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Abstract

This paper formalizes the notion of a design model struc-
turally conforming to a design pattern by representing the
model as a logic program whilst the pattern as a query.
The conformance of a model to a design pattern is equiv-
alent to the satisfaction of the query by the logic program.
Harnessing logic inference capability of logic programming
languages, we obtain an automated method that infers all
the instances of a design pattern in a UML class diagram.
We use the Visitor pattern and a price calculation applica-
tion to demonstrate the technique.

1 Introduction

Design patterns have been an important research subject
in the area of software engineering, particularly in reuse-
based software engineering since their introduction in com-
puter science [8]. A design pattern describes a proven solu-
tion based on the previous experience to a recurring design
problem in a reusable form (e.g., see [13]). By reusing high
quality solutions, design patterns help the development of
systems that are extensible, flexible and maintainable [28].

Evaluation of pattern conformance of designs is con-
cerned with checking valid realizations of a pattern in a de-
sign within the context of the application being built. In
general, realizing a pattern heavily relies on designer’s ex-
perience and knowledge of the pattern. Invalid realization
of a pattern, however, could deteriorate rather than improve
quality of design. Then, a question that naturally arises
is “how can one ensure validity of a pattern realization?”
The question can be partly addressed by pattern formaliza-
tion efforts (e.g., see [9, 14, 17, 20, 21, 24, 26, 31]) that
facilitate pattern realization (instantiation). For example,
template-based approaches (e.g., [31]) formalize patterns in
terms of parameters, and a pattern can be instantiated (re-
alized) by stamping out the template. However, in many
cases, instantiated pattern realizations often require signif-

icant modifications such as adding new elements, modify-
ing or removing some instantiated elements to accommo-
date application-specific requirements. Since these activ-
ities may break pattern conformance and compromise the
benefits of using design patterns, pattern conformance must
be checked.

There has been much work [2, 4, 5, 7, 10, 15, 16, 27, 30]
on identifying pattern instances in code at the programming
level where structural properties (e.g., operations, attributes,
relationships) of design patterns [13] are searched in code.
These works support the reverse engineering efforts at the
programming level so as to understand legacy systems and
improve their quality attributes. However, there is little
work on validating pattern instances at the model level
which can greatly improve the quality of design and re-
duce development cost by finding errors in early develop-
ment phase. Based on our study, we found that some of the
programming-level work (e.g., [7, 16, 27]) can be extended
for detecting model-level pattern instances. However, a sig-
nificant limitation found in these approaches is that pattern
specifications are used to represent a typical instance of de-
sign pattern and they are used to find exact matching struc-
tures in different applications. This limits the applicability
of these approaches because in most cases, a design pattern
is realized in various forms depending on the application
domain, and thus it is very rare to find the same instance in
different designs.

To address this issue, we use logic programming to rig-
orously check pattern conformance of class diagrams de-
scribed in the Unified Modeling Language (UML) [31]. We
represent a design pattern as a query and a class diagram as
a logic program. A class diagram is said to conform to a
pattern if the logic program representing the class diagram
satisfies the query representing the pattern. In this way, we
obtain a concise and precise formalisation of the notion of
the model conforming to the pattern. This provides a se-
mantic basis for automatic inference of the instances of the
pattern in the model. By utilizing inference capability of
the logic programming language Prolog, we obtain an auto-
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mated method that infers all the instances of the pattern in
the model.

We base our work on pattern specifications described in
the Role-Based Metamodeling Language (RBML) [12, 17].
We chose the RBML because it precisely describes pattern
properties and is designed to support model-level use of de-
sign patterns for UML models. To demonstrate the tech-
nique, we use the Visitor pattern [13] and a model of a price
calculation application that calculates the total net price for
a composite equipment.

The main contribution of this work is the representation
scheme in which a class diagram is represented as logic pro-
grams and a pattern as a query. The representation scheme
facilitates use of design patterns in software development as
follows:

• The scheme can be used to find all instances of the
pattern in the model by executing the program for the
query. Each answer to the query is an instance of the
pattern in the model. Thus, our approach does not
simply tell if the model satisfies the pattern but also
informs “how” the model satisfies the pattern. Using
a debugging technique [29, 23], one can also identify
the cause of non-conformence in the model if the query
does not have any answer.

• The scheme can be used to validate designer’s assign-
ment of pattern roles to model elements. During the
development of a software model, the designer may
designate certain elements to play particular pattern
roles. The scheme can be used to validate this as-
signment by representing the assignment as an equality
constraint and executing the constraint and the query
with the program. Furthermore, given a partial map-
ping of pattern roles and model elements, the scheme
can complete the mapping by logic inference.

The remainder of the paper is organized as follows.
Section 2 gives an overview of the RBML and Section 3
presents an RBML specification of the Visitor pattern. Sec-
tion 4 describes how patterns and class diagrams can be rep-
resented in Prolog using the Visitor pattern and a price cal-
culation application as examples. Section 5 describes infer-
ence of valid pattern instances based on the representation.
Section 6 gives an overview of related work, and Section 7
concludes the paper.

2 Role-Based Metamodeling Language
(RBML)

The RBML [17] is a UML-based pattern specification
language that is designed to support the development of
pattern-based UML models. The RBML specifies patterns
in terms of roles where a role defines a set of constraints.

A role has a base metaclass in the UML metamodel, and is
played by instances of the metaclass that satisfy the proper-
ties specified in the role 1.

The RBML provides three types of specifications to cap-
ture various perspectives of pattern properties [17]: Sta-
tic Pattern Specifications (SPSs), Interaction Pattern Spec-
ifications (IPSs), and Statemachine Pattern Specifications
(SMPSs). In this work, we restrict ourselves to SPSs only.
An SPS specifies class diagram views of pattern solutions,
that is, it characterizes a family of solution class diagrams
for a pattern. An SPS consists of classifier and relation-
ship roles whose bases are Classifier and Relationship meta-
classes in the UML metamodel. A classifier role is associ-
ated with a set of feature roles that determines the character-
istics of the classifier role and is connected to other classifier
roles by relationship roles.

|Str: Int 1..*

Class Role
|RoleA

|EndA 1..* |EndB 1..1
|Behv (|o:|RoleA) 1..*

1 Class Role
|RoleB

2..*
|AssocRole 1..*

Figure 1. A Static RBML Specification

Fig. 1 shows an example of an SPS. In the SPS, there
are two class roles RoleA and RoleB whose the base is the
Class metaclass (as denoted above their name), which con-
strains that only instances of the Class metaclass can play
the roles. RoleA has a structural feature role Str whose data
type is integer. This further restricts the instances that can
play RoleA in that they must possess a structural feature
with integer data type. RoleB has a behavioral feature role
Behv with a parameter role o whose type is RoleA. The class
roles are connected by association role AssocRole that has
two association end roles EndA and EndB. Each role defines
a role multiplicity (shown near the role name) constraining
the number of elements that can play the role. For example,
RoleA has 1..* role multiplicity constraining that there can
be one or more elements playing the role.

A role is associated with a set of metamodel-level con-
straints. Metamodel-level constraints specialize the UML
metamodel by restricting the type of model elements that
can play the role. They are represented graphically in dia-
gram or textually in the Object Constraint Language (OCL)
[33]. For example, in Fig. 1 RoleA has three metamodel-
level constraints represented graphically: 1) the base meta-
class constraint Class requires that a model element playing
the RoleA role must be a class (an instance of the Class
metaclass), 2) the structural feature constraint Str demands
that a model element playing the RoleA role must have one

1Note that the notion of roles in the RBML is different from the one
in the UML in that RBML roles are defined at the metamodel level and
played by model elements, while UML roles are defined at the model level
and played by objects (for details, see [18])
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or more structural features playing the Str role, 3) the role
multiplicity constraint 1 postulates that there must be ex-
actly one class playing RoleA. The SPS also has the follow-
ing OCL metamodel-level constraints:

• Classes playing RoleA must be concrete:
context |RoleA inv: self.isAbstract = false

• Association ends playing EndA must have a multiplic-
ity of 1:
context |EndA inv: self.lowerBound() = 1 and
self.upperBound() = 1

• Association ends playing EndB must have a multiplic-
ity in the range of 1..*:
context |EndA inv: self.lowerBound() = 1 and
self.upperBound() = *

2.1 Static Pattern Specification Conformance

In this work, we use SPSs of a design pattern to evalu-
ate pattern conformance of a UML class diagram. A class
diagram is said to structurally conform to an SPS when the
model satisfies the metamodel-level constraints specified in
the roles of the SPS. In order for a class diagram to con-
form to an SPS, the class diagram must posses model ele-
ments that can play the roles in the SPS, that is, the model
elements must satisfy the constraints defined in the roles.

ClassC

|AssocRole 1..*

|EndA 1..*

|EndB 1..1

|Behv (|o:|RoleA) 1..*

Class Role
|RoleB

|Str: Int 1..*

Class Role
|RoleA

1

2..*

conforms

att1: Int
att2: String

ClassA

(b) Class Diagram

ClassB

op1(a:ClassA)
op2()

op(a:ClassA)

1 1

2 3..*

(a) SPS

Figure 2. Examples of Conforming Class Dia-
grams

Fig. 2 shows an example of a conforming class diagram
to the SPS in Fig. 1. In the example, ClassA conforms to
the metamodel-level constraints of RoleA described above
because 1) ClassA is an instance of the Class metaclass, 2)
it has an attribute whose type is integer, and 3) it is the only
class in the model that can play the role, 4) it is concrete.

ClassA may have properties not participating in the pattern
(e.g., att2). ClassB and ClassC are described similarly. The
two association ends on ClassA conform to the metamodel-
level constraints of the EndA role since a) they both have
an object multiplicity of 1, and b) the number of the asso-
ciation ends playing the role EndA is 2, satisfying the role
mulitiplicity 1..* of the EndA role. Similarly, both the as-
sociation end on ClassB and the association end on ClassC
satisfy the metamodel-level constraints of the EndB role. A
noteworthy point is that even though the object multiplici-
ties 2, 3..*) on these two ends are not exactly same as 1..*
as described in the OCL, they satisfy the constraint because
they are within the range of 1..*.

3 Visitor Pattern Specification

In this section, we give an example of an SPS for the
Visitor pattern [13]. The Visitor pattern provides a solu-
tion for handling crosscutting operations in a structure of
classes called elements by putting these operations into sep-
arate classes called visitors and having the visitors visit the
elements to perform the operations on the elements.

|Element
|Visitor

Dependency Role
Class Role

Association Role
|ObjStructElem

Classifier Role

Class Role
|ObjectStructure

|Supplier 1..1 |Accept(|vis:|Visitor) 1..1
|Operation() 1..*

1..*
|VisitElemDep

|VisitElem(|elem:|Element) 1..*

1..*

|Client 1..1

|Elem 1..*

|Obj 1..1

1..*

Figure 3. A Partial SPS for the Visitor Pattern

Fig. 3 shows a partial SPS of the Visitor pattern. The SPS
characterizes class diagrams that have classes playing Vis-
itor, Element, and ObjectStructure roles and relationships
playing VisitElemDep and ObjStrucElem roles. The Visi-
tor role specifies that there must be at least one or more
classes (denoted by the role multiplicity 1..*) playing the
role, and the visitor classes must have one or more behav-
ioral features for visiting elements to carry out necessary
operations on the elements. The Element role specifies that
element classes must have one operation that accepts the
visitor and operations to be performed by the visitor. The
ObjectStructure role specifies that there should be exactly
one class playing the role that defines the structure of Ele-
ment objects on which the visitors travel.

The properties (e.g., role multiplicities, base meta-
classes) of the SPS shown in the diagram are metamodel-
level constraints expressed graphically. Other metamodel-
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level constraints difficult to express in the diagram are de-
scribed in the OCL. The following are some of the OCL
metamodel-level constraints defined for the Visitor SPS:

• Classifiers that play the Visitor role must be concrete
classes:
context |Visitor inv: self.isAbstract = false

• Classifiers that play the ObjectStructure role must be
concrete classes:
context |ObjectStructure inv: self.isAbstract = false

• Dependencies that play the VisitElemDep role must be
usage dependencies:
context |VisitElemDep inv: self.stereotype.name =
“usage”

• An association end playing the Obj role must have a
multiplicity of 0..1 and not be navigable:
context |Obj inv:

self.lowerBound() = 0 and self.upperBound() = 1
and self.isNavigable = false

• An association end playing the Elem role must have a
multiplicity of 1..* and be navigable:
context |Elem inv:

self.lowerBound() = 1 and self.upperBound() = *
and self.isNavigable = true

Note that the Visitor SPS is developed to be partial for
simplicity of the demonstration of the technique. A full SPS
would include properties constraining that there should be
a corresponding VisitElem operation for every concrete El-
ement classes. To specify this, the SPS should be extended
with role hierarchies that involve the notion of abstract and
concrete roles (for details, see [18]).

4 Representing Patterns and Models in Pro-
log

In this and the next sections, we describe how logic pro-
gramming rigorously evaluates pattern conformance using a
model of a price calculation application and the visitor pat-
tern SPS presented in Section 2. The application calculates
the total net price of a composite equipment from the net
prices of its parts using the Visitor pattern. Fig. 4 show the
class diagram.

The diagram describes equipment structures that consist
of cards and chassises where a chassis is a composite equip-
ment of cards. A PricingVisitor object visits each element
in the equipment structure and gets its net price in order to
calculate the total net price of the equipment. Operations
visitCard and visitChassis are used to visit Card and Chas-
sis objects. A visited element accepts the visitor object and

total:Currency

visitCard(c:Card)
1..*

netPrice():Currency
accept(v:PricingVisitor)

Equipment

visitChassis(c:Chassis)

PricingVisitor

Card

name:String

addEquip()
removeEquip()
accept(v:PricingVisitor)

CompositeEquipment

Chassis

accept(v:PricingVisitor)

0..1

composed−of

accept(v:PricingVisitor)

Client

1

1

drives

1..*

required:Boolean
netPrice:Currency

consists−of

0..1

attach(e:Equipment)
detach(e:Equipment)
accept(v:PricingVisitor)

equipmentList:List

EquipmentStructure

<<uses>>

Figure 4. A Class Diagram of a Price Calcula-
tion Application

returns itself to the visitor. The visitor then calls the net-
Price operation to the element to get its net price.

A prerequisite for any automated tool for reasoning
about UML design models is a representation scheme for
model elements. A logic program is declarative in that it
describes what a problem is but not how it can be solved.
Solutions to the problem can be generated by a logic pro-
gramming language system such as Prolog. The domain of
the problem is described as a collection of logic statements
and so is the problem. Logic inference capability of a logic
programming language such as Prolog can not only check
if the problem is solvable but also can find all solutions to
the problem.

4.1 Models as Logic Programs

This section presents a scheme for representing model
elements of a UML class diagrams and its associated OCL
constraints as Prolog statements. A class diagram is com-
posed of types and relationships between them. A type is
an interface, a class or a classifier while a relationship is
a dependency, an association or an inheritance. We will
consider only the above types and relationships in this pa-
per. Other kinds of types and relationships can be dealt with
similarly.

Kinds of type: These are different kinds of types such as
classifiers, classes and interfaces. Each kind corresponds to
a unary predicate with the name of the type as its argument.
For instance, the equipment type is an abstract type, which
is represented by the Prolog fact abstract class(equipment).
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The kinds of types in Fig. 4 are represented by the following
Prolog facts.

abstract_class(equipment).
concrete_class(card).
concrete_class(pricingVisitor).
concrete_class(chassis).
concrete_class(equipmentStructure).
concrete_class(client).
concrete_class(compositeEquipment).

Features of type: A type has a number of attributes, op-
erations, association ends and dependency ends (suppliers
and clients). These are called features of the type. That
a type has a feature is represented as a fact of the form
has feature(TName, Info) where TName is the name of the
type and Info is a ground term describing the feature.

Operations and Attributes: That a type has an opera-
tion is represented as a Prolog fact has feature(TName,
op(OpName, ArgTypes, RType)). TName is the name of
the type, OpName the name of the operation, ArgTypes
the list of its argument types and RType the type of
its returned value. For example, the only operation
defined in the chassis class in Fig. 4 is represented by
has feature(chassis,op(accept,[pricingVisitor],void)) and
the operations defined in the equipment class are encoded
as these Prolog facts.

has_feature(equipment,
op(accept,[pricingVisitor],void)).

has_feature(equipment,op(netPrice,[],void)).

Attributes are treated similarly. That a type has
an attribute is represented as a Prolog fact of the
form has feature(TName,attr(AttrName,AttrType)) where
TName is the name of the type, AttrName the name of the
attribute and AttrType the type of the attribute. For instance,
the attributes of the equipment class are encoded as these
Prolog facts.

has_feature(equipment,attr(name,string)).
has_feature(equipment,attr(netPrice,currency)).
has_feature(equipment,attr(required,boolean)).

Association and Dependency: An association has two as-
sociation ends that may be annotated with object multiplic-
ity and navigability constraints. An association is uniquely
identified with its two ends. Thus, an association is repre-
sented by representing its ends. An association end of a type
is represented by a fact has feature(TName,assoc( Assoc-
Name, Navigability, bounds(Lower,Upper))) where TName
is the name of the type that participates in the association at
the end. AssocName is the name of the association. Navi-
gability is either true or false, indicating whether the end is

navigable. Lower is the lower bound on the object mul-
tiplicity at the end and Upper the upper bound. For in-
stance, the association composedOf is represented by these
two facts:

has_feature(equipment,
assoc(composedOf,false,bounds(1,many))).

has_feature(compositeEquipment,
assoc(composedOf,true,bounds(0,1))).

Dependency relationships are represented in a similar
way as association relationships. A dependency end
of a type is represented by a Prolog fact of the form
has feature(TName,depend(DependName,Navigability))
where TName is the name of the type, DependName the
name of the dependency that the type participates at that
end. Navigability at two ends of a dependency is used
to indicate the direction of the dependency. The only
dependency uses in Fig. 4 is represented by these two facts.

has_feature(equipment,depend(uses,true)).
has_feature(pricingVisitor,depend(uses,false)).

Inheritance: Inheritance relationships induce a sub-
typing relation between types. The relation is represented
by a predicate is a such that is a(T1,T2) indicates that T1
is a sub-type of T2. The sub-typing relation in Fig. 4 is
represented as follows.

is_a(compositeEquipment,equipment).
is_a(chassis,compositeEquipment).
is_a(card,equipment).

Metamodel knowledge The Prolog facts obtained as
above are model specific. They are complemented with Pro-
log rules that represent metamodel knowledge. The set of
types of one kind may be contained in the set of types of
another kind. The containment relationship between two
kinds is represented by a Prolog rule of the form Kind 1(X)
:- Kind 2(X) where X is a variable, indicating that types of
Kind 2 are also types of Kind 1. For instance, that both
interfaces and classes are classifiers is encoded by the fol-
lowing Prolog rules.

classifier(X) :- interface(X).
classifier(X) :- class(X).

and that both concrete and abstract classes are classes is en-
coded as

class(X) :- abstract_class(X).
class(X) :- concrete_class(X).

The knowledge that the sub-typing relation is transi-
tive is encoded by this Prolog rule: is a(X,Y) :- is a(X,Z),
is a(Z,Y). Since inheritance is non-cyclic, a call to is a/2 with
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its first argument being a ground term is guaranteed to ter-
minate universally. The translation from patterns to queries
ensures that is a/2 is always called with its first argument
ground. Sub-typing induces a rule for inherited features:

has_feature(T,F) :- is_a(T,T1),has_feature(T1,F).

The program that represents the UML model consists of
the facts and rules obtained as above and the following rules
that realizes the containment relation between pairs of ob-
ject multiplicity bounds.

bounds_subset(bounds(L1,U1),bounds(L2,U2)) :-
bound_leq(L2,L1),
bound_leq(U1,U2).

bound_leq(B1,B2) :-
B2 == many -> true; B1 \== many, B1 =< B2.

The predicate bounds subset will only be used to check a
given pair of bounds is contained in another given pair of
bounds; it will not be used to generate the containment re-
lation between pairs of bounds.

4.2 Patterns as Queries

The goal of inference is to discover a mapping from pat-
tern roles to model elements such that when the roles are
substituted by the model elements, the pattern is satisfied
by the model. For this purpose, we represent a design pat-
tern as a query. The representation uses the same predicates
for representing UML models. Each role is represented
as a variable. Roles except association end roles are rep-
resented as atoms in the same way as their corresponding
model elements are represented as facts. For instance, the
three type roles in Fig. 3 is represented as class(Visitor),
class(ObjectStructure) and classifier(Element) respectively.
For instance, the dependency end role Client is rep-
resented has feature(Visitor,depend(VisitElemDep,false)) .
That class role Visitor has an unary behavioral role Vis-
itElem with an argument of type Element is represented as
has feature(Visitor,op(VisitElement,[Element],void)).

Association end roles are represented as follows. First
we note that object multiplicity for a relationship end play-
ing a relationship end role and its navigability are written
as an OCL constraint. For instance, the association end role
Obj is constrained by this OCL constraint.

• An association end playing the Obj role must have a
multiplicity of 0..1 and it is not navigable:
context |Obj inv:

self.lowerBound()=0 and self.upperBound()=1 and
self.isNavigable=false

The association end role Obj is represented by these two
atoms

has_feature(ObjectStructure,
assoc(ObjStructElem,false,ObjBnds)),

bound_subset(ObjBnds,bounds(0,1))

where ObjBnds is a variable not appearing elsewhere. The
role Obj does not appear in this representation since it
is uniquely determined by the roles ObjectStructure and
ObjStructElem. In fact, an association end need not be
named if it has no attached OCL constraints. Observe
that ObjBnds is the pair of object multiplicity bounds
for the model element that plays the Obj role and that
bound subset(ObjBnds,bounds(0,1)) checks if ObjBnds is
contained in the pair of object multiplicity bounds for the
Obj role.

Each pattern role is represented as one or two atoms.
The conjunction of the atoms obtained from all pattern roles
forms a query. The query representing the example pattern
in Fig. 3 is

classifier(Element),
has_feature(Element,op(Accept,[Visitor],void)),
has_feature(Element,op(Operation,[],void)),
has_feature(Element,depend(VisitElemDep,true)),
concrete_class(Visitor),
has_feature(Visitor,

op(VisitElement,[Element],void)),
has_feature(Visitor,depend(VisitElemDep,false)),
concrete_class(ObjectStructure),
has_feature(ObjectStructure,

assoc(ObjStructElem,false,ObjBnds)),
bounds_subset(ObjBnds,bounds(0,1)), % OCL
has_feature(Element,

assoc(ObjStructElem,true,ElemBnds)),
bounds_subset(ElemBnds,bounds(1,many)), % OCL

5 Inference of Pattern Instances

The logic program represents elements in a UML model
and their relationships whilst the query represents roles in
a pattern and their relationships. This facilitates inference
of instances of a pattern in a model because mappings from
roles to model elements can be found by executing the pro-
gram and query. The inference is realized in two steps as
follows. We first compute a superset of the set of valid map-
pings. Each mapping in the superset is valid except that role
multiplicity contraint of pattern roles may be violated. We
call such a mapping a candidate mapping. In the second
step, invalid candidate mappings are removed from the su-
perset by enforcing realization multiplicity constraints. The
following theorem states that the set of all candidate map-
pings can be obtained by computing all computed answers
to the query with the program and projecting the computed
answers to the set of the variables that represent roles. In
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addition, the LD-resolution of the query with the program
will always terminate.

Theorem 1 Let P denotes the program, Q the query and V
the set of variables representing roles. Then

(a) The LD-resolution of P ∪ {← Q} universally termi-
nates.

(b) A substitution θ is a computed answer to P∪{← Q}
via LD-resolution if and only if θ ↑ V is a candidate
mapping where θ ↑V is θ restricted to V .

A proof of the above theorem is put in an appendix for re-
viewing.

5.1 Enforcing Role Multiplicity

The second step cannot be done by processing candidate
mappings individually because two or more candidates may
invalidate one another. For instance, if a class role has a
role multiplicity constraint 1..1 and there are two candi-
date mappings in which the role is mapped to two differ-
ent classes in the model then there is no instance of the
pattern in the model. Let CP,Q be the set of computed an-
swers to P∪{←Q} restricted to V . CP,Q is the set of candi-
date mappings. Role multiplicity constraints are enforced
by removing invalid candidate mappings from CP,Q. Let
X ]Y = {X ∪Y | X ∈ X ∧Y ∈ Y }. For the model in Fig. 4
and the pattern in Fig. 3, CP,Q is

{{

Accept 7→ accept,Visitor 7→ pricingVisitor,
VisitElemDep 7→ uses

}}

]






























{

Ob jectStructure 7→ equipmentStructure,
Ob jStructElem 7→ consistsO f

}

,

{

Ob jectStructure 7→ compositeEquipment,
Ob jStructElem 7→ composedO f

}

,

{

Ob jectStructure 7→ chassis,
Ob jStructElem 7→ composedO f

}































]















































{

Element 7→ chassis,VisitElement 7→ visitChassis,
Operation 7→ addEquip

}

,

{

Element 7→ chassis,VisitElement 7→ visitChassis,
Operation 7→ removeEquip

}

,

{

Element 7→ chassis,VisitElement 7→ visitChassis,
Operation 7→ netPrice

}

,

{

Element 7→ card,VisitElement 7→ visitCard,

Operation 7→ netPrice

}















































5.1.1 Feature Role Multiplicity

A role multiplicity constraint L..U on a feature role F of a
type role T is satisfied by a subset of the set of candidate
mappings if every candidate in the subset maps T into the
same type t and the number of the features of t that can
play the feature role F is between L and U. This requires

grouping candidate mappings around those individual types
that can play the type role T. The set of the types that can
play the type role T is C T

P,Q = {µ(T ) | µ ∈ CP,Q}. Let t ∈
{µ(T ) | µ ∈ CP,Q}. The set of candidate mappings that map
T to t is C T,t

P,Q = {µ | µ(T ) = t ∧µ ∈ CP,Q}. This set satisfies
the role multiplicity constraint L..U on the feature role F iff

L≤ ‖{µ(F) | µ ∈ C T,t
P,Q}‖ ≤U

where ‖S‖ is the cardinality of a set S. Thus, the set of can-
didate mappings that satisfy the role multiplicity constraint
L..U on the feature role F of the type role T is

[

{C T,t
P,Q | (t ∈ C T

P,Q)∧ (L≤ ‖{µ(F) | µ ∈ C T,t
P,Q}‖ ≤U)}

Each feature role multiplicity constraint may remove one or
more candidate mappings from CP,Q. The set of remaining
candidate mappings is the intersection of the sets of can-
didate mappings that satisfy individual feature role multi-
plicity constraints. No mappings is removed from CP,Q by
enforcing feature role multiplicity constraints in Fig. 3.

5.1.2 Type Role Multiplicity

Finally, the remaining candidate mappings are checked to
decide if the model conforms to the pattern by satisfying
all type role multiplicity constraints. The role multiplicity
constraint L..U on a type role T is satisfied iff L≤ ‖{µ(T ) |
µ ∈ CP,Q}‖ ≤U . For instance, we have {µ(Element) | µ ∈
CP,Q}= {chassis,card} and hence 1≤ ‖{µ(Element) | µ ∈
CP,Q}‖ ≤ many holds. Should Element have a role multi-
plicity constraint 1..1, the model would not conform to the
pattern since ‖{µ(Element) | µ∈ CP,Q}‖ 6≤ 1. It can be veri-
fied that role multiplicity constraints on the other type roles
in 3 are also satisfied by CP,Q. Thus, the model in Fig 4
satisfies the pattern in Fig. 3.

6 Related Work

There has been much work on detecting pattern in-
stances in code (e.g., see [2, 5, 10, 15]). Albin-Amiot and
Guéhéneuc [2] propose a meta-modeling approach to define
and detect design patterns in Java code by structural match-
ing. Balanyi and Ference [5] use a XML-based language
to represent design patterns and detect pattern instances in
C++ code. Fabry and Mens [10] use logic meta program-
ming to detect design patterns in different languages (e.g.,
Java, Smalltalk). Heuzeroth et al. define design patterns
in a tuple of classes, methods, and attributes and use them
to find pattern instances in Java code using pattern-specific
algorithms. These works support the reverse engineering
efforts at the programming level for understanding legacy
systems and improving their quality attributes.
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The works by Brown [7] and Keller et al. [16] use min-
imal key structures described in the UML as search criteria
to identify pattern instances in code. An initial design repre-
sented in the UML is extracted from code and searched for
the search criteria. Philippow et al. [27] extended these ap-
proaches by elaborating the search criteria into positive and
negative search criteria. While these works are more flex-
ible than the approaches (e.g., see [19, 6]) based on com-
plete matching structures, a drawback remains that the pat-
tern descriptions used are a typical instance of the patterns,
and cases are very rare where the same instance is found in
models.

Some researchers use metric-based approaches [4, 30].
Antoniol et al. [4] use simple class-level metrics (e.g., the
number of attributes, the number of operations, the num-
ber of different types of relationships) as constraints to re-
cover design patterns in designs. Their approach is similar
to the approaches based on minimal key structures in that
the structural constraints are expressed in metrics. More so-
phisticated metrics are used in Shull et al.’s work. They de-
fine a design pattern by metrics in three categories of object-
oriented metrics, structural metrics, and procedural metrics
and use them in six steps of a searching algorithm. There is
no tool support for their approach, and it is hard to see how
the algorithm can be automated.

Similar to our approach, Guennec et al. [14] use roles
(e.g., classifier roles, feature roles) to define patterns where
roles are played by UML model elements. In their work,
a UML model is said to conform to a pattern if the names
of model elements match to the role names. Using their
notion of pattern conformance, it is hard to expect that the
elements in a model have the same name as the role name
unless the designer is assumed to have knowledge of their
pattern specifications and intentionally uses the role names,
which is not a valid assumption. Their pattern specifica-
tions also have other important properties such as role types
and behaviors, but these properties are not considered in the
notion of pattern conformance. Our technique establishes
a precise notion of pattern conformance and enables rig-
orous evaluation of pattern conformance without requiring
designers to have knowledge of the pattern.

Potential of logic programming as a formal reason-
ing tool in software engineering has been recognized be-
fore [1, 3, 25, 32, 34, 35]. To the best of our knowledge,
none of previous works addresses the issue of conformance
of a UML model to a given design pattern. Abreu reports a
university information system that describes classes, inher-
itance, attributes and the values used to populate the classes
as description logic formulae [1]. The description logic for-
mulae are used to generate more efficient and specific rep-
resentations for actual use. The emphasis of the work in [1]
is to substitute description logic formulae for UML models.
Our work focuses on formal reasoning about UML models,

in particular, conformance of UML models to design pat-
terns.

Wang et. al use constraint logic programming for sym-
bolic execution of requirements described as live sequence
charts [32]. Data variables in live sequence charts are rep-
resented as logical variables while control variables in live
sequence charts as constraints. A truly symbolic execution
of live sequence charts is realized by making use of two ba-
sic capabilities of a constraint logic programming language:
unification and constraint propagation. The work in [32] al-
lows software designer to play with his design whilst our
work verifies if his design conforms to a given design pat-
tern and informs him how it conforms to the design pattern.

Zisman and Kozlenkov represent elements in an UML
metamodel as axioms and those in an UML model as
facts [35]. They use a knowledge base engine based on
abduction to discover and analyze structural and behav-
ioral inconsistencies within or between UML specifications.
FlowUML [3] uses Horn clauses to specify information
flow polices that can be checked against flow information
extracted from UML sequence diagrams. These works are
mainly concerned with checking consistency within and be-
tween UML models. Our work goes beyond that by infer-
ring how a UML model conforms to a given design pattern.

Wuyts proposed a logic meta-programming language
SOUL for representing structural relationships in class-
based object-oriented systems [34]. A declarative frame-
work based on SOUL was constructed to reason about the
structure of Smalltalk programs. SOUL was also used by
Mens et. al [25] to manage intentional source code views.
A careful study of the representation proposed in [34] re-
veals that it does not permit inference of design pattern in-
stances in a UML model. For instance, that a class named c
has a method named m is represented as a fact method(c,m).
Without information about the types of the arguments and
the returned value of the method, precise matching between
a method role and a method is not possible.

7 Conclusion

We have presented a rigorous technique for evaluating
structural conformance of UML class diagrams to a pattern
specification by inferring valid mappings between them us-
ing logic programming. We have demonstrated how the
technique can be used through the Visitor pattern and a
model of a price calculation application. The technique can
be also used to find instances of domain-specific patterns
in a particular domain (e.g., telecommunication, security).
We are currently applying the technique to verify valid in-
stances of access control patterns (e.g., RBAC, MAC, DAC)
for designs of access control systems in the security do-
main. The technique can be also used in the area of pattern-
based model refactoring [11] for finding applicable design
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patterns for a given problem model. If the problem model
conforms to the problem specification of a pattern, the so-
lution of the pattern can be applied to the model.

In the subsequent work, we plan to develop tool sup-
port for the technique to translate a pattern specifica-
tion to a query and a UML model into a logic program.
We also plan to extend the technique to include checking
semantic conformance of behavioral properties. Examples
of such properties are pre- and post-conditions in behavioral
features roles and the interactions among pattern elements
specified in Interaction Pattern Specifications.
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A Proof for Theorem 5

Proof. Consider (a) first. All calls except those to
bound subset/2 universally terminates. Calls to inter-
face/1, class/1 and classifier/1 obviously terminate univer-
sally since these predicates are not recursive. Calls to
is a/2 universally terminates since sub-typing relations is
not cyclic. This together with the fact that all the rules in
the program representing the model do not have any func-
tion symbol, implies that calls to has feature/2 universally
terminates. Note that all facts in the program representing
the model are ground, and all variables in the head of a rule
also appear in the body of the rule. Therefore, the success-
ful execution of a call to interface/1, class/1 and classifier/1
and has feature/2 grounds all its arguments. By the way
of construction, for each call bound subset(Bs1,Bs2) in Q,
Bs2 is a ground term and Bs1 occurs in a call that pre-
cedes bound subset(Bs1,Bs2), thus, both Bs1 and Bs2 are
ground upon the selection of bound subset(Bs1,Bs2) by the
LD-resolution, which implies that all computed answers to
P∪ {← Q} are ground substitutions. The set of variables
Q consists of those variables representing roles and those
variables representing pairs of bounds. Then the proof of
(b) follows directly from the soundness and the complete-
ness of the LD-resolution procedure [22].
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