flow of bindings.

Table 1 summarises the results of four analysis experiments on a range of
Prolog programs. The S column is the size of the program measured in the
number of predicates. The A, B, C and D columns present the number of deter-
ministic modes inferred for four different types of analysis. To compare against
previous work [13], column A details the number of modes inferred using a form
of inference that only considers the left-to-right flow of bindings [13] and mutual
exclusion conditions derived without consideration of the cut, using a classic
depth-k analysis. Column B details the number of deterministic modes inferred
using suspension inference [4]. Column C refines this analysis by considering cut
in the inference of the mutual exclusion conditions. Column D applies a more
refined form of depth-k success pattern analysis to further upgrade the mutual
exclusion conditions. The entries marked with a + indicate that the analysis im-
proves on its predecessor in either inferring more modes or inferring more refined
modes. Note that a predicate that will contribute 2, say, to the mode count if
it is deterministic in 2 modes where both modes do not include the other; this
explains why the number of modes can exceed the number of predicates.

The + entries in the B column indicate at least one moding improvement that
follows from basing determinacy inference on suspension inference. By scanning
the outputs of the analyses for a predicate whose modes differ between the two
runs, the programmer can locate a suspicious predicate, ie., a predicate that
could silently leave a choice-point on the stack. Such a predicate is determinate,
but it is only determinate for some mode because of the way the bindings imposed
by a goal on the right constrain a goal on the left. If this were not so, then left-to-
right form of determinacy inference [13] would have also deduced this mode. Such
a predicate could either be rewritten or executed under once for this particular
mode. Note that to apply this form of debugging it is not necessary for the
programmer to appreciate how the analysis works; the analysers collaborate and
merely suggest where the programmer should focus their effort.

file S T A B C D %

aircraft 237 2240 241 241 +241 +241 47
asm 45 160 45 45 +45 +45 57
boyer 26 40 33 33 +33 33 19
browse 16 20 16 16 +16 16 62
bryant 32 140 33 33 33 +33 75
btree 10 10 10 +10 +14 +18 0
chat-80 435 9710 588 588 588 +592 51
cp 158 730 239 239 239 +240 50
circuit 5 10 8 +9 9 9 0
conman 32 130 32 32 +32 32 78
c2 8 0 8 8 +8 8 25
cr 6 0 9 +9 9 9 0
cw 11 20 13 13 +13 13 9
cs-r 36 370 36 36 36 36 75
dcg 15 20 21 +21 21 21 6
dialog 30 20 33 33 +33 +33 33
disj-r 31 50 31 31 31 31 48
ili 58 220 62 62 +63 63 46
im 24 50 33 33 +33 33 41
inorder 2 0 2 +2 2 2 0
kalah 45 70 46 46 46 +46 46

file S T A B C D %

lee-route 13 20 14 14 +14 +14 69
life 11 20 11 11 +11 11 72
nand 93 400 93 93 93 +93 60
nbody 48 120 48 48 +48 +49 35
neural 39 50 50 +52 52 52 43
peep 21 120 24 24 24 24 71
press 51 150 56 56 56 +56 64
qplan 44 230 51 51 +52 52 31
queens 16 20 16 16 +16 +17 37
read 42 130 43 43 43 +43 52
reducer 41 140 42 42 +42 +43 26
robot 26 30 29 +29 +30 +30 38
scc1 17 150 17 17 17 17 88
sdda 33 70 33 +33 +33 +34 60
serialize 7 20 9 9 +9 +9 0
sieve 6 10 6 6 +6 6 0
sim 103 960 103 103 103 +105 64
sv 125 2280 131 131 +131 131 60
sa 71 120 72 72 +72 72 33
trs 35 3800 35 35 +35 35 57
tsp 23 10 23 +23 +27 27 21

Fig. 1. Relative precision experiments: (A) using [13]; (B) using suspension inference;
(C) adding cut logic to (B); and (D) adding decorated depth-k to (C) using the
following name abbreviations c2 = connected2, cp = chat-parser, cr = courses-rules,
cw = crypt-wamcc, im = ime-v2-2-1, sa = simple-analyzer and sv = sim-v5-2

The columns C and D quantify how techniques for synthesising the mutual
exclusion conditions impact on the overall precision. The + entries in column C
confirm that reasoning about cut is important. The D column assesses the impact
of applying an enriched form of depth-k analysis in the success pattern analysis
that underpins the inference of the mutual exclusion conditions. To illustrate the
refinement, consider the merge predicate that arises within mergesort program
that can again be found at the above URL. If depth-1 analysis is enriched to
track constraints between the variables in a truncated term, then the following
success patterns are obtained for the three recursive clauses of merge:

merge([A|B],[C|D],[A|E]) :- A < C

merge([A|B],[C|D],[A|E]) :- A = C

merge([A|B],[C|D],[C|E]) :- A > C

From these success patterns, it can be deduced that the groundness of the first
and second arguments is sufficient for mutual exclusion. This condition cannot
be inferred unless the depth-k analysis additionally tracks constraints. The +
entries in the D column suggest that this refinement is generally useful. Such
improvements may appear incremental, but our work suggests that it is only by
combining all these techniques that determinacy inference becomes truly useful.

The T column is a comment on performance since it records the time re-
quired to perform all components of an analysis on a 1.4 GHz PC equipped with
640 MByte of memory, running Linux 2.6.15-2. Little variance was observed be-
tween the running times of the four analyses — even between A and B which
employ different fixpoint engines. The column marked % represents the propor-
tion of the predicates in the program for which a determinacy mode could not
be inferred using analysis D. Further investigation is required to determine what
fraction of these are actually non-determinate.

Space does not permit us to fully report our work on enhancing argument size
analysis for determinacy inference, except to note that techniques devised in ter-
mination analysis for inferring norms [2, 7] permit more general mutual exclusion
conditions to be inferred. Consider, for example, a predicate that succeeds when
its single argument is a list of lists. Such a predicate (named traverse) can be
found at the above URL. This predicate traverses the outer list, calling an auxil-
iary predicate to check that each element is also a list. By using an argument size
analysis based on the term-size norm, it is possible to show that the predicate is
deterministic if called with a ground argument. When the program is decorated
with types, however, type-based norms enable this determinacy condition to be
relaxed to a rigid list of rigid lists.

Finally, a number of anomalies were discovered during the experimental eval-
uation. For example, the exp(N,X,Y) predicate [19, Figure 3.5] which realises
the function that binds Y to X raised to the power of N, is non-deterministic for
N > 0 and X = 0. These bugs were found by scanning programs for predicates
that attempted to realise functions for which no modes could be inferred.

6 Related work

The new analysis reported in this paper also has applications in the new area
of semi-online program specialisation [10]. In this scheme, the usual static ver-
sus dynamic classification that is used within classic binding-time analysis is
refined by adding an additional binding-type semi. As well as always unfolding
a static call and never unfolding a dynamic call, the unfolding decision for a
semi call is postponed until specialisation time. Determinacy inference fits into
this scheme because it provides a way of annotating calls with lightweight un-
folding conditions, ie., determinacy conditions. Furthermore, it is not difficult to
refine determinacy inference so as to annotate semi calls with conditions that
select the clause with which to unfold the call. The net result is more aggressive
unfolding. Determinacy inference might also have a role in parallelisation since
determinacy can be used as the basis for exploiting a form of and-parallelism
[17]. Any discrepancy in the modes inferred with the two forms of determinacy
inference pinpoints a predicate that is a good candidate for being rewritten, pos-
sibly by reordering goals, so that each call to the atoms in body of the clauses
is deterministic, irrespective of the bindings imposed by the other calls. This
would open up more opportunities for parallelisation.

Dawson et al. [3] extract determinacy information from a logic program by
applying a program transformation that simultaneously describes both success
pattern constraints and constraints from the calling context. These constraints
are then added to each clause without compromising the correctness of the pro-
gram, so as to reduce backtracking. The authors state that “if the clause con-
ditions of a predicate are pairwise non-unifiable, we infer that the predicate is
determinate whenever the input arguments are sufficiently ground”. However, to
assure determinacy, it is also necessary to ensure that any calls invoked within
the body of a clause are themselves deterministic. Ensuring this property leads
onto the consideration of various computation rules, and the topic of this paper.

Goal-dependent analysis can be used to ensure that each sub-goal of a given
goal cannot succeed with more than one clause of a predicate [12]. The key step
is to detect whether two different clauses for a predicate are mutually exclusive
with respect to the calling patterns of the predicate. Work on determinacy check-
ing (rather determinacy inference) that is of particular note is that by Braem et
al. [1] who present an analysis that given a calling mode for a predicate, infers
bounds on the number of solutions that can be produced by a call in a given
mode. In the context of partial evaluation, Sahlin [16] presents a determinacy
analysis that can detect whether if a given goal fail, succeeds once, twice or
more times, or whether it possibly loops. Mogensen [14] provides a semantically
justified reconstruction of the work of Sahlin [16] based on a denotational se-
mantics for Prolog programs with cut. Quite independently, Le Charlier et al. [8]
developed a denotational sequence-based abstract interpretation framework for
Prolog that can, among other things, be instantiated to obtain Sahlin’s [16] de-
terminacy analysis. Interestingly, in partial evaluation, delay declarations are
sometimes used to postpone the unfolding of goals until they become sufficiently
deterministic [9] which hints at the transformation at the heart of this paper.
Further afield, Mercury supports a rich class of determinism categories — det,
semidet, multi, nondet and failure — which are used to categorise how many
times each mode to a predicate or function can succeed. Signature declarations
can also be used in PAN [15] to detect unintended backtracking. Finally, the
early literature on functional dependencies is reviewed in [20, Chapter 5].

7 Conclusions

This paper has shown how determinacy inference can be improved by transform-
ing the problem to an analysis problem in concurrency. The paper shows that
this approach is flexible enough to handle the cut and accurate enough to locate
non-determinacy problems in existing programs.

Acknowledgments We thank John Gallagher, Manual Hermenegildo, Michael
Leuschel and Fred Mesnard for discussions on determinacy inference. This work
was funded, in part, by NSF grants CCR-0131862 and INT-0327760, the EPSRC
grant EP/C015517 and the Royal Society joint project grant 2005/R4-JP.

References

1. C. Braem, B. Le Charlier, S. Modar, and P. Van Hentenryck. Cardinality Analysis
of Prolog. In M. Bruynooghe, editor, International Symposium on Logic Program-
ming, pages 457–471. MIT Press, 1994.

2. M. Bruynooghe, M. Codish, J. Gallagher, S. Genaim, and W. Vanhoof. Termina-
tion Analysis through Combination of Type Based Norms. ACM Transactions on
Programming Languages and Systems, To appear.

3. S. Dawson, C. R. Ramakrishnan, I. V. Ramakrishnan, and R. C. Sekar. Extracting
Determinacy in Logic Programs. In International Conference on Logic Program-
ming, pages 424–438. MIT Press, 1993.

4. S. Genaim and A. King. Goal-independent Suspension Analysis for Logic Pro-
grams with Dynamic Scheduling. In P. Degano, editor, European Symposium on
Programming, volume 2618 of LNCS, pages 84–98. Springer-Verlag, 2003.

5. A. King and L. Lu. A Backward Analysis for Constraint Logic Programs. Theory
and Practice of Logic Programming, 2(4–5):517–547, 2002.

6. A. King, L. Lu, and S. Genaim. Determinacy Inference by Suspension Inference.
Technical Report 2-05, Computing Laboratory, University of Kent, CT2 7NF, 2005.
http://www.cs.kent.ac.uk/pubs/2005/2262/.

7. V. Lagoon and P. J. Stuckey. A Framework for Analysis of Typed Logic Programs.
In International Symposium on Functional and Logic Programming, volume 2024
of LNCS, pages 296–310. Springer-Verlag, 2001.

8. B. Le Charlier, S. Rossi, and P. Van Hentenryck. Sequence-based abstract inter-
pretation of Prolog. Theory and Practice of Logic Programming, 2:25–84, 2002.

9. M. Leuschel. Personal Communication on Partial Evaluation, April 2005.
10. M. Leuschel, J. Jørgensen, W. Vanhoof, and M. Bruynooghe. Offline Specialisation

in Prolog Using a Hand-Written Compiler Generator. Theory and Practice of Logic
Programming, 4(1):139–191, 2004.

11. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.
12. P. López-Garćıa, F. Bueno, and M. Hermenegildo. Determinacy Analysis for Logic

Programs Using Mode and Type information. In Logic-Based Program Synthesis
and Transformation, volume 3573 of LNCS, pages 19–35. Springer-Verlag, 2005.

13. L. Lu and A. King. Determinacy Inference for Logic Programs. In M. Sagiv,
editor, European Symposium on Programming, volume 3444 of LNCS, pages 108–
123. Springer-Verlag, 2005.

14. T. Mogensen. A Semantics-Based Determinacy Analysis for Prolog with Cut. In
Ershov Memorial Conference, volume 1181 of LNCS, pages 374–385. Springer-
Verlag, 1996.

15. M. Müller, T. Glaß, and K. Stroetmann. Pan - The Prolog Analyzer (Short system
description). In Static Analysis Symposium, volume 1145 of LNCS, pages 387–388.
Springer-Verlag, 1996.

16. D. Sahlin. Determinacy Analysis for Full Prolog. In Partial Evaluation and Seman-
tics Based Program Manipulation, pages 23–30, 1991. SIGPLAN Notices 26(9).

17. V. Santos Costa, D. H. D. Warren, and R. Yang. Andorra-I Compilation. New
Generation Computing, 14(1):3–30, 1996.

18. V. A. Saraswat, M. C. Rinard, and P. Panangaden. Semantic Foundations of
Concurrent Constraint Programming. In Principles of Programming Languages,
pages 333–352. ACM Press, 1991.

19. E. Shapiro and L. Sterling. The Art of Prolog. MIT Press, 1994.
20. J. Zobel. Analysis of Logic Programs. PhD thesis, Department of Computer Sci-

ence, University of Melbourne, Parkville, Victoria 3052, 1990.

