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Abstract. One recent development in logic programming has been the
application of abstract interpretation to verify the partial correctness of
a logic program with respect to a given set of assertions. One approach
to verification is to apply forward analysis that starts with an initial goal
and traces the execution in the direction of the control-flow to approx-
imate the program state at each program point. This is often enough
to verify that the assertions hold. The dual approach is to apply back-
ward analysis to propagate properties of the allowable states against the
control-flow to infer queries for which the program will not violate any
assertion. This paper is a systematic comparison of these two approaches
to verification. The paper reports some equivalence results that relate the
relative power of various forward and backward analysis frameworks.

1 Introduction

Recently there has been growing awareness that abstract interpretation has an
important rôle in both the verification and debugging of logic programs [6, 20,
26]. In this context, the programmer is typically equipped with an annotation
language in which she/he can encode properties of the program state at various
program points [26]. One approach to verification is to trace the program state
in the direction of control-flow from an initial goal, using abstract interpretation
to finitely represent and track the state. The program is deemed to be correct
if all the assertions are satisfied whenever they are encountered; otherwise the
program is potentially buggy. This is how forward analysis can be applied in
logic program verification. The dual approach is to trace execution against the
control-flow to infer those queries which ensure that the assertions are satisfied
should they be encountered during execution [17, 23]. If the class of initial queries
does not conform to those expected by the programmer, then the program is
potentially buggy. This is how backward analysis can be applied in verification.

This paper is an examination and comparison of these two opposing ap-
proaches to verification. Specifically the paper compares forward analysis [3,
10, 14, 21, 27] to the backward analysis of [17] which uses the relative pseudo-
complement operator [13] to trace information (weakest pre-conditions) against
the control-flow. Every condensing domain possesses a pseudo-complement op-
erator and it is always possible to synthesise a condensing domain from an arbi-
trary (downward-closed) domain by applying Heyting completion [13]. Examples



of condensing domains include the class of positive Boolean functions, the re-
lational type domain of [4], directional types [1, 13] and the two variable per
inequality power domain presented in section 6 of this paper. This paper arose
from a study of how the domain operations that arise in backward analysis effect
precision. In fact, the equivalence results reported in this paper flow from the
following practical, albeit technical, questions (annotated Q1, Q2 and Q3).

The backward analysis framework of [17] is parameterised by an abstract
domain that is required to be condensing. Fixing the domain 〈D,E〉, fixes the
join ⊕ and meet ⊗ operations that are used to model the merging of computation
paths and the conjunction of constraints. Fixing D also fixes the relative pseudo-
complement. The pseudo-complement of d1 relative to d2, denoted d1 ⇒ d2,
delivers the weakest element of D whose conjunction with d1 implies d2, or more
exactly, d1 ⇒ d2 = ⊕{d ∈ D | d ⊗ d1 E d2}. The rôle of pseudo-complement is
that if d2 expresses a set of requirements that must hold after a constraint is
added to the store, and d1 models the constraint itself, then d1 ⇒ d2 expresses
the requirements that must hold on the store before the constraint. In addition
to these operations that are fixed by D, backward analysis employs an unusual
operator ∀x : D → D, dubbed universal projection, that complements standard
projection ∃x : D → D, hereafter named existential projection, in that ∀x(d) E
d E ∃x(d). Both projections are monotonic, both eliminate a variable x from a
given abstraction d and both are used to restrain the size of abstractions; the
fundamental difference is in the direction of approximation. The correctness of
backward analysis relies on the property ∀x(d) E d. Defining ∀x(d) = ⊥ (the
strongest abstraction) for all d ∈ D is sufficient for correctness but the resulting
analysis is useless in that the class of queries inferred by the analysis is empty.

Q1. This leads to the question of how to define ∀x so the precision of the
resulting analysis compares favourably with that of forward analysis?

This paper reports that if 〈D,∀x, D,∃x〉 is a Galois connection, then a surprising
equivalence is established between forward and backward analysis so that the
power of backward analysis exactly matches that of forward analysis for verifica-
tion. On the practical side, it means that backward analysis need not be applied,
if forward analysis cannot verify that a given query satisfies the assertions. Con-
versely, if an initial query is not inferred by backward analysis, then it follows
that forward analysis cannot infer that the query satisfies the assertions.

Another issue relates to the fixpoint engines that are used in forward analysis.
Since these engines vary in complexity, another question relates to which engine
in the precision and tractability continuum is best suited to verification.

Q2. This begs the question of whether a polyvariant analysis (that main-
tains a set of call and answer patterns for each predicate) has any pre-
cision advantage over a monovariant analysis (that records a single call
and answer pattern pair for each predicate) for the task of verification?

The answer to this question is negative for condensing domains provided that
∃x is additive, that is, ∃x(⊕E) = ⊕{∃x(d) | d ∈ E} whenever E ⊆ D.



Since one way of constructing a condensing domain, is to lift a base domain
〈D,E〉 to its power domain 〈D′,E′〉, then the answer to Q1 raises the question
of what properties are required of D for 〈D′,∀′x, D′,∃′x〉 to be Galois connection
to thereby guarantee equivalence between the frameworks.

Q3. Specifically if ∀′x and ∃′x are synthesised from ∀x and ∃x (in the
natural way) then what does this require of D?

This paper shows that the only way to satisfy the Galois connection on D′ is to
engineer ∀x and ∃x so that 〈D,∀x, D,∃x〉 is also a Galois connection.

The paper is structured as follows. Section 2 presents an operational se-
mantics for verification. Sections 3, 4 and 5 compare top-down, condensing and
backward framework for the task of verification. Section 6 discuses the rôle of
power domains and section 7 the related work. Finally section 8 concludes.

2 Operational semantics

To precisely spell out the relationship between various forward and backward
analysis frameworks, a formal language is required to specify both the opera-
tional semantics and the frameworks themselves. This section, and the proceed-
ing section, introduces this necessary formalism.

Let Con be a set of constraints that is pre-ordered by entailment |= and
includes equational constraints of the form x = y where x and y are tuples of
variables. The set of order-ideals of Con is defined Ord = {C ⊆ Con | C =↓(C)}
where ↓(C) = {c ∈ Con | ∃c′ ∈ C.c |= c′}. The basic semantic domain is the
complete lattice 〈Ord,⊆,∪,∩, Con, ∅〉. To observe violations of assertions, Ord

is augmented with a new top element >> to obtain Ôrd = Ord ∪ {>>}. The
ordering ⊆ extends to Ôrd by C ⊆ >> for all C ∈ Ôrd and the operators ∪ and
∩ extend analogously. It is useful, however, to define a variant of ∩, denoted ∩̂,
that ensures that >> can never be annulled. This is defined C∩̂>> = >>∩̂C = >>
for all C ∈ Ôrd and C1∩̂C2 = C1 ∩ C2 for all C1, C2 ∈ Ord.

The verification problem is formulated in terms of an additional (abstract)
domain 〈D,E,⊕,⊗,>,⊥〉 equipped with an abstraction map α : Ord→ D and
a concretisation map γ : D → Ord that interpret elements of D. A constraint
logic program is annotated with assertions over D and a program is deemed to
be correct if the assertions are satisfied whenever they are reached. The problem
is to decide whether a given program is correct for some input. For brevity,
programs are expressed (concurrent constraint style) using ask(d) where d ∈ D
to distinguish an assertion from a conventional store write that is denoted tell(c)
where c ∈ Con. In what follows, P denotes a program and A an agent, that is,
P ::= ε | p(x) ← A | P.P ′ and A ::= ask(d) | tell(c) | A1, A2 |

∑n
i=1 Ai | p(x).

Due to the presence of an explicit choice operator predicates can be assumed to
be defined with exactly one definition of the form p(x)← A without any loss of
generality. Let AgeP denote the set of agents in a program P that is closed under
renaming and let PolyP denote the function space AgeP → Ôrd → Ôrd. The



ordering ⊆ over Ôrd lifts PolyP point-wise by f1 v f2 iff f1[[A]](C) ⊆ f2[[A]](C)
for all A ∈ AgeP and C ∈ Ôrd. In fact 〈PolyP ,v,t,u〉 is a complete lattice
where f1 t f2 = λA.λd.(f1[[A]](d) ∪ f2[[A]](d)) and u is defined analogously.

Definition 1 (operational semantics). The operator FP : PolyP → PolyP is
defined FP (f) = f ′ where f, f ′ ∈ PolyP and:

f ′[[ask(d)]] = λC.if α(C) E d then C else >>
f ′[[tell(c)]] = λC.↓({c})∩̂C

f ′[[A1, A2]] = λC.f [[A2]](f [[A1]](C))
f ′[[

∑n
i=1 Ai]] = λC.∪n

i=1f [[Ai]](C)
f ′[[p(x)]] = λC.∪{f [[A]](↓({x = y})∩̂C) | p(y)← A�p(x),C P}

Note that the composition operator , is sequential thus control is left-to-right.
Note too that choice occurs both explicitly within the construct

∑n
i=1 Ai and

implicitly within renaming. The notation p(y) ← A �p(x),C P indicates that
p(y) ← A is a renaming of a definition in P such that var(p(y) ← A) ∩
(var(p(x)) ∪ var(C)) = ∅ where var(o) is the set of variables in the object
o. Since FP is monotonic and PolyP is a complete lattice, lfp(FP ) exists and the
verification problem can be formally stated as the problem of characterising the
following set of atomic queries:

Definition 2. F [[P ]] = {〈p(x), C〉 | lfp(FP )[[p(x)]](C) 6= >>}

3 Verification with a top-down framework

An analysis for approximating F [[P ]] can be constructed by mimicking concrete
operations over Ord with abstract operations over D and applying the projection
operator ∃x : D → D to finitely bound the number of variables. The operator
∃x is assumed to comply with the rules d E ∃x(d), ∃x(d1) E ∃x(d2) if d1 E d2,
∃x(∃y(d)) = ∃y(∃x(d)) and ∃x(d1) ⊗ ∃x(d2) = ∃x(d1 ⊗ ∃x(d2)). The last rule is
useful within itself as well as implying that ∃x is idempotent, that is, ∃x(∃x(d)) =
∃x(d). Finally, ∃x is also required to eliminate a variable, hence x 6∈ var(∃x(d)).
For brevity, let ∃o(d) = (∃x1 . . .∃xn)(d) where var(o) = {x1, . . . , xn} and let
∃o(d) = ∃var(d)\var(o)(d). D is assumed to contain elements of the form x = y to
model argument passing. To express renaming, let ρx,y(d) = ∃x((x = y) ⊗ d).
Suppose that 〈D̂,E〉 is augmented with >> in a similar fashion to 〈Ôrd,⊆〉. To
trace violations of assertions, a variant of ⊗, denoted ⊗̂, is defined such that
d⊗̂>> = >>⊗̂d = >> for all d ∈ D̂ and d1⊗̂d2 = d1 ⊗ d2 for all d1, d2 ∈ D.

The semantic equations for a polyvariant, top-down framework are given
overleaf. The map FD

P operates over PolyD
P → PolyD

P where PolyD
P = AgeP →

D̂ → D̂. Thus if f ∈ PolyD
P , f associates each agent A with a map between

input (the call pattern) and output (the answer pattern). The ordering E over
D̂ induces an ordering on PolyD

P by f1 E f2 iff f1[[A]](d) E f2[[A]](d) for all d ∈ D̂
and A ∈ AgeP . Moreover 〈PolyD

P ,E,⊕,⊗〉 is a complete lattice where f1 ~ f2 =
λA.λd.(f1[[A]](d) ~ f2[[A]](d)) and ~ ∈ {⊕,⊗}.



Definition 3 (top-down framework). The operator FD
P : PolyD

P → PolyD
P is

defined FD
P (f) = f ′ such that:

f ′[[ask(d′)]] = λd.if d E d′ then d else >>
f ′[[tell(c)]] = λd.α(↓({c}))⊗̂d

f ′[[A1, A2]] = λd.f [[A2]](f [[A1]](d))
f ′[[

∑n
i=1 Ai]] = λd.⊕n

i=1f [[Ai]](d)
f ′[[p(x)]] = λd.ρy,x(∃y(f [[A]](ρx,y(∃x(d)))))⊗̂d where p(y)← A�p(x) P

Note how the use of projection eliminates the requirement for considering each
definition renaming separately. The functional defined in the semantics can be
interpreted as a formalisation of the top-down framework of Bruynooghe [3] that
is widely used in analysis and specialisation because of its precision and polyvari-
ance (different calls to the same predicate are analysed separately). Since FD

P

is monotonic and PolyD
P is a complete lattice, lfp(FD

P ) exists. However, efficient
implementations of the Bruynooghe framework, such as GENA [10], PLAI [14]
and GAIA [21], only compute lfp(FD

P ) in a partial query-directed fashion. The
verification problem can be tackled in the abstract setting by characterising the
following set of atomic queries:

Definition 4. FD[[P ]] = {〈p(x), C〉 | lfp(FD
P )[[p(x)]](α(C)) 6= >>}

The following proposition states this is a safe, albeit possibly imprecise, strategy
for solving the verification problem. The proof is straightforward.

Proposition 1. FD[[P ]] ⊆ F [[P ]]

Observe that AgeP is finite (modulo renaming) since P is finite. Therefore a
computable analysis can be constructed by appropriately factoring out renaming
provided that D is finite. The proof for the following lemma is straightforward.

Lemma 1. If d1 E d2 then lfp(FD
P )[[A]](d1) E lfp(FD

P )[[A]](d2).

4 Verification with condensing domain

It has long been realised that if an abstract domain is condensing [16, 19], then
a goal-dependent analysis can be performed in a goal-independent way without
incurring a loss in precision. Langen observed that if a compound goal (the body
of a clause) returns an answer pattern of d when invoked with a call pattern of
>, then the compound goal will return an answer pattern of d ∧ d′ when in-
voked with a call pattern of d′ [19][Lemma 9]. Jacobs and Langen exploited this
to factor out repeated computation in a polyvariant, top-down framework [16,
19]. Other condensing frameworks were monovariant [27]; first computing one
success pattern for each predicate with a goal-independent analysis then, sec-
ond, deriving one call pattern for each predicate in a goal-dependent fashion as
directed by an initial query. Quite apart from their efficiency, monovariant con-
densing frameworks are attractive because of their simplicity and modularity [27]



and therefore it is interesting to compare a monovariant, condensing framework
against a polyvariant, top-down framework for the purposes of verification.

Semantic equations for a monovariant condensing framework are given below.
Success and call patterns are calculated by SD

P and CD
P respectively. Both maps

operate over the function space MonoD
P = AgeP → D where each f ∈ MonoD

P

assigns a domain element to each agent of P . The ordering E over D induces a
point-wise ordering on MonoD

P by f1Ef2 iff f1[[A]]Ef2[[A]] for all A ∈ AgeP . More-
over f1 ~ f2 = λA.(f1[[A]] ~ f2[[A]]) where ~ ∈ {⊕,⊗}. In fact 〈MonoD

P ,E,⊕,⊗〉
is a complete lattice with λA.⊥ and λA.> for bottom and top.

Definition 5 (condensing framework). The operators SD
P : MonoD

P → MonoD
P

and CD
P : MonoD

P →MonoD
P are defined SD

P (f) = f ′ and CD
P (g) = g′ such that:

f ′[[ask(d)]] = >
f ′[[tell(c)]] = α(↓({c}))

f ′[[A1, A2]] = f [[A1]]⊗ f [[A2]]
f ′[[

∑n
i=1 Ai]] = ⊕n

i=1f [[Ai]]
f ′[[p(x)]] = ρy,x(∃y(f [[A]]))

g′[[A1]] = g[[A1, A2]]
g′[[A2]] = g[[A1, A2]]⊗ lfp(SD

P )[[A1]]
g′[[Ai]] = g[[

∑n
i=1 Ai]]

g′[[A]] = ρx,y(∃x(g[[p(x)]]))

where p(y)← A�p(x) P

The equations of CD
P detail how to propagate the call pattern for an agent to its

sub-agents; equations are not required for ask(d) and tell(c) since they do not
invoke sub-agents. The verification problem can be formalised in this setting as
the problem of computing the class of atomic queries that lead to call patterns
which do not violate the ask(d) assertions.

Definition 6. CD[[P ]] =
{
〈p(x), C〉

∣∣∣∣f ∈ fp(CD
P ) ∧ α(C) E f [[p(x)]] ∧

∀ ask(d) ∈ AgeP .f [[ask(d)]] E d

}
More exactly, to verify the correctness of a concrete atomic query 〈p(x), C〉, it is
sufficient to find a fixpoint f ∈ fp(CD

P ) (any fixpoint) with a call to p(x) that is
not stronger than α(C) yet with a call for each ask(d) agent that is not weaker
than d. Since CD

P is continuous such a fixpoint, if one exists, can be computed by
assigning g0 = λA.(if A = p(x) then α(C) else ⊥) and calculating gi+1 = CD

P (gi).
Then g = ⊕igi is the least fixpoint of CD

P such that α(C)Eg[[p(x)]]. Computation
can be aborted if gi[[ask(d)]] 6Ed for some ask(d) ∈ AgeP since then no fixpoint of
CD

P can satisfy both the p(x) and ask(d) requirements and hence verify 〈p(x), C〉.
The following lemmas explain how lfp(SD

P ) can characterise lfp(FD
P ).

Lemma 2. If lfp(FD
P )[[A]](d) 6= >> then lfp(FD

P )[[A]](d) E d⊗ lfp(SD
P )[[A]].

Lemma 3. If D is a complete Heyting algebra (cHa) then d ⊗ lfp(SD
P )[[A]] E

lfp(FD
P )[[A]](d).

A domain D is a cHa if it is (completely) meet-distributive, that is, d⊗(⊕i∈Idi) =
⊕i∈I(d ⊗ di) whenever d ∈ D and {di | i ∈ I} ⊆ D where I is some index set
[2][Chapter IX, Theorem 15]. Lemmas 2 and 3 are closely related to Theorem 8.2



of [13] which can be interpreted as stating lfp(FD
P )[[A]](d) = d⊗ lfp(FD

P )[[A]](>)
for a program P without ask(d) agents. Theorem 8.2 does not stipulate any
requirements on existential projection since the semantics of [13] does not apply
this operator. Theorem 1 and theorem 2 (with its corollary) flow from the lemmas
and state conditions on the domain operations for a monovariant, condensing
framework to match the verification power of a polyvariant, top-down framework.

Theorem 1 (precision). If D is a cHa and ∃x is additive then FD[[P ]]⊆CD[[P ]].

Theorem 2. CD[[P ]] ⊆ FD[[P ]].

Corollary 1 (correctness). CD[[P ]] ⊆ F [[P ]].

Proof. By theorem 2, CD[[P ]] ⊆ FD[[P ]] and by proposition 1, FD[[P ]] ⊆ F [[P ]].

The correctness of the program depends only on those calls that actually
arise in a derivation from the initial query. The functional FD

P that defines the
top-down framework, on the other hand, maps an arbitrary call pattern to its
answer pattern. Thus the domain is augmented with >> to record whether any
of the call patterns that occur in a derivation violate any of the assertions. This
domain element is not required in the condensing approach because all the calls
that arise in a derivation are merged and recorded. This approach to verification,
however, is only guaranteed to be as precise as the top-down scheme if D is a cHa
and ∃x is additive. The following example illustrates one domain which satisfies
these properties that has been widely applied in verification.

Example 1. Let Term denote the set of terms and ℘↓(Term) denote the set of
term sets that are closed under instantiation. Let Π ⊆ ℘↓(Term) denote a finite
set of primitive types and suppose Term ∈ Π. To enrich Π with dependencies, let
TypeX = {x ⊆ π | x ∈ X ∧π ∈ Π}∪ {τ1 ~ τ2 | ~ ∈ {∧,∨,→}∧ τ1, τ2 ∈ TypeX}.
The construction is completed by augmenting TypeX with a bottom element ⊥.
A mapping θ : X → Π assigns a truth value to each τ ∈ TypeX as follows: θ(⊥)
is always false, θ(x ⊆ π) ⇐⇒ θ(x) ⊆ π and θ(τ1 ~ τ2) ⇐⇒ θ(τ1) ~ θ(τ2).
Then 〈TypeX , |=,∨,∧〉 is a complete lattice where τ1 |= τ2 iff θ(τ1) → θ(τ2)
holds for all θ : X → Π. In fact it can be shown that this lattice is a cHa. The
concretisation map γType : TypeX → ℘(Eqn) is defined γType(f) = {E ∈ Eqn |
α(σ) |= f ∧ σ ∈ mgu(E)} where

α(σ) =
∧ y ⊆ π ↔ ∧n

i=1yi ⊆ πi

∣∣∣∣∣∣
y ∈ dom(σ) ∧ var(σ(y)) = {yi}ni=1 ∧
κ ∈ var(σ(y))→ Term ∧
κ(σ(y)) ∈ π ⇐⇒ ∧n

i=1κ(yi) ∈ πi


Moreover, the abstraction map αType : ℘(Eqn)→ TypeX is defined as αType(S)
= ∧{f ∈ TypeX | S ⊆ γType(f)}. TypeX includes types of the form
(∧n

i=1xi ⊆ πi) → (∧n
i=1xi ⊆ π′

i) where πi, π
′
i ∈ Π that can capture the in-

put and output types of an n-ary predicate [13] in a similar fashion to direc-
tional types [1] that are used in type checking and verification. Finally define
∃x(τ) = ∨{{x 7→ π}(τ) | π ∈ Π} and let π ∈ Π, {τi | i ∈ I} ⊆ TypeX where I is
some index set. Observe that {x 7→ π}(∨i∈Iτi) = ∨i∈I{x 7→ π}τi. It follows that
∃x is additive, hence the condensing framework is applicable.



5 Verification with a backward framework

The semantic equations for (a reformulation of) the backward analysis frame-
work of [17] are given below. The key idea in BD

P is embedded in the seman-
tic equation for sequenced agents A1, A2. The problem is to find the weakest
d ∈ D (which describes the largest set of states) which guarantees that the
agent A1, A2 will not violate an assertion. The problem, in fact, is to com-
pute such a d given d1, d2 ∈ D which ensures that A1 and A2 will not vio-
late their assertions. One observation that underpins backward analysis is that
d ⊗ lfp(SD

P )[[A1]] describes that state immediately before the execution of A2,
hence A2 will not violate an assertion if d ⊗ lfp(SD

P )[[A1]] E d2. This will hold
if d = d1 ⊗ (lfp(SD

P )[[A1]] ⇒ d2) where ⇒ denotes the pseudo-complement in D
(which exists whenever D is a cHa). Because d E d1, it follows that A1 must
satisfy its assertions. Since d |= (lfp(SD

P )[[A1]] ⇒ d2) it follows from the axioms
of a cHa [29], that d ⊗ lfp(SD

P )[[A1]] E d2, hence A2 cannot violate an assertion
either. The insight behind the⇒ application comes by using the axioms of a cHa
to rewrite d = d1 ⊗ (lfp(SD

P )[[A1]]⇒ d2) as d = d1 ⊗ ((d1 ⊗ lfp(SD
P )[[A1]])⇒ d2).

Then (d1 ⊗ lfp(SD
P )[[A1]]) ⇒ d2 is the weakest element of D whose meet with

d1 ⊗ lfp(SD
P )[[A1]] implies d2. Thus d is the weakest element of D which ensures

that A1 and A2 satisfy their assertions. The question is, of course, whether this
tactic for propagating requirements leads to a useful approach to verification.

Definition 7 (backward framework). The operator BD
P : MonoD

P → MonoD
P is

defined BD
P (f) = f ′ such that:

f ′[[ask(d)]] = d
f ′[[tell(c)]] = >

f ′[[A1, A2]] = f [[A1]]⊗ (lfp(SD
P )[[A1]]⇒ f [[A2]])

f ′[[
∑n

i=1 Ai]] = ⊗n
i=1f [[Ai]]

f ′[[p(x)]] = ρy,x(∀y(f [[A]])) where p(y)← A�p(x) P

Universal projection ∀x(d) E d is required to satisfy ∀x(d) E d for all d ∈ D for
reasons of correctness [17]. This is because of the way it is used to propagate
requirements over procedure boundaries; if d describes a set of states for which
an agent A does not violate an assertion, then so does ∀x(d) since it represents
a subset of those states. The ∀ operator is defined in an analogous fashion to
∃. Like CD

P , BD
P requires lfp(SD

P ) to be pre-computed. Like CD
P , the map BD

P

operates over MonoD
P and hence is monovariant. Unlike CD

P , repeated application
yields a decreasing sequence. In fact BD

P is co-continuous, thus the sequence
f0 = >, fi+1 = BD

P (fi) converges onto the greatest fixpoint of BD
P , that is,

gfp(BD
P ) = ⊗ifi. The following definition states how gfp(BD

P ) can be interpreted
for the purposes of verification.

Definition 8. BD[[P ]] = {〈p(x), C〉 | α(C) E gfp(BD
P )[[p(x)]]}

The following theorems and corollary state conditions under which this back-
ward approach to verification coincides with forward verification. These equiva-
lence results rest crucially, and perhaps surprisingly, on the relationship between
the projection operators used within forward and backward analysis.



Theorem 3 (precision). If D is a cHa and 〈D,∀x, D,∃x〉 is a Galois
connection, then FD[[P ]] ⊆ BD[[P ]]

Theorem 4. If D is a cHa, ∃X(⊥) = ⊥ and 〈D,∀x, D,∃x〉 is a Galois
connection, then BD[[P ]] ⊆ FD[[P ]].

Corollary 2 (correctness). If D is a cHa, ∃X(⊥) = ⊥ and 〈D,∀x, D,∃x〉 is a
Galois connection, then BD[[P ]] ⊆ F [[P ]]

The proofs of these theorems (see the technical report version of this paper [18])
rely on properties that flow from the Galois connection. The proof of theorem 3
relies on two properties of universal quantification – the monotonicity of ∀x and
the property that d = ∀x(d) whenever d = ∃x(d). Since ∃x(d) = ∃x(∃x(d)) the
latter property ensures that ∃x(d) = ∀x(∃x(d)) and since d E ∃x(d) it follows
that d E ∀x(∃x(d)), that is, that ∀x ◦ ∃x is extensive. On the other hand, the
proof of theorem 4 relies on the property that ∀x(d)Ed. From this it follows that
∃x(∀x(d)) = ∀x(d) E d, that is, that ∃x ◦ ∀x is reductive. The monotonicity of ∀x

combined with the monotonicity of ∃x and the extensive and reductive properties
of ∀x ◦∃x and ∃x ◦∀x, implies that 〈D,∀x, D,∃x〉 is a Galois connection [7]. Thus
the Galois connection requirement cannot be relaxed. Interestingly, the direction
of approximation in ∀x and ∃x suggests the existance of a Galois connection:
the adjoint of an upper closure operator (∃x) is a lower closure operator (∀x).
Curiously, ∃X(⊥) = ⊥ is required to guarantee that ∀x eliminates the variable
x for each x ∈ X; specifically ∃X(⊥) = ⊥ ensures x 6∈ var(∀x(d)).

A Galois connection gives a systematic way of synthesising ∀x from ∃x, that
is, ∀x(d) = ⊕{d′ ∈ D | ∃x(d′) E d} [7, 17]. It also ensures that ∃x is additive
[7], thereby satisfying the condensing requirement. The equivalence it induces,
also provides a simple tactic to establishing safety which avoids arguments that
involve both state abstraction and reversed information flow [17]. In fact Hughes
and Launchbury [15] argue that ideally the direction of an analysis should be
reversed without reference to the concrete semantics. Indeed, the equivalence
between backward and forward analysis, means that the correctness of back-
ward analysis follows immediately from that of forward analysis. The following
examples illustrate some domains for which 〈D,∀x, D,∃x〉 is a Galois connection.

Example 2. Let BoolX denote the Boolean functions over a set of variables X.
The domain PosX is defined by PosX = {⊥} ∪ {f ∈ BoolX | (∧X) |= f}.
The lattice 〈PosX , |=,∨,∧, 1,⊥〉 is finite. Each element of PosX is interpreted
as a set of equation sets by the concretisation map γPos : PosX → ℘(Eqn)
where γPos(f) = {E ∈ Eqn | α(θ) |= f ∧ θ ∈ mgu(E)} and α(θ) = ∧{y ↔
∧var(θ(y)) | y ∈ dom(θ)}. The abstraction map αPos : ℘(Eqn) → PosX

is defined as αPos(S) = ∧{f ∈ PosX | S ⊆ γPos(f)}. In forward analy-
sis, existential projection is conventionally defined by Schröder elimination as
∃x(f) = f [x 7→ 1] ∨ f [x 7→ 0]. To obtain a Galois connection, define uni-
versal projection by ∀x(f) = f ′ if f ′ ∈ Pos otherwise ∀x(f) = ⊥ where
f ′ = f [x 7→ 0] ∧ f [x 7→ 1]. Although f [x 7→ 0] ∨ f [x 7→ 1] ∈ PosX for any
f ∈ PosX , f [x 7→ 0]∧f [x 7→ 1] 6∈ PosX for some f ∈ Pos. Consider, for instance,



f = (x← y). Note that f |= ∃x(f) = ∀x(∃x(f)), hence ∀x◦∃x is extensive. More-
over, if ∀x(f) = ⊥ then ∃x(∀x(f)) = ⊥ |= f . Otherwise f |= ∀x(f) = ∃x(∀x(f)).
Thus ∃x ◦ ∀x is reductive. Since ∃x and ∀x are monotonic, 〈PosX ,∀x, PosX ,∃x〉
is a Galois connection. The pseudo-complement ⇒ is → for PosX .

Example 3. The Galois connection property does not uniquely define the existen-
tial and projection operators for a given domain. For example, for PosX consider
∃x(f) = 1 and ∀x(f) = ⊥. Then f |= 1 = ∃x(∀x(f)) and ∀x(∃x(f)) = ⊥ |= f ,
and 〈PosX ,∀x, PosX ,∃x〉 is again a Galois connection.

Example 4. An intriguing non-example for PosX is obtained by defining:

∃x(f) =
{

f if x 6∈ var(f)
1 otherwise ∀x(f) =

{
f if x 6∈ var(f)
⊥ otherwise

Now compare a forward analysis that uses ∃x against a backward analysis
that applies both ∃x and ∀x for a program P that consists of two definitions
p(x)← ask(x ∨ y) and q(x)← ask(x). Then lfp(FD

P )[[p(x)]](x) = x 6= >> however
gfp(BD

P )[[p(x)]] = ⊥. Dually lfp(FD
P )[[q(x)]](x ∧ y) = >> whereas gfp(BD

P )[[q(x)]] =
x. Since PosX is a cHa, from theorems 3 and 4 it follows that 〈PosX ,∀x, PosX ,∃x〉
is not a Galois connection although ∀x◦∃x is extensive and ∃x◦∀x is reductive. In
fact equivalence is lost because neither ∃x nor ∀x are monotonic as is witnessed
by ∃x(x ∧ y) = 1 6|= y = ∃x(y) and ∀x(y) = y 6|= ⊥ = ∃x(x ∨ y).

6 Verification with a power domain

One classic way [7] of enriching an abstract domain is to apply a power domain
construction in which the elements of the new domain correspond to sets of ele-
ments in the old domain. The rational for this construction is usually to improve
the precision of join that is required to merge abstractions arising along different
computational paths. However, as originally pointed out in [19], it also provides a
mechanism for synthesising a domain that is condensing. This approach is useful
if the Heyting completion [13] of a domain is unknown. Thus consider a power
domain constructed from an abstract domain 〈D,E,⊕,⊗〉 that is a complete
lattice. The ordering E over D lifts to sets S1, S2 ⊆ D by S1 E S2 if and only if
for all d1 ∈ S1 there exists d2 ∈ S2 such that d1 E d2.

Proposition 2. Let 〈D,E〉 be a poset that satisfies the ascending chain condi-
tion. Let S1, S2 ⊆ S ⊆ D such that S E S1 and S E S2. Then S E S1 ∩ S2.

The force of proposition 2, is that it ensures that the following operator is well-
defined (at least for domains that satisfy the ascending chain condition):

Definition 9. The map % : ℘(D)→ ℘(D) is defined %(S)=∩{S′ ⊆ S | S E S′}.

For domains that satisfy the ascending chain condition – the focus of our study –
this operator % computes the most compact representation of a set of abstractions



S. This provides a normal form that enables a power domain to be constructed
without recourse to equivalence class manipulation. The power domain is then
the complete lattice 〈%(℘(D)),E,⊕,⊗〉 where ⊕ and ⊗ are defined as S1⊕S2 =
%(S1 ∪ S2) and S1 ⊗ S2 = %({d1 ⊗ d2 | d1 ∈ S1 ∧ d2 ∈ S2}). To observe that
〈%(℘(D)),E,⊕,⊗〉 is a cHa, let S ∈ %(℘(D)) and {Si | i ∈ I} ⊆ %(℘(D)) for
some index set I. It follows from the definitions of ⊗ and ⊕ that S⊗ (⊕i∈ISi) =
%({d ⊗ di | d ∈ S ∧ di ∈ Si ∧ i ∈ I}) = ⊕i∈I(S ⊗ Si) and this equivalence is
enough to verify that the power domain a cHa [2][Chapter IX, Theorem 15].

The projection operators lift to the power domain in a natural way by
∃x(S) = %({∃x(d) | d ∈ S}) and similarly ∀x(S) = %({∀x(d) | d ∈ S}). For
equivalence between the three semantics to hold, 〈%(℘(D)),∀x, %(℘(D)),∃x〉 is
required to be a Galois connection. The following proposition asserts that the
only way to ensure this property, is to engineer ∀x : D → D and ∃x : D → D so
that 〈D,∀x, D,∃x〉 is a Galois connection.

Theorem 5. 〈%(℘(D)),∀x, %(℘(D)),∃x〉 is a Galois connection if and only if
〈D,∀x, D,∃x〉 is a Galois connection.

Example 5. Consider the construction of a power domain for capturing numeric
relationships between variables such that 〈%(℘(D)),∀x, %(℘(D)),∃x〉 is a Galois
connection. Specifically consider LinX , the set of finite sets of equations of the
form ax + by < 0 and ax + by ≤ 0 where a, b ∈ {−1, 0, 1} and x, y ∈ X – a
domain that arises in termination verification [22]. A mapping θ : X → R assigns
a truth value to each E ∈ LinX by θ(E) = ∧e∈Eθ(e) and θ(ax + by ~ 0) ⇐⇒
aθ(x) + bθ(y) ~ 0 where ~ ∈ {<,≤}. Then E1 |= E2 iff θ(E1) → θ(E2) holds
for all θ : X → R. Let ⊥ = {0 < 0} and observe that θ(⊥) is false for all
θ : X → R. To construct ⊕ and ⊗, an operator cl : LinX → LinX is introduced
to compute the entire set of equations entailed by a given equation set E (unless
E |= ⊥). Specifically cl(E) = ∪{E′ ∈ LinX | E |= E′} if E 6|= ⊥ otherwise
cl(E) = ⊥. Then 〈cl(LinX), |=,⊕,⊗〉 is a finite lattice with a bottom element
⊥ where E1 ⊕ E2 = E1 ∩ E2 if E1 6= ⊥ and E2 6= ⊥ whereas E1 ⊕ E2 = E1

if E2 = ⊥ and E1 ⊕ E2 = E2 if E1 = ⊥. Moreover E1 ⊗ E2 = cl(E1 ∪ E2).
By applying Floyd-Warshall shortest-path algorithms cl(E) can be computed
in O(X3) time [25]. To specify ∃x and ∀x, the concept of a free variable is
formalised as FV (E) = ∪e∈EFV (e) where FV (ax + by ~ 0) = {x | a 6= 0} ∪ {y |
b 6= 0}. Then ∃x(E) = cl({e ∈ E | x 6∈ FV (e)}) and ∀x(E) = E if x 6∈ FV (E)
otherwise ∀x(E) = ⊥. Since ∃x ◦ ∀x(E) |= E |= ∀x ◦ ∃x(E) and ∃x and ∀x are
both monotonic, it follows that 〈cl(LinX),∀x, cl(LinX),∃x〉 is a Galois insertion.
Moreover, when ∃x and ∀x are lifted to %(℘(cl(LinX)), as specified above, then
theorem 5 ensures that 〈%(℘(cl(LinX)),∀x, %(℘(cl(LinX)),∃x〉 is also a Galois
connection. This guarantees that the semantics have equal power for verification.

If a cHa is constructed via a power domain, although the pseudo-complement
is guaranteed to exist, it may not be clear how to compute S1 ⇒ S1 so that the
backward framework can be applied in verification. However, for a given cHa
〈L,t,u〉, from the axioms of Heyting algebras it follows that (ti∈Iai) ⇒ b =
ui∈I(ai ⇒ b) where {ai | i ∈ I} ⊆ L for an index set I and b ∈ L. Moreover, it can



be shown that b ⇒ (ti∈Iai) = ti∈I(b ⇒ ai). These properties enable strength
reduction to be applied in the calculation of S1 ⇒ S2 for S1, S2 ∈ %(℘(D)).
Specifically S1 ⇒ S2 = ⊗{{d1} ⇒ S2 | d1 ∈ S1} and S1 ⇒ S2 = ⊕{S1 ⇒
{d2} | d2 ∈ S2}. Thus, in a similar fashion to ∀x and ∃x, it is enough to define an
procedure for computing {d1} ⇒ {d2} over d1, d2 ∈ D, and then lift the operator
to full %(℘(D)). This construction scheme is illustrated below.

Example 6. Returning to example 5, it is thus sufficient to construct an operation
⇒: Lin2

X → ℘(LinX) such that E1 ⇒ E2 = {E1} ⇒ {E2} if E1, E2 ∈ cl(LinX).
To aid the construction, define ¬(ax + by < 0) = (−a)x + (−b)y ≤ 0 and
¬(ax + by ≤ 0) = (−a)x + (−b)y < 0. Suppose E2 = {e1, . . . , en}. Then
E1 ⇒ E2 = %({cl(∪n

i=1{¬e′i}) | e′i ∈ cl(E1 ∪ {¬ei})}). The following
proposition asserts the correctness of this construction.

Proposition 3. Let E1, E2 ∈ cl(LinX). Then E1 ⇒ E2 = {E1} ⇒ {E2}.

Example 7. To illustrate an application of E1 ⇒ E2 consider

E1 = {x− y ≤ 0,−x + y ≤ 0} and E2 = {y − z ≤ 0, y < 0}

so that E1, E2 ∈ cl(LinX) as required. Let e1 = y− z ≤ 0 and e2 = y < 0, hence
¬e1 = −y + z < 0 and ¬e2 = −y ≤ 0. Then

cl(E1 ∪ {¬e1}) = {x− y ≤ 0,−x + y ≤ 0,−y + z < 0,−x + z < 0}
cl(E1 ∪ {¬e2}) = {x− y ≤ 0,−x + y ≤ 0,−y ≤ 0,−x ≤ 0}

and therefore E1 ⇒ E2 = {{−x + y < 0}, {x − y < 0}, {y − z ≤ 0, y < 0},
{y − z ≤ 0, x < 0}, {x − z ≤ 0, y < 0}, {x − z ≤ 0, x < 0}}. Observe that
{¬e1} ∈ E1 ⇒ E2 for all e1 ∈ E1 and that E2 ∈ E1 ⇒ E2. By lifting {E1} ⇒
{E2} to arbitrary S1 ⇒ S2, the power domain construction is complete, thereby
enabling any of the verification frameworks to be applied.

7 Related work

This paper compares various fixpoint frameworks for the task of verification.
However, if assertions are given for each predicate, for instance, to specify prop-
erties of computed answers as in [8], then the verification problem reduces to
checking a pre-fixpoint [6] and iteration can be avoided altogether. This check
merely requires the assertion language to possess a decidable entailment test and
therefore these languages can be particularly expressive [30]. If the assertion lan-
guage coincides with an abstract domain, then properties can be automatically
inferred relaxing the requirement to systematically annotate each predicate.

Schachte compares the precision of a goal-independent analysis for abstract
success patterns against the concrete success patterns [28] and likewise compares
a goal-dependent analysis for abstract call patterns (derived using a condensing
framework) relative to the concrete call patterns [27]. Optimality theorems for



the goal-independent [28][Theorem 15] and goal-dependent analysis [27][Theo-
rem 3.13] state that these analyses derive abstractions that exactly match those
obtained by applying the abstraction map to the concrete patterns. These results
hold for condensing domains equipped with an abstraction map α that satisfies
the relation α(C1) ∧α α(C2) = α({c1 ∧ c2 | c1 ∈ C1 ∧ c2 ∈ C2} \ {false}) where
∧α is the abstract conjunction operator. Interestingly, whether these results are
applicable critically depends on how α handles sets of unsolvable constraints.
For instance, for the domain PosX consider C1 = {E1} and C2 = {E2} with the
equation sets E1 = {x = a} and E1 = {x = b}. Then αPos({E1})∧ααPos({E2}) =
x∧x = x, however αPos({E1 ∪E2} \ {false}) |= αPos({E1 ∪E2}) = false since
{E1∪E2}\{false} ⊆ {E1∪E2} and E1∪E2 is unsolvable. Although comparing
abstract with concrete is a laudable goal, our work merely compares one abstract
framework against another and thereby relaxing the requirement on α.

One alternative approach to analysis that is more in tune with the needs
of verification is to structure the analysis around the assertions themselves and
only perform the computation necessary for verifying the assertions, thereby
analysing the program on demand. A method for constructing such an demand-
driven analysis is presented in [9] for dataflow analyses with distributive flow
functions. These demand-driven algorithms propagate assertion requirements
backward against the control-flow until they are satisfied. Interestingly, reversing
the binding mechanism between actual and formal arguments is analogous to
calculating universal projection. However, the reverse binding operator of [9]
is incorrect (for copy constant propagation) – the direction of approximation
in parameter passing needs to be revised to return the strongest abstraction
and thereby simulate universal projection. In fact, incredibly, the same Galois
connection requirement for correctness and precision appears also to be necessary
in the demand-driven analysis of imperative programs.

Termination checking is the problem of verifying that a logic program left-
terminates for a given query whereas termination inference is the problem of
inferring initial queries under which a logic program left-terminates [24]. It has
been observed [12] that the “missing link” between termination inference and ter-
mination checking is the backward analysis of [17]. Indeed, Genaim and Codish
[12] reconstruct the method of [24] in terms of existing black-box components
that, according to [12], simplifies the formal justification and implementation of
a termination inference analyser. First, the termination engine of [5] is used to
compute a set of binary clauses which describe possible loops in the program
with size relations. Second, Boolean functions are inferred for each predicate that
describes moding conditions sufficient for each loop to only be executed a finite
number of times. Third, the backward analysis of [17] is applied to infer initial
modes that guarantee termination. The technical report version of [12] addresses
the intriguing question of whether termination checking can verify all queries
that can be inferred by termination inference and dually whether termination
inference can infer all the queries that be verified with termination checking.
The technical report presents a theorem that basically says that a termination
checker reports that a program terminates for a mode if and only if the mode



is deduced by a termination inference engine. The proof makes two assumptions
about backward analysis named BA1 and BA2, and focuses on comparing the
CHK and INF procedures that arise in termination analysis [12]. BA1 is a pre-
cision assumption on backward analysis relating backward to forward analysis
driven from input mode for a predicate q. Specifically, if backward analysis is
applied to a program which is annotated with the call modes derived by the
forward analysis, then the input mode inferred for q by backward analysis is not
stronger than the mode of q used to initial the forward analysis. Note that this
assumption relies, among other things, on the precision of universal projection.

Future work will examine the relation precision of differential methods [11].

8 Conclusions

This paper has provided a systematic comparison of the relative power of three
different abstract interpretation frameworks for the problem of logic program
verification. Conditions on the abstract domain operations have been derived
which detail when these frameworks possess equivalent power. The paper also
explains how power domains can satisfy the requirements for equivalence.
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