
Path Dependent Analysis of Logic Programs

Lunjin Lu (lunjin@acm.org) ∗
Oakland University, Rochester, MI 48309, USA.

Abstract. This paper presents an abstract semantics that uses information about
execution paths to improve precision of data flow analyses of logic programs. The
abstract semantics is illustrated by abstracting execution paths using call strings
of fixed length and the last transfer of control. Abstract domains that have been
developed for logic program analyses can be used with the new abstract semantics
without modification.

Keywords: Abstract interpretation, Context sensitive analysis, Call strings

1. Introduction

Semantic-based program analysis provides useful information about
run-time properties of programs to compilers, debuggers and other pro-
gram manipulation tools. It has been instrumental in bringing efficiency
to implementations of programming languages. Context sensitivity is
one of primary methods for obtaining precise interprocedural data flow
analysis. Context sensitive analysis records a piece of data flow infor-
mation at each program point of a procedure for each context in which
the procedure is called. In other words, at each program point, multiple
pieces of data flow information are recorded and each is tagged with a
context. There are two popular approaches to context sensitive analysis.
In the assumption set approach, context information is represented as
a set of descriptions of memory stores in which a procedure is called.
In the call string approach, context information is represented as a
sequence of call sites (program points) of uncompleted procedure calls.

In the call string approach that originated from Sharir and Pnueli[50],
each piece of data flow information is tagged with a call string that
records the history of uncompleted procedure calls along which that
information is propagated. The call string on a piece of information is
updated whenever a propagation step associated with a call statement
or return statement is performed. The call string approach has since
become one of the most popular mechanisms in obtaining context-
sensitivity in interprocedural analysis, see references in [48, 46].

∗ The work is supported in part by the National Science Foundation (CCR-
0131862). A preliminary version of this paper appeared in Proceedings of PEPM
’02, Jan. 14-15, 2002 Portland, OR, USA

c© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

HOSC03.tex; 27/11/2004; 12:27; p.1

2

Almost all analyses for logic programs are formulated as abstract
interpretations. In abstract interpretation [10], program analyses are
viewed as program executions over non-standard data domains. De-
sign of an analysis usually begins with defining a collecting semantics
that associates with each program point a set of memory stores that
are obtained at the program point. The analysis is then defined as
an approximation of the collecting semantics. The approximation is
calculated by simulating over a non-standard data domain (called the
abstract domain) the computation of the collecting semantics over
the standard data domain (called the concrete domain). Much re-
search has been done in abstract interpretation of logic programs [11].
A number of (generic) abstract semantics, also called frameworks or
schemes [4, 6, 17, 23, 26, 38, 39, 43] have been proposed for analysis
of logic programs; and they have been specialised for the detection
of determinacy [13], data dependency analyses [14, 21], mode infer-
ence [14, 53], program transformation [49], type inference [22, 33, 34],
termination proof [55, 5], etc.

In logic programs, interprocedural control flow is maximal whilst
intraprocedural control flow is minimal. It is therefore natural to use
context information to improve precision of logic program analysis.
However, context sensitivity of logic program analysis has not attracted
much attention and it has been a by-product of approximating top-
down evaluation mechanisms. In particular, information about the con-
text of a call has been exclusively captured by recording information
about the memory stores in which the call was made. No abstract
semantics for logic programs make use of call strings as context in-
formation. This paper fills this gap by deriving an abstract semantics
that is parameterised by both an abstraction of execution paths and
an abstraction of memory stores. Furthermore, the abstract semantics
allows path abstractions that are not call strings.

In addition to ensuring that procedure returns match corresponding
procedure calls, call strings provide additional information that is not
present in assumption sets: call sites. This information is useful in
programming tools such as abstract diagnosers [9] that must trace and
locate the source of discrepancies between derived and intended prop-
erties. See section 6.2 for an example. A distinguishing characteristics
of logic programs is non-determinism. A procedure in a logic program
is usually defined by several clauses and the clause invoked to execute
a call is non-deterministically chosen at run-time. This is in contrast to
an imperative program in which a procedure has only one definition.
Thus, the call string approach need be adapted in order to differen-
tiate data flow information produced by different clauses that define
the same procedure. This requires keeping track of information about

HOSC03.tex; 27/11/2004; 12:27; p.2

3

completed as well as uncompleted calls. This is achieved by formulating
a collecting semantics that is parameterised by execution paths. The
collecting semantics is derived from an operational semantics that is
the result of instrumenting the LD resolution (SLD resolution with the
left-to-right computation rule) with execution paths and explicit mem-
ory stores. The collecting semantics is then approximated by applying
independent abstractions of execution paths and memory stores. The
result is a system of data flow equations whose least solution associates
each description of execution paths with a description of data. The
system of data flow equations can then be solved using a least fixed
point algorithm such as work-list and round-robin algorithms.

The remainder of this paper is organised as follows. Section 2 briefly
recalls on basic concepts in abstract interpretation and logic program-
ming, and introduces notations used later in this paper. Section 3
reformulates LD resolution in order to facilitate the derivation of a
collecting semantics. Section 4 derives the collecting semantics from the
operational semantics. Section 5 derives the abstract semantics from
the collecting semantics, and gives sufficient conditions for the abstract
semantics to approximate safely the collecting semantics. In section 6,
we show how the abstract semantics can be specialised by two exam-
ples. The first example uses call strings as context information and the
second example uses the last transfer of control as context information.
Section 7 reviews related work and section 8 concludes. Only definite
programs are considered in this paper. However, the abstract semantics
can be readily generalised to analyse logic programs with negation and
builtin predicates as in [4]. Proofs are included in an appendix.

2. Preliminaries

This section first recalls some basic concepts in abstract interpretation
and logic programming and then formalises the notion of an execution
path. The reader is referred to [30] and [10] for more detailed exposition
on logic programming and abstract interpretation respectively.

We begin with some preliminary notations. Let Φ be a set of sym-
bols. The set of all strings over Φ is denoted Φ∗ and the set of all
non-empty strings over Φ is denoted Φ†. Let Λ be the empty string.
Then Φ† = Φ∗\{Λ}. The concatenation of two strings x and y is denoted
by their juxtaposition xy. Let X and Y be two sets of strings. The
juxtaposition XY of X and Y is defined XY

def
= {xy | x ∈ X ∧ y ∈ Y }.

Church’s lambda notation is sometimes used so that a function
f(x) = e(x) will be denoted by λx.e(x). The function composition

operator ◦ is defined as f ◦ g def
= λx.f(g(x)).

HOSC03.tex; 27/11/2004; 12:27; p.3

4

2.1. Abstract Interpretation

A semantics of a program is given by an interpretation 〈(C,vC), C〉
where (C,vC) is a complete lattice and C is a monotone function
on (C,vC). The semantics is defined as the least fixed point lfp C
of C. The concrete semantics of the program is given by the concrete
interpretation 〈(C,vC), C〉 while an abstract semantics is given by an
abstract interpretation 〈(A,vA),A〉. The correspondence between the
concrete and the abstract domains is formalised by a Galois connection
(α, γ) between (C,vC) and (A,vA). A Galois connection between A
and C is a pair of monotone functions α : C 7→ A and γ : A 7→ C
satisfying ∀c ∈ C.(c vC γ ◦ α(c)) and ∀a ∈ A.(α ◦ γ(a) vA a).
The function α is called an abstraction function and the function γ
a concretisation function. A sufficient condition for lfp A to be a safe
abstraction of lfp C is ∀a ∈ A.(α ◦ C ◦ γ(a) vA A(a)) or equiv-
alently ∀a ∈ A.(C ◦ γ(a) vC γ ◦ A(a)), according to propositions
24 and 25 in [11]. The abstraction and concretisation functions in
a Galois connection uniquely determine each other; and a complete
meet-morphism γ : A 7→ C induces a Galois connection (α, γ) with
α(c) = uA{a | c vC γ(a)}. A function γ : A 7→ C is a complete
meet-morphism iff γ(uAX) = uC{γ(x) ∈ X} for any X ⊆ A. Thus, an
analysis can be formalised as a tuple (〈(C,vC), C〉, γ, 〈(A,vA),A〉) such
that 〈(C,vC), C〉 and 〈(A,vA),A〉 are interpretations, γ is a complete
meet-morphism from (C,vC) to (A,vA), and ∀a ∈ A.(C ◦γ(a) vC γ ◦
A(a)).

2.2. Logic Programs

Let Σ be a set of function symbols, Π a set of predicate symbols and
Vars a denumerable set of variables. Each function or predicate symbol
has an arity which is a non-negative integer. We write f/n ∈ Σ for
an n-ary function symbol f in Σ and p/n ∈ Π for an n-ary predicate
symbol p in Π. The set of all terms, denoted Term, is the smallest set
satisfying: (i) Vars ⊆ Term; and (ii) if {t1, · · · , tn} ⊆ Term and f/n ∈ Σ
then f(t1, · · · , tn) ∈ Term. The set of all atoms that can be constructed
from Π and Term is denoted Atom; Atom = {p(t1, · · · , tn) | (p/n ∈
Π) ∧ ({t1, · · · , tn} ⊆ Term)}.

A clause C is a formula of the form H ← A1A2 · · ·An where H ∈
Atom ∪ {2} and Ai ∈ Atom for 1 ≤ i ≤ n. H is called the head of the
clause and A1, A2, · · · , An the body of the clause. Note that 2 denotes
the empty head and denotes the empty body. A query is a clause
whose head is 2. A program is a set of clauses of which one is a query.
The query initiates the execution of the program. A goal is a sequence

HOSC03.tex; 27/11/2004; 12:27; p.4

5

of atoms interspersed with occurrences of and is always terminated
with an . The set of all goals is Goal

def
= (Atom∗{ })†.

Memory stores that exist during the execution of a logic program are
called substitutions. A substitution θ is a mapping from Vars to Term

such that dom(θ)
def
= {x | (x ∈ Vars) ∧ (θ(x) 6= x)} is finite. The set

dom(θ) is called the domain of θ. Let dom(θ) = {x1, · · · , xn}. Then θ
is written as {x1/θ(x1), · · · , xn/θ(xn)}. A substitution θ is idempotent
if θ ◦ θ = θ. The set of idempotent substitutions is denoted Sub; and
the identity substitution is denoted ε. Let Subfail

def
= Sub ∪ {fail} and

extend ◦ by θ ◦ fail
def
= fail and fail ◦ θ def

= fail for any θ ∈ Subfail . The
restriction of a substitution θ to a set V of variables is defined as

θ ↑ V def
= λx.(if x ∈ V then θ(x) else x)

Substitutions are not distinguished from their homomorphic extensions
to various syntactic categories.

An equation is a formula of the form l = r where either l, r ∈ Term
or l, r ∈ Atom. The set of all equations is denoted Eqn. For a set E
of equations, mgu : ℘(Eqn) 7→ Subfail returns either a most general
unifier for E if E is unifiable or fail otherwise. Let mgu(l, r) stand for
mgu({l = r}).

The set of variables in a syntactic object o is denoted vars(o). A
renaming substitution ρ is a substitution such that {ρ(x) | x ∈ Vars} is
a permutation of Vars. The set of all renaming substitutions is denoted
Ren. Define ren(o1, o2)

def
= {ρ ∈ Ren | vars(ρ(o1)) ∩ vars(o2) = ∅}.

2.3. Program Graph

The inputs to an analysis are a program P and a description of a
set Θι of substitutions for the query (2 ← Q) in P . For each θ ∈ Θι,
(2← θ(Q)) is a possible query to P . A clause C with bodyA1A2 · · ·An
is designated with n+1 different (program) points with jth point imme-
diately before Aj for 1 ≤ j ≤ n and (n+1)th immediately before . The
leftmost point, denoted entry(C), is called the entry point of C and the
rightmost point, denoted exit(C), is called the exit point of C. Let NC
denote the set of the points associated with C and N the set of all the
points designated with clauses in P . Note that N =

⋃
{NC | C ∈ P}.

Let p ∈ N . We use p to denote the point to the left of p if p exists
and p+ to denote the point to the right of p if p+ exists. Let A(p) denote
the atom or the nullary symbol to the right of p and H(p) denote the
head of the clause with which p is associated. Note that if p and q are
two program points in the same clause then H(p) = H(q).

HOSC03.tex; 27/11/2004; 12:27; p.5

6

Let p, q ∈ N , and q be the most recent program point that LD
resolution has reached. There are two possibilities that LD resolution
will reach p next. If q is the exit point of a clause C then LD resolution
can reach p immediately only if C has been used to resolve with A(p).
If q is not an exit point then LD resolution can reach p only if p is the
entry point of a clause that can be used to resolve with A(q). Note that
if q is the exit point of the query then LD resolution has succeeded
and will not visit any more program points. A graph < N , E >, called
program graph, is used to represent the relation that “LD resolution
will possibly visit p immediately after it visits q”.

E def
= Ecall ∪ Eret

Ecall def
=


entry(C)↼q

q ∈ N
∧

C ∈ P
∧

ρ ∈ ren(A(q),H(entry(C)))
∧

mgu(ρ(A(q)),H(entry(C))) 6= fail


Eret def

= {p↼exit(C) | entry(C)↼p ∈ Ecall}

Edges in Ecall correspond to procedure-entry operations, and edges in
Eret to procedure-exit operations. Note that Ecall ∩ Eret = ∅ and p↼q
is an edge from q to p. Let ι be the entry point of the query. It is be
the initial program point. Let N call def

= {entry(C) | C ∈ P} \ {ι} and

N ret def
= (N \ N call) \ {ι}. A point in N call is reached after perform-

ing a procedure-entry operation and a point in N ret is reached after
performing a procedure-exit operation. There is no edge to ι since the
head 2 of the query (2← Q) does not occur in the body of any clause
in the program P .

EXAMPLE 2.1. Consider the following logic program. The intended
meaning of member(X,L) is that X is a member of list L. The intended
meaning of both(X,L,K) is that X is a member of both list L and list
K.

C1 ≡ both(X,L,K)← ©1 member(X,L) ©2 member(X,K) ©3
C2 ≡ member(X, [X|L])← ©4
C3 ≡ member(X, [H|L])← ©5 member(X,L) ©6
Q ≡ 2 ← ©7 both(X,L1, L2) ©8

Let Θ7 be the set of substitutions θ such that θ(X) is a variable,
and both θ(L) and θ(K) are ground terms. The set N contains 8

HOSC03.tex; 27/11/2004; 12:27; p.6

7

program points with ι = 7, and A(1) = member(X,L) and A(2) =
member(X,K). The edge 5↼1 is in Ecall and 2↼6 in Eret. The pro-
gram graph for the program is illustrated in figure 1.

Figure 1. Program Graph for Example 2.1

2.4. Execution paths

An execution path is a sequence pnpn−1 · · · p1 of program points that
are visited during an execution of the program. Note that the execution
path starts with p1 = ι and pi↼pi−1 ∈ E for 2 ≤ i ≤ n. Not every
sequence pnpn−1 · · · p1 of program points such that pi↼pi−1 ∈ E for
2 ≤ i ≤ n is an execution path. For instance, 5 2 4 5 1 7 is not
an execution path for the program in example 2.1 since it does not
have proper nesting of procedure-entry and procedure-exit operations.
We follow [12, 19, 20, 42, 44, 45, 46, 47] in using a formal grammar
to model valid execution paths. The grammar is generated from an
interprocedural flow defined in the following to ensure proper nesting.

IF
def
=


(p+↼exit(C); entry(C)↼p)

p ∈ N
∧

C ∈ P
∧

entry(C)↼p ∈ Ecall


EXAMPLE 2.2. Continue with example 2.1. The interprocedural flow
for the program is

IF =
{

(8↼3; 1↼7) , (2↼4; 4↼1) , (2↼6; 5↼1) , (3↼4; 4↼2)
(3↼6; 5↼2) , (6↼4; 4↼5) , (6↼6; 5↼5)

}
The grammar is derived from the interprocedural flow IF as follows.

VP −→ VPp,ι whenever p ∈ N
VPp,p −→ p whenever p ∈ N

VPp2,p1 −→ VPp2,pr CPpx,pn p1 whenever (pr↼px; pn↼p1) ∈ IF
VPp2,p1 −→ VPp2,pn p1 whenever pn↼p1 ∈ Ecall

CPp,p −→ p whenever p ∈ N
CPp2,p1 −→ CPp2,pr CPpx,pn p1 whenever (pr↼px; pn↼p1) ∈ IF

VPp2,p1 is a shorthand for “valid execution paths from p1 to p2” and
CPp2,p1 abbreviates “complete execution paths from p1 to p2”. A string

HOSC03.tex; 27/11/2004; 12:27; p.7

8

generated by CPp2,p1 is an execution path from p1 to p2 in which every
procedure-entry operation is matched by its corresponding procedure-
exit operation. It is an execution path for a successful execution of the
calls between p1 and p2. Observe that CPp2,p1 exists for p1 and p2 only
if p1 and p2 are associated with the same clause and p1 appears before
p2 when p1 6= p2. A string generated by VPp2,p1 is an execution path
from p1 to p2 in which every procedure-exit operation is matched by its
corresponding procedure-entry operation while un-matched procedure-
entry operations come from uncompleted procedure calls. If p1 = p2

then the only string generated by VPp2,p1 is p1. It is generated by an
instance of the first rule template for VPp2,p1 . If p1 6= p2 then p2 is
reached either after or before the execution of the call A(p1) (in some
substitution) is completed. The string is generated by an instance of the
second rule template for VPp2,p1 in the former case and by an instance
of the third rule template in the later case. Finally, the rule template
for VP ensures that only valid execution paths starting with the initial
program point ι are generated. Let L(X) denote the language generated
by a non-terminal X. The set of execution paths starting with ι is
∆ = L(VP) and the set of complete execution paths starting with entry
points of the clauses in the program is ∆c =

⋃
{L(CPp,entry(C)) | (C ∈

P) ∧ (p ∈ NC)}. All paths in the sequel are execution paths and the
word “execution” will be dropped from the term “execution path”.

EXAMPLE 2.3. The grammar that generates paths for the program in
example 2.1 includes among others the following rules.

VP6,1 −→ VP6,2 CP4,4 1
VP6,1 −→ VP6,2 CP6,5 1
VP6,1 −→ VP6,5 1
CP2,1 −→ CP2,2 CP4,4 1
CP2,1 −→ CP2,2 CP6,5 1

Let hd(δ) be the leftmost point in a path δ and tl(δ) the result of
removing hd(δ) from δ. Observe that if δ ∈ L(VPp2,p1) and p2 ∈ NC
then there are unique ω ∈ L(CPp2,entry(C)) and φ such that (a) δ = ωφ
and (b) either φ = Λ or φ ∈ L(VPhd(φ),p1

) and entry(C)↼hd(φ) ∈
Ecall. Thus, for a path δ ∈ ∆, there are unique ω ∈ ∆c and φ ∈ ∆∪{Λ}
such that δ = ωφ. The prefix ω is denoted closed pref (δ) and the suffix
φ is denoted open suf (δ). If φ 6= Λ then φ = ω′φ′ for unique ω′ ∈ ∆c

and φ′ ∈ ∆ ∪ {Λ}. In this way, a path in ∆ may be decomposed into a
concatenation of complete paths in ∆c.

HOSC03.tex; 27/11/2004; 12:27; p.8

9

EXAMPLE 2.4. Continue with examples 2.1–2.3.
Let δ = 6 4 5 5 2 6 6 4 5 5 1 7. Then δ is the concatenation of
ω1 = closed pref (δ) = 6 4 5 and δ1 = open suf (δ) = 5 2 6 6 4 5 5 1 7.
The path δ1 is decomposed into ω2 = closed pref (δ1) = 5 and δ2 =
open suf (δ1) = 2 6 6 4 5 5 1 7, which in turn is decomposed into
ω3 = closed pref (δ2) = 2 6 6 4 5 5 1 and δ3 = open suf (δ2) = 7.
Finally, ω4 = open suf (δ3) = 7 and δ4 = closed pref (δ3) = Λ. In this
way, the path δ is decomposed into four segments ω1, ω2, ω3 and ω4.

Information about paths are used in the abstract semantics to dis-
tinguish descriptions of substitutions obtained from different paths.
The next section instruments LD resolution so as to make explicit
the derivation path of a goal from the query. The instrumented LD
resolution forms a basis for the collecting semantics in section 4. Then
the abstract semantics is obtained in section 5 by approximating the
collecting semantics.

3. Operational semantics

LD resolution keeps reducing one goal into another. The transition rules
for one step LD derivation are

(G) LD−→ G

and

(H ← B) ∈ P ρ ∈ Ren
vars((A,G)) ∩ vars(ρ(H ← B)) = ∅ θ = mgu(A, ρ(H)) 6= fail

(AG) LD−→ θ((ρ(B)G))

where A is an atom and G is a goal. LD resolution abstracts away some
aspects of program execution that are essential to data flow analysis;
it must be modified before it can be used as a basis for data flow
analysis. Firstly, a substitution in which an atom in the program is
executed must be made explicit because what of interest in data flow
analysis is the substitution itself but not the instance of the atom
under the substitution. Secondly, the derivation path of a goal from the
query need be carried so as to make data flow analysis path dependent.
These considerations leads to an instrumented LD resolution (ILD in
abbreviation).

In order to make the presentation of ILD resolution easy to fol-
low, we first present a modified LD resolution (MLD in abbreviation)

HOSC03.tex; 27/11/2004; 12:27; p.9

10

that incorporates the first modification. A state in MLD is a sequence
(B′n,Hn, θn) · · · (B′1,H1, θ1) where B′i is a suffix of the body of a clause
whose head is Hi and θi is a substitution that constrains variables in
the clause. The most recent clause corresponds to the front triple of
the sequence and the query to the tail triple. The initial MLD state
for a query 2 ← θι(Q) is (Q, θι,2). The one step MLD derivation is
modelled by these two transition rules:

(H ← B) ∈ P θ = unify(A, σ,H, ε) 6= fail

((A,B′),H ′, σ)s MLD−→ (B,H, θ)((A,B′),H ′, σ)s

(, σ,H)((A,B′),H ′, ω)s MLD−→ (B′,H ′, θ)s where θ = unify(H,σ,A, ω)

where unify : Atom× Sub× Atom× Sub 7→ Subfail is defined as

unify(A1, θ, A2, ω)
def
=


let ρ ∈ ren(θ(A1), ω(A2)
in
mgu(ρ(θ(A1)), ω(A2)) ◦ ω

(1)

The first rule performs a procedure-entry operation. It is applied
when a clause H ← B in the program is resolved with a call σ(A) where
A is an atom in the program and σ a substitution. A sub-refutation
for θ(B) is started where θ = unify(A, σ,H, ε) is the most general
unifier of H and a renaming instance of σ(A). Note that σ(A) instead
of H ← B is renamed by the operation unify . This is to ensure that
the domain of θ contains variables in H ← B instead of their renaming
instances. The second rule performs a procedure-exit operation. It is
applied when the first triple is of the form (, σ,H) which signals the
completion of a sub-refutation in which the head of the first clause
is H. The second triple ((A,B′), ω,H ′) tells that ω(A) is the call with
which the clause was resolved. Thus, a sub-refutation for ω(A) has been
completed. The substitution after the sub-refutation is the composition
of ω and the most general unifier of ω(A) and a renaming instance of
σ(H). Observe that the call ω(A) is removed upon procedure-exit rather
than procedure-entry. The operation unify is used in both transition
rules to compute the substitution in the first triple of the next state. In
other words, it encapsulates both procedure-entry and procedure exit
operations.

EXAMPLE 3.1. Consider the program in 2.1. Let “both” and “mem-
ber” be abbreviated as b and m respectively. The following is a MLD
refutation for query 2← θι(b(X,L1, L2)) with θι = {L1/[1, 2], L2/[2]}.

(b(X,L1, L2), {L1/[1, 2], L2/[2]},2)

HOSC03.tex; 27/11/2004; 12:27; p.10

11

MLD−→ C1 ((m(X,L),m(X,K)), {X/X1, L/[1, 2],K/[2]}, b(X,L,K))
(b(X,L1, L2), {L1/[1, 2], L2/[2]},2)

MLD−→ C3 (m(X,L), {X/X2,H/1, L/[2]},m(X, [H|L]))
((m(X,L),m(X,K)), {X/X1, L/[1, 2],K/[2]}, b(X,L,K))
(b(X,L1, L2), {L1/[1, 2], L2/[2]},2)

MLD−→ C2 (, {X/2, L/[]},m(X, [X|L]))
(m(X,L), {X/X2,H/1, L/[2]},m(X, [H|L]))
((m(X,L),m(X,K)), {X/X1, L/[1, 2],K/[2]}, b(X,L,K))
(b(X,L1, L2), {L1/[1, 2], L2/[2]},2)

MLD−→ (, {X/2, X2/2,H/1, L/[2]},m(X, [H|L]))
((m(X,L),m(X,K)), {X/X1, L/[1, 2],K/[2]}, b(X,L,K))
(b(X,L1, L2), {L1/[1, 2], L2/[2]},2)

MLD−→ (m(X,K), {X/2, X1/2, L/[1, 2],K/[2]}, b(X,L,K))
(b(X,L1, L2), {L1/[1, 2], L2/[2]},2)

MLD−→ C2 (, {X/2, L/[]},m(X, [X|L]))
(m(X,K), {X/2, X1/2, L/[1, 2],K/[2]}, b(X,L,K))
(b(X,L1, L2), {L1/[1, 2], L2/[2]},2)

MLD−→ (, {X/2, X1/2, L/[1, 2],K/[2]}, b(X,L,K))
(b(X,L1, L2), {L1/[1, 2], L2/[2]},2)

MLD−→ (, {X/2, L1/[1, 2], L2/[2]},2)

Each procedure-entry operation is annotated with the label of the clause
that is used. Sequences of triples are displayed vertically.

The second modification is incorporated by carrying a derivation
path with each triple in a MLD state. The path carried with the triple
(Q, θι,2) for the query 2 ← θι(Q) is ι. The path carried in the first
triple of the next state is always the path in the first triple of the current
state prepended with the program point that will be visited next. The
introduction of the derivation path makes redundant the suffix of the
body of the clause and the head of the clause since they are uniquely
determined by the leftmost program point in the path. Adding the
derivation path to and removing the two redundant elements from each
triple of a MLD state gives rise to a state in ILD resolution. Formally,
a state in ILD is a stack that is a sequence of stack items. A stack item
is of the form (δ, θ) where δ ∈ ∆ and θ ∈ Sub. The set of all possible
stacks is then

S = (∆× Sub)∗

ILD resolution is given by transition rules in Figure 2. Rule (R1) per-
forms a procedure-entry operation and rule (R2) does a procedure-exit
operation.

HOSC03.tex; 27/11/2004; 12:27; p.11

12

p↼q ∈ Ecall θ = unify(A(q), σ,H(p), ε) 6= fail
(R1)

(qδ′, σ)S ILD−→ (pqδ′, θ)(qδ′, σ)S

p↼q ∈ Eret θ = unify(H(q), σ,A(p), ω) 6= fail
(R2)

(qδ′p δ′′, σ)(p δ′′, ω)S ILD−→ (pqδ′p δ′′, θ)S

Figure 2. Transition rules

EXAMPLE 3.2. Continue with example 3.1. Below is an ILD refu-
tation for the same query that is 2 ← θι(b(X,L1, L2)) with θι =
{L1/[1, 2], L2/[2]}. Since the suffix and the head of the clause in a stack
item are implicit, the reader need to refer to the program to follow the
refutation process.

(7, {L1/[1, 2], L2/[2]})
ILD−→C1 (1 7, {X/X1, L/[1, 2],K/[2]})

(7, {L1/[1, 2], L2/[2]})
ILD−→C3 (5 1 7, {X/X2,H/1, L/[2]})

(1 7, {X/X1, L/[1, 2],K/[2]})
(7, {L1/[1, 2], L2/[2]})

ILD−→C2 (4 5 1 7, {X/2, L/[]})
(5 1 7, {X/X2,H/1, L/[2]})
(1 7, {X/X1, L/[1, 2],K/[2]})
(7, {L1/[1, 2], L2/[2]})

ILD−→ (6 4 5 1 7, {X/2, X2/2,H/1, L/[2]})
(1 7, {X/X1, L/[1, 2],K/[2]})
(7, {L1/[1, 2], L2/[2]})

ILD−→ (2 6 4 5 1 7, {X/2, X1/2, L/[1, 2],K/[2]})
(7, {L1/[1, 2], L2/[2]})

ILD−→C2 (4 2 6 5 1 7, {X/2, L/[]})
(2 6 4 5 1 7, {X/2, X1/2, L/[1, 2],K/[2]})
(7, {L1/[1, 2], L2/[2]})

ILD−→ (3 4 2 6 4 5 1 7, {X/2, X1/2, L/[1, 2],K/[2]})
(7, {L1/[1, 2], L2/[2]})

ILD−→ (8 3 4 2 6 4 5 1 7, {X/2, L1/[1, 2], L2/[2]})

ILD resolution is equivalent to LD resolution in the sense that,
given the same goal and the same program, ILD reaches a program

HOSC03.tex; 27/11/2004; 12:27; p.12

13

point iff LD reaches the same program point, and the instantiation of
the variables in the clause of the program point by ILD is equivalent
(modulo renaming) to that by LD.

LEMMA 3.3. Let θ be a substitution, C a clause and p be a program
point such that p ∈ NC . Then

− (a) If θ(Q) LD−→∗ (σ(A(p))G) for some σ ∈ Sub and G ∈ Goal then
there are δ ∈ ∆, η ∈ Sub and s ∈ S such that (ι, θ) ILD−→∗ (pδ, η)s
and σ ↑ vars(C) = η ↑ vars(C).

− (b) If (ι, θ) ILD−→∗ (pδ, η)s for some δ ∈ ∆, η ∈ Sub and s ∈ S then
there are σ ∈ Sub and G ∈ Goal such that θ(Q) LD−→∗ (σ(A(p))G)
and σ ↑ vars(C) = η ↑ vars(C).

The set S0 ⊆ S of initial states is determined by the set of queries
to the program.

S0
def
= {(ι, θ) | θ ∈ Θι}

The operational semantics of the program is defined as the set of de-
scendant states of initial states where ILD−→∗ is the reflexive and transitive
closure of ILD−→.

[[P]]
def
= {s | ∃s0 ∈ S0.(s0

ILD−→∗ s)}

Note that the domain of the operational semantics is 〈℘(S),⊆, ∅,S,∩,∪〉
which is a complete lattice.

4. Collecting semantics

This section presents the collecting semantics. The collecting semantics
abstracts away the sequential relation between stack items of a stack.
It maps a path to a set of substitutions. The domain of the collecting
semantics is D] def

= ∆ 7→ ℘(Sub) ordered by v]∈ ℘(D] ×D]):

X] v] Y] def
= ∀δ ∈ ∆.(X](δ) ⊆ Y](δ))

that is the pointwise extension of ⊆. Since < ℘(Sub),⊆, ∅,Sub,∩,∪ > is
a complete lattice, < D],v],⊥],>],u],t] > is a complete lattice where
X]t]Y] = λδ ∈ ∆.(X](δ)∪Y](δ)), X]u]Y] = λδ ∈ ∆.(X](δ)∩Y](δ)),
>] = λδ ∈ ∆.Sub and ⊥] = λδ ∈ ∆.∅.

HOSC03.tex; 27/11/2004; 12:27; p.13

14

The approximation of a set of stacks by an element in D] is modelled
by a function γ] ∈ D] 7→ ℘(S) defined as

γ](X]) =

(δn, θn) · · · (δ1, θ1)
∀1 ≤ i ≤ n.(θi ∈ X](δi))

∧
∀1 ≤ j < n.(δj ∈ suf (δj+1))

 (2)

where suf (δ) is the set of all suffixes of δ and suf (Φ) =
⋃
φ∈Φ suf (φ)

for Φ ⊆ ∆.

LEMMA 4.1. The function γ] is a complete meet-morphism.

The collecting semantics defined below maps a path to a set of
substitutions. A path is extended by performing either a procedure-
entry operation or a procedure-exit operation. A path of the form qδ′

is extended to pqδ′ by a procedure-entry operation only if p↼q ∈ Ecall.
A path of the form qζ is extended to pqζ by a procedure-exit operation
only if p↼q ∈ Eret and a prefix of pqζ is a complete execution path
for A(p) which is the atom to the left of the program point p. This
implies that there are unique δ′ and δ′′ such that pqζ = pqδ′p δ′′ and
pqδ′p ∈ L(CPp,p). The condition pqδ′p ∈ L(CPp,p) is equivalent to
qδ′ ∈ ∆c given that p↼q ∈ Eret. The collecting semantics is

[[P]]]
def
= lfp F]

where F] : D] 7→ D] is

F](X])
def
= F]0(X]) t] F]1(X]) t] F]2(X])

and

F]0(X])(δ)
def
=

⋃
{Θι | (δ = ι)} (3)

F]1(X])(δ)
def
=

⋃cunify(A(q), X](qδ′),H(p), {ε})
δ = pqδ′

∧
p↼q ∈ Ecall

(4)

F]2(X])(δ)
def
=

⋃
cunify(H(q), X](qδ′p δ′′),A(p), X](p δ′′))

δ = pqδ′p δ′′

∧
p↼q ∈ Eret

∧
qδ′ ∈ ∆c


(5)

and cunify : Atom× ℘(Sub)× Atom× ℘(Sub) 7→ ℘(Sub) is

cunify(A1,Θ, A2,Ω)
def
= {unify(A1, θ, A2, ω) | θ ∈ Θ ∧ ω ∈ Ω} \ {fail}

(6)

HOSC03.tex; 27/11/2004; 12:27; p.14

15

For a given input X] ∈ D], F](X]) maps a path to a set of substitu-
tions. The set of substitutions for the initial path ι is F]0(X])(ι); that
for a path δ ended with a procedure-entry operation is F]1(X])(δ); and
that for a path δ ended with a procedure-exit operation is F]2(X])(δ).
For a given path δ, F]0(X])(δ) and F]1(X])(δ) and F]2(X])(δ) are pair-
wise disjoint. Note that if F] (X])(δ) =

⋃
Y with 0 ≤  ≤ 2 then Y is a

singleton because there is exactly one decomposition of δ that satisfies
the predicate of Y. The advantages of using the set union operation
are two-fold. Firstly, it allows concise definitions for F]0 , F]1 and F]2 .
Secondly, it makes the collecting semantics correspond to the abstract
semantics in form and thereby simplifies the correctness proof of the
abstract semantics.

EXAMPLE 4.2. Consider the program in example 2.1. We have
H(4) = member(X, [X|L]) and A(5) = member(X,L) and

F](X])(7) = Θ7

...
F](X])(4 5 1 7) = cunify(A(5), X](5 1 7),H(4), {ε})

F](X])(6 4 5 1 7) = cunify(H(4), X](4 5 1 7,A(5), X](5 1 7))
...

The function F] is monotone on < D],v]>. The next result proves
correctness of the collecting semantics.

LEMMA 4.3. [[P]] ⊆ γ]([[P]]]).

5. Abstract Semantics

The collecting semantics [[P]]] is a safe approximation of the operational
semantics and can be used as a basis for program analysis. It is a map-
ping from paths to sets of substitutions. In order to obtain information
effectively, further approximations are needed.

5.1. Abstracting paths

Paths of arbitrary length need be described by elements from a finite
set ∆[of path descriptions. Let β : ∆ 7→ ∆[maps a path into its

HOSC03.tex; 27/11/2004; 12:27; p.15

16

description. Define β−1 : ∆[7→ ℘(∆) as β−1(δ̄)
def
= {δ | β(δ) = δ̄}

and p • δ̄ def
= {β(pδ) | δ ∈ β−1(δ̄) ∧ pδ ∈ ∆}. Let φ̄ � χ̄ denote the

condition that at least one path described by χ̄ is an extension of a
path described by φ̄ with a complete path in ∆c, i.e., φ̄ � χ̄

def
= ∃φ ∈

β−1(φ̄).∃χ ∈ β−1(χ̄).∃δ ∈ ∆c.(χ = δφ). The set of the descriptions of

the paths ending at p is ∆[(p)
def
= {β(pδ) | pδ ∈ ∆}.

5.2. Abstracting substitutions

When a program is analysed, the set of substitutions associated with
a path is approximated by an abstract substitution. Let ASub be the
domain of abstract substitutions and γ ∈ ASub 7→ ℘(Sub) the function
that gives meaning to an abstract substitution. It is required that,

C1: < ASub,v,⊥,>,u,t > is a complete lattice where v is the order
on ASub, ⊥ the infimum, > the supremum, u the greatest lower
bound operator and t the least upper bound operator; and

C2: γ ∈ ASub 7→ ℘(Sub) is a complete meet-morphism.

The domain of the abstract semantics is constructed in the same
way as that of the collecting semantics. Let D[def

= ∆[7→ ASub and
v[∈ ℘(D[×D[) be defined as

X[v[Y [def
= ∀δ̄ ∈ ∆[.(X[(δ̄) v Y [(δ̄))

Then < D[,v[,⊥[,>[,u[,t[> is a complete lattice with

⊥[= λδ̄ ∈ ∆[.⊥
>[= λδ̄ ∈ ∆[.>

X[u[Y [= λδ̄ ∈ ∆[.(X[(δ̄) u Y [(δ̄))

X[t[Y [= λδ̄ ∈ ∆[.(X[(δ̄) t Y [(δ̄))

The correspondence between the domains of the collecting and the
abstract semantics is formalised via a function γ[: D[7→ D] that is
defined in terms of γ and β.

γ[(X[)
def
= λδ ∈ ∆.γ(X[(β(δ))) (7)

LEMMA 5.1. The function γ[is a complete meet-morphism.

HOSC03.tex; 27/11/2004; 12:27; p.16

17

5.3. Abstract Semantics

The abstract semantics is obtained as follows. A set Θ of substitutions
in the collecting semantics is replaced by the best abstract substitution
that approximates Θ. The concrete function cunify is replaced by an
abstract function aunify that approximates safely cunify . A path is
replaced by a path description. The data descriptions for those paths
that have the same path description are merged using the least upper
bound operation t. Let πι ∈ ASub be the least abstract substitution
such that Θι ⊆ γ(πι). Note that πι instead of Θι is given as an analysis
input. Let id ∈ ASub, called an abstract identity substitution in [4],
be the least abstract substitution such that ε ∈ γ(id). The abstract
semantics is

[[P]][
def
= lfp F [

where F [: D[7→ D[is

F [(X[)
def
= F [0(X[) t[F [1(X[) t[F [2(X[)

and

F [0(X[)(δ̄)
def
=

⊔
{πι | δ̄ = β(ι)} (8)

F [1(X[)(δ̄)
def
=

⊔


aunify(A(q), X[(χ̄),H(p), id)

q ∈ N
∧

χ̄ ∈ ∆[(q)
∧

p↼q ∈ Ecall
∧

δ̄ ∈ (p • χ̄)


(9)

F [2(X[)(δ̄)
def
=

⊔



aunify(H(q), X[(χ̄),A(p), X[(φ̄))

q ∈ N
∧

χ̄ ∈ ∆[(q)
∧

p↼q ∈ Eret
∧

δ̄ ∈ (p • χ̄)
∧

φ̄ ∈ ∆[(p)
∧

φ̄� χ̄



(10)

The function F [0(X[) maps the path description of the initial path ι
to πι and other path descriptions to ⊥. The function F [1(X[) accumu-
lates, for each path description, data descriptions from procedure-entry

HOSC03.tex; 27/11/2004; 12:27; p.17

18

operations. If the path description does not describes any path whose
last operation is a procedure-entry, F [1(X[) maps that path descrip-
tion to ⊥. Similarly, the function F [2(X[) accumulates, for each path
description, data descriptions from procedure-exit operations. If the
path description does not describes any path whose last operation is a
procedure-exit, F [2(X[) maps that path description to ⊥. The semantic
function F [is monotone on < D[,v[> if aunify is monotone in its
second and fourth arguments. The global correctness of the abstract
semantics is ensured by the following two local correctness conditions.

C3: ε ∈ γ(id).

C4: cunify(A1, γ(π1), A2, γ(π2)) ⊆ γ ◦ aunify(A1, π1, A2, π2) for any
π1 ∈ ASub, any π2 ∈ ASub, any A1 ∈ Atom and any A2 ∈ Atom.

The following theorem proves that C1-C4 are sufficient conditions for
the abstract semantics to approximate safely the collecting semantics.

THEOREM 5.2. If C1-C4 hold then [[P]]] v] γ[([[P]][).

Note that the conditions C1-C4 are exactly those required by the
abstract semantics in [43, 31]. Once the abstraction β of paths is given,
the abstract semantics is instantiated into a special form which can
be used with an abstract domain satisfying C1-C4. Since these two
abstractions are independent of each other, abstract domains that have
been designed for logic program analyses can be used with the abstract
semantics without modification.

6. Examples

This section shows that the abstract semantics can be instantiated for
different abstractions of paths. The simplest abstraction of paths is to
simply ignore them. This can be achieved by defining ∆[def

= N and
β(pδ)

def
= p. Then ∆[(p) = {p} and p • q = {p} if p↼q ∈ E and p � q

if p↼q ∈ Eret. In this case, the abstract semantics degenerates to that
in [43].

6.1. Call Strings

Call strings have been used to enhance analysis of programs of other
programming paradigms [50]. The idea is to keep track of calls on the
execution stack - calls that are currently being executed. This amounts
to contracting each complete path segment in the decomposition of a

HOSC03.tex; 27/11/2004; 12:27; p.18

19

path to the end point of the segment. The call string of a path is given
by a function call : ∆ 7→ N ∗ defined as

call(δ)
def
=
{
hd(closed pref (δ)) If open suf (δ) = Λ;
hd(closed pref (δ))call(open suf (δ)) Otherwise.

Since there might be stacks of infinite size due to recursion, it is usual
to keep track of top k calls with k ≥ 1. This can be achieved by defining
β(δ)

def
= [call(δ)]k where [δ′]k′ is the result of truncating δ′ at position

k′ + 1 for k′ ≥ 1 and [δ′]0 = Λ. A call string will be written in the

form of pδ̄ since a call string has at least one program point. Let ∆[def
=

{β(δ) | δ ∈ ∆}. If p↼q ∈ Ecall and qχ̄ ∈ ∆[(q) then p • (qχ̄) =
{p[qχ̄]k−1}. If p↼q ∈ Eret and qχ̄ ∈ ∆[(q) then (a) pδ̄ ∈ (p • (qχ̄)) iff
χ̄ = [p δ̄]k−1 and (b) p φ̄ ∈ ∆[(p) and p φ̄ � qχ̄ imply φ̄ = δ̄. Thus,
F [is specialised into the following.

F [(X[)(pδ̄)
def
=

πι, if (p = ι)

⊔aunify(A(q), X[(qχ̄),H(p), id)
p↼q ∈ Ecall

∧
δ̄ = [qχ̄]k−1

 , if p∈N call

⊔aunify(H(q), X[(qχ̄),A(p), X[(p δ̄))
p↼q ∈ Eret

∧
χ̄ = [p δ̄]k−1

 , if p∈N ret

Note that if pδ̄ ∈ ∆[and p = ι then δ̄ = Λ. The abstract semantics
in [43] is a special case of the above abstract semantics for k = 1.

EXAMPLE 6.1. Let k = 3. The program in example 2.1 has 19 call
strings of length 3 or less. Among them are 5 5 1, 5 5 2, 5 5 5, 4 5 5 and
6 5 5. The abstract semantics F [(X[) is defined by 19 equations one for
each of the 19 call strings. The following are three of these equations.

F [(X[)(7) = π7

F [(X[)(5 5 5) = aunify(A(5), X[(5 5 1),H(5), id)
t
aunify(A(5), X[(5 5 2),H(5), id)

F [(X[)(6 5 5) = aunify(H(4), X[(4 5 5),A(5), X[(5 5 5))
t
aunify(H(6), X[(6 5 5),A(5), X[(5 5 5))

HOSC03.tex; 27/11/2004; 12:27; p.19

20

EXAMPLE 6.2. Consider the program in 2.1 and call strings of length
2. Below is the result of mode analysis [4, 15] using above abstract se-
mantics. The instantiation modes used are “free”, “ground” and “top”.
A variable X is “free” in a substitution θ if θ(X) is a variable. X is
“ground” in θ if θ(X) contains no variable. If the mode of X in θ
is “top” then θ(X) can be any term. The analysis also keeps track of
sharing [51] between variables to ensure correctness of analysis although
no two variables in the same clause share in this example. The input
abstract substitution πι, contained in the first comment, indicates that
both(X,L1,L2) is called with both L1 and L2 being ground and X being
free. All other abstract substitutions are inferred by the analyser.

$Goal :-
% toplevel-[X/free,L1/ground,L2/ground],[]

both(X,L1,L2)
% toplevel-[X/ground,L1/ground,L2/ground],[]

member(X,[X|L]).
% (both/3,1),1-[L/ground,X/ground],[]
% (both/3,1),2-[L/ground,X/ground],[]
% (member/2,2),1-[L/ground,X/ground],[]

member(X,[Y|L]) :-
% (both/3,1),1-[L/ground,X/free,Y/ground],[]
% (both/3,1),2-[L/ground,X/ground,Y/ground],[]
% (member/2,2),1-[L/ground,X/top,Y/ground],[]

member(X,L).
% (both/3,1),1-[L/ground,X/ground,Y/ground],[]
% (both/3,1),2-[L/ground,X/ground,Y/ground],[]
% (member/2,2),1-[L/ground,X/ground,Y/ground],[]

both(X,L,K) :-
% ($Goal/0,1),1-[X/free,L/ground,K/ground],[]

member(X,L),
% ($Goal/0,1),1-[X/ground,L/ground,K/ground],[]

member(X,K).
% ($Goal/0,1),1-[X/ground,L/ground,K/ground],[]

Each program point is annotated with a few comments. Each com-
ment consists of a call string of length 1 and an abstract substitution.
The program point and the call string of length 1 in a comment an-
notated with that program point form a call string of length 2. The
empty call string is displayed as toplevel indicating that the entry point

HOSC03.tex; 27/11/2004; 12:27; p.20

21

of the query is reached by the language system. An abstract substi-
tution has two parts. The first part represents mode information by
assigning an instantiation mode to each variable of interest. The second
part represents sharing information. A program point is represented by
identifying the clause in which it appears and its position in the clause.
A clause is identified by the name and arity of the predicate it defines
and its textual position in the sequences of clauses for the predicate.
For instance, ((member/2,2),1) stands for the entry point of the second
clause defining the predicate member/2. A query is treated as a clause
defining the predicate $Goal/0.

The analysis result indicates that at the entry point of the second
clause for member/2, X is a free variable if the clause is invoked at the
point ((both/3,1),1) while X is a ground term if the clause is invoked
at the point ((both/3,1),2). This information can be used to specialise
member/2 into two different versions. Without keeping track of path
information, the two modes of X from these two different invocations
must be merged resulting in the mode “top” which says nothing about
the instantiation mode of X.

6.2. Edges

Another useful abstraction of paths is to retain information about
which clause is used to satisfy a given call and which call invokes a
given clause. This corresponds to describing a path by its last opera-
tion. Thus, β(pqδ) = pq and β(ι) = ιΛ. Note that pq ∈ ∆[(p) implies
p↼q ∈ E or p = ι∧q = Λ. Thus, ∆[= {pq | p↼q ∈ E}∪{ιΛ}. Observe
that p • χ̄ = {pq} for any χ̄ ∈ ∆[(q) and p such that p↼q ∈ E and
that φ̄� χ̄ if φ̄ ∈ ∆[(p), χ̄ ∈ ∆[(q) and p↼q ∈ Eret. Therefore, F [is
specialised into the following.

F [(X[)(pq)
def
=

πι, if (p = ι)⊔
{aunify(A(q), X[(qu),H(p), id) | q↼u ∈ E}, if p ∈ N call

⊔aunify(H(q), X[(qu),A(p), X[(p v))
q↼u ∈ E
∧

p ↼v ∈ E

 , if p ∈ N ret

Note that p = ι and pq ∈ ∆[imply q = Λ. If Λ is added to N and
an edge from Λ to ι is added to E then the above abstract seman-
tics associates an abstract substitution with each edge in the program
graph.

HOSC03.tex; 27/11/2004; 12:27; p.21

22

EXAMPLE 6.3. The program in example 2.1 has 15 pairs including
7 Λ. The abstract semantics F [(X[) is defined by 15 equations one for
each pair. The following are three of these equations.

F [(X[)(7 Λ) = π7

F [(X[)(5 5) = aunify(A(5), X[(5 1),H(5), id)
t
aunify(A(5), X[(5 2),H(5), id)
t
aunify(A(5), X[(5 5),H(5), id)

F [(X[)(8 3) = aunify(H(3), X[(3 4),A(7), X[(7 Λ))
t
aunify(H(3), X[(3 6),A(7), X[(7 Λ))

EXAMPLE 6.4. This example applies the above abstract semantics to
perform prescriptive type analysis [24, 1, 25, 8, 32, 28]. In a prescrip-
tive type analysis, type definitions are given as an analysis input. The
following type definitions are used.

nat ::= 0 | s(nat)
list(β) ::= [] | [β|list(β)]

Below is a buggy naive reverse program and the result of the prescrip-
tive type analysis of the program using the abstract domain in [24]. The
program is annotated as follows. Each program point is annotated with
a few comments; one for each edge to that program point. The first part
of the comment for an edge is the source program point and the second
part an abstract substitution. An abstract substitution is either vtbot or
a variable typing which is a mapping from a variable to a type. vtbot
denotes the empty set of substitutions. A variable typing π denotes the
set of those substitutions that instantiate each variable X in the domain
of π into a term of the type π(X). bot is the type denoting the empty
set of terms and top is the type denoting the set of all terms. The input
abstract substitution πι, contained in the first comment, indicates that
nrev(X,Y) is called with X being a list of natural numbers. All other
abstract substitutions are inferred by the analyser.

$Goal :-
% toplevel - [X/list(nat)]

nrev(X,Y).
% (nrev/2,1),1 - [X/list(bot),Y/list(bot)]

HOSC03.tex; 27/11/2004; 12:27; p.22

23

% (nrev/2,2),3 - [X/list(nat),Y/nat]

append([],L,L).
% (append/3,2),1 - vtbot
% (nrev/2,2),2 - [L/nat]

append([H|T],L,[H|TL]) :-
% (append/3,2),1 - vtbot
% (nrev/2,2),2 - vtbot

append(T,L,TL).
% (append/3,1),1 - vtbot
% (append/3,2),2 - vtbot

nrev([],[]).
% ($Goal/0,1),1 - []
% (nrev/2,2),1 - []

nrev([H|T],L) :-
% ($Goal/0,1),1 - [H/nat,T/list(nat)]
% (nrev/2,2),1 - [H/nat,T/list(nat)]

nrev(T,T1),
% (nrev/2,1),1 -
% [H/nat,T/list(bot),T1/list(bot)]
% (nrev/2,2),3 - [H/nat,T/list(nat),T1/nat]

append(T1,H,L). % SHOULD BE append(T1,[H],L).
% (append/3,1),1 -
% [H/nat,T/list(bot),L/nat,T1/list(bot)]
% (append/3,2),2 - vtbot

The first comment for the exit point of the query tells that if the
query is executed successfully with the first clause of the nrev/2 then
both X and Y are instantiated into empty lists (of type list(bot)). This
is expected. The second comment says that if the query is executed suc-
cessfully with the second clause of the nrev/2 then X is instantiated into
a list of natural numbers and Y into a natural number. This indicates
that something is wrong with the second clause for nrev/2. The second
comment for the exit point of second clause for nrev/2 says that the
second clause for append/3 will fail when invoked by append(T1,H,L).
The second comment for the entry point of the second clause for ap-
pend/3 says that the unification will fail when the clause is invoked by
append(T1,H,L), indicating an error. Another indication of error is the
second comment for the entry point of the first clause for append/3. It
says that L will be a natural number instead of a list of natural numbers
when the clause is invoked by append(T1,H,L). Using the information,
the bug can be easily located.

HOSC03.tex; 27/11/2004; 12:27; p.23

24

The following is the result of the prescriptive type analysis by plug-
ging the same abstract domain into the abstract semantics in [43] which
ignores path information. The result is less precise than the above result.
For instance, no type information is given for Y at the exit point of the
query.

$Goal :-
%[X/list(nat)],

nrev(X,Y),
%[X/list(nat)].

append([],L,L).
%[L/nat].

append([H|T],L,[H|TL]) :-
%[L/nat],

append(T,L,TL).
%[T/list(top),L/nat,TL/top].

nrev([],[])
%[].

nrev([H|T],L) :-
%[H/nat,T/list(nat)],

nrev(T,T1),
%[H/nat,T/list(nat),T1/top],

append(T1,H,L).
%[H/nat,T/list(nat),L/top,T1/list(top)].

Among other prescriptive type analyses of logic programs [1, 25, 8,
32, 28, 33], [33] is the most precise one. Using a disjunction of variable
typings as an abstract substitution, [33] together with the abstract se-
mantics in [43] infers that at the exit point of the query, either both X
and Y are empty lists or X is of type list(nat) and Y of type nat. This
information is precise so long as variables in the query are concerned.
However, it does not tell which variable typing comes from which clause
of nrev/2.

6.3. Other path abstractions

A call string gives information about uncompleted calls and discards
information about completed calls. The last transfer of control informs
which call invoked a clause or which clause is used to satisfy a call. Let
δ be a path and ©pA©q be an atom in the program such that hd(δ) = q,
i.e. q is reached by following the path δ. The path δ has the form qηpω

HOSC03.tex; 27/11/2004; 12:27; p.24

25

where ω is the path before the atom A is called and η is the path
segment for a successful execution of the body of the clause that was
used to satisfy the atom A. Path abstractions in sections 6.1 and 6.2
can be combined to improve precision of each other. A path description
will be of the form 〈c, e〉 where c is a call string of some fixed length and
e is the edge for the last transfer of control. If 〈c, e〉 is the description
of the path δ then c describes ω and e – a return edge – describes η.
Note that a combined description for a path from the initial program
point to the entry point of a clause gives the same information as the
call string in the combined description.

More refined path abstractions are obtained by replacing the call
string c and/or the return edge e with more detailed information about
ω and η respectively. The path segment η may be described by the set of
predicates that have been called during the traversal of η. Another way
of describing η is to visualise η as forming a proof tree for ©pA©q and
then abstract the proof tree using techniques surveyed in [12]. These
refined abstractions of η will allow a diagnoser to trace bugs much
quickly than suggested in section 6.2. Information about ω may include
information about completed calls before the atom is invoked. These
completed calls may be described in the same way as η is described.
These refined abstractions about ω can be used to generate different
versions of clauses.

7. Related work

Context information has been widely used in data flow analysis. For
programs with high order constructs such as functional programs, in-
formation about contexts in which a procedure/function is applied may
be obtained via a control flow analysis [41, 29]. Since only Horn clause
logic programs are considered in our work, there is no need for a control
flow analysis.

Context information is also present in data flow analysis of logic
programs although context sensitivity of logic program analysis has not
been studied on its own. The abstract semantics proposed in this paper
is now compared with other abstract semantics for logic programs. An
abstract semantics for logic programs is based on either a top-down
evaluation strategy or a bottom-up evaluation strategy or a system of
simultaneous recurrence equations generated from the program.

HOSC03.tex; 27/11/2004; 12:27; p.25

26

7.1. Recurrence-based Abstract Interpretation

The abstract semantics in [39, 43] do not keep track of any context
information at all. As shown in section 6, [43] is a special form of our
abstract semantics. The abstract semantics in [37] records context in-
formation at the entry point of a program clause. Its abstract operators
distinguish between different call instances. Since context information is
not recorded at other program points, abstract substitutions originating
from different clauses are merged together using the least upper bound
operator. Our abstract semantics keeps track of more path information
than [37] and therefore can infer more precise results. It also separates
the abstraction of paths from that of data.

The abstract semantics in [57] approximates a minimum function
graph semantics. A clause has as its denotation a partial function
mapping an abstract substitution to another. Reachable versions of the
predicates in the program are then computed from the abstract seman-
tics where each reachable version of a predicate is a tuple of abstract
substitutions one for each clause for the predicate. A compiler based
on [57] may generate an implementation for each reachable version of
the predicate. The correct version of a predicate is selected for a call
in a version of a clause via an automaton whose states are reachable
versions and whose inputs are call edges in the program graph. Context
information is captured by reachable versions and the automaton. A set
of paths is approximated by a regular set of call strings. Information
about complete path segments is ignored that is useful as shown in
example 6.4.

7.2. Bottom-up abstract interpretation

The bottom-up abstract semantics in [2, 23, 7, 35, 36] approximate the
success set of the program [54] using a bottom-up evaluation strategy.
In order to infer call patterns, they first transform the program and then
approximate the success set of the transformed program. Since there
is no existing program transformation that encodes the execution path
of the program, these bottom-up abstract semantics cannot make use
of path information.

The abstract semantics in [26] derives demands on queries that guar-
antee that the execution of the program satisfies demands associated
with the program. Demands can be both call patterns and success
patterns. The abstract semantics is formulated as a greatest fixed point
computation with a preceding least fixed point computation. The least
fixed point computation approximates the success set of the program
which is then used by the greatest fixed point computation to propagate
demands backwards over the flow of control. The abstract semantics

HOSC03.tex; 27/11/2004; 12:27; p.26

27

in [17] derives the weakest specification for a module in a program that
guarantees that the program satisfies its specification. A specification
is a collection of pairs consisting of a goal and a success pattern. The
abstract semantics is based on the unfolding semantics in [3] that is a
bottom-up computation. The abstract semantics in [38] uses a bottom-
up computation to produce a collection of optimisation opportunities
for each predicate. An optimisation opportunity is a pair consisting
of a call pattern and a set of program points where optimisations
may be performed. The satisfaction of the call pattern indicates that
optimisations at the program points are possible; and such possibilities
may be verified by a further analysis. No context information is used
in [26] or [17] or [38].

7.3. Top-down abstract interpretation

The abstract semantics in [4, 40, 56, 18] mimic LD resolution. [40,
56, 18] differ from [4] only in their dealing with recursive calls. The
abstract semantics in [4] constructs an abstract AND-OR graph that
describes all the intermediate proof trees for the queries satisfying a
query description. An AND-node is (labelled with) a clause head and
its child OR-nodes are (labelled with) the atoms in the body of the
clause. Every OR-node is adorned with its abstract call substitution
and its abstract success substitution.

Consider an OR-node A with abstract call substitution π in a par-
tially constructed abstract AND-OR graph. The abstract semantics
computes the abstract success substitution of A as follows. For each
clause H ← A1A2 · · ·Am such that H may match with θ(A) for some
θ satisfying π, it adds to A a child AND-node H that has m child OR-
nodes A1, · · · , Am and performs an abstract procedure-entry operation
to obtain the abstract call substitution πin of A1. The abstract seman-
tics extends A1 recursively and extends Aj+1 using the abstract success
substitution of Aj as its abstract call substitution. After the abstract
success substitution πout of the last OR-node Am has been computed
for each matching clause, the abstract success substitution πsucc of A is
obtained by performing an abstract procedure-exit operation for each
of these clauses and computing an upper bound of the results.

Suppose that an OR-node A with abstract call substitution π were
to be extended. If A has an ancestor OR-node A′ with abstract call
substitution π′ such that A is a variant of A and π is a variant of π′,
the abstract semantics initialises the abstract success substitution of A
to the infimum abstract substitution and proceeds until the abstract
success substitution of A′ is computed. It then recomputes the part of
the graph starting from the abstract success substitution of A to that

HOSC03.tex; 27/11/2004; 12:27; p.27

28

of A′ by using the abstract success substitution of A′ as that of A. This
is repeated until the abstract success substitution of A′ stabilises. The
same mechanism is also used to limit the size of the graph.

The context information captured in the abstract AND-OR graph is
different from that in our abstract semantics. For a given program and
an abstraction β of paths, our abstract semantics is instantiated into a
fixed system of simultaneous recurrence equations. This is independent
of the abstract domain and the abstract call substitution for the query.
The shape of the abstract AND-OR graph depends on the abstract call
substitution for the query. It decides how much context information is
retained. Two variant atoms with variant abstract call substitutions or
two atoms with the same predicate name and arity (when the depth of
the abstract AND-OR graph exceeds some limit) are identified. This
in a sense merges paths leading to different program points since these
two atoms may appear in different places in the program. On the other
hand, two paths leading to the same program point that have the
same abstraction may be left un-merged. When the abstract success
substitution of an OR-node A is computed, results of the procedure-
exit operations are merged using an upper bound operator. This loses
information about the complete execution paths for A.

The abstract semantics in [25, 6] mimic the OLDT resolution [52].
The comparison between our abstract semantics and an OLDT based
abstract semantics is similar to that between our abstract semantics
and an abstract AND-OR graph based abstract semantics.

8. Summary

An abstract semantics is presented that is parameterised by a domain
of path descriptions and a domain of abstract substitutions. Two ab-
stractions of paths are used to exemplify the usefulness of the abstract
semantics in improving precision of an analysis. The abstract semantics
can be used with abstract domains that have been developed without
taking path information into account.

Acknowledgements

Comments and suggestions from anonymous referees on an earlier ver-
sion of this paper are greatly appreciated.

HOSC03.tex; 27/11/2004; 12:27; p.28

29

References

1. R. Barbuti and R. Giacobazzi. A bottom-up polymorphic type inference in
logic programming. Science of Computer Programming, 19(3):133–181, 1992.

2. R. Barbuti, R. Giacobazzi, and G. Levi. A general framework for semantics-
based bottom-up abstract interpretation of logic programs. ACM Transactions
on Programming Languages and Systems, 15(1):133–181, 1993.

3. A. Bossi, M. Gabbrielli, G. Levi, and M. C. Meo. A compositional semantics
for logic programs. Theor. Comput. Sci., 122(1-2):3–47, 1994.

4. M. Bruynooghe. A practical framework for the abstract interpretation of logic
progams. Journal of Logic Programming, 10(2):91–124, 1991.

5. M. Bruynooghe, M. Codish, S. Genaim, and W. Vanhoof. Reuse of results
in termination analysis of typed logic programs. In M. Hermenegildo and
G. Puebla, editors, Proceedings of The Ninth International Static Analysis
Symposium, volume 2477 of Lecture Notes in Computer Science, pages 477–492,
2002.

6. B. Le Charlier and P. Van Hentenryck. Experimental evaluation of a generic ab-
stract interpretation algorithm for Prolog. ACM Transaction on Programming
Languages and Systems, 16(1):35–101, 1994.

7. M. Codish, D. Dams, and E. Yardani. Bottom-up abstract interpretation of
logic programs. Theoretical Computer Science, 124:93–125, 1994.

8. M. Codish and V. Lagoon. Type dependencies for logic programs using ACI-
unification. Theoretical Computer Science, 238:131–159, 2000.

9. M. Comini, G. Levi, M. C. Meo, and G. Vitiello. Abstract diagnosis. Journal
of Logic Programming, 39(1–3):43–93, 1999.

10. P. Cousot and R. Cousot. Abstract interpretation: a unified framework for
static analysis of programs by construction or approximation of fixpoints. In
Principles of Programming Languages, pages 238–252. The ACM Press, 1977.

11. P. Cousot and R. Cousot. Abstract interpretation and application to logic
programs. Journal of Logic Programming, 13(1, 2, 3 and 4):103–179, 1992.

12. P. Cousot and R. Cousot. Formal language, grammar and set-constraint-
based program analysis by abstract interpretation. In Conference Record of
FPCA’95 Conference on Functional Programming and Computer Architecture,
pages 170–181. The ACM Press, 1995.

13. S.K. Debray. Functional computations in logic programs. ACM Transactions
on Programming Languages and Systems, 11(3):451–481, 1989.

14. S.K. Debray. Static inference of modes and data dependencies in logic
programs. ACM Transaction on Programming Languages and Systems,
11(3):418–450, 1989.

15. S.K. Debray and D. S. Warren. Automatic mode inference for logic programs.
Journal of Logic Programming, 5(3):207–230, 1988.

16. P. Deransart, B. Lorho, and J. Ma luszynski, editors. Proceedings of the First
International Workshop on Programming Language Implementation and Logic
Programming, volume 348 of Lecture Notes in Computer Science. Springer,
1988.

17. R. Giacobazzi. Abductive analysis of modular logic programs. Journal of Logic
and Computation, 8(4):457–484, 1998.

18. M. Hermenegildo, R. Warren, and S.K. Debray. Global flow analysis as a
practical compilation tool. Journal of Logic Programming, 13(4):349–366, 1992.

HOSC03.tex; 27/11/2004; 12:27; p.29

30

19. S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence
graphs. ACM Transactions on Programming Languages and Systems, 12(1):26–
60, 1990.

20. S. Horwitz, T. Reps, and M. Sagiv. Demand interprocedural dataflow analysis.
ACM SIGSOFT Software Engineering Notes, 20(4):104–115, 1995.

21. D. Jacobs and A. Langen. Static analysis of logic programs for independent
and parallelism. Journal of Logic Programming, 13(1–4):291–314, 1992.

22. G. Janssens and M. Bruynooghe. Deriving descriptions of possible values
of program variables by means of abstract interpretation. Journal of Logic
Programming, 13(1–4):205–258, 1992.

23. T. Kanamori. Abstract interpretation based on Alexander Templates. Journal
of Logic Programming, 15(1 & 2):31–54, 1993.

24. T. Kanamori and K. Horiuchi. Type inference in Prolog and its application.
In A.K. Joshi, editor, Proceedings of the Ninth International Joint Conference
on Artificial Intelligence, pages 704–707. Morgan Kaufmann, 1985.

25. T. Kanamori and T. Kawamura. Abstract interpretation based on OLDT
resolution. Journal of Logic Programming, 15(1 & 2):1–30, 1993.

26. A. King and L. Lu. A backward analysis for constraint logic pro-
grams. Theory and Practice of Logic Programming, 2(4&5):517–547, 2002.
http://xxx.lanl.gov/abs/cs.PL/0201011.

27. R. A. Kowalski and K. A. Bowen, editors. Proceedings of the Fifth International
Conference and Symposium on Logic Programming. The MIT Press, 1988.

28. G. Levi and F. Spoto. An Experiment in Domain Refinement: Type Domains
and Type Representations for Logic Programs. In C. Palamidessi, H. Glaser,
and K. Meinke, editors, Principles of Declarative Programming, volume 1490
of Lecture Notes in Computer Science, pages 152–169. Springer, 1998.

29. T. Lindgren. Control flow analysis of Prolog. In J.W. Lloyd, editor, Logic
Programming, Proceedings of the 1995 International Symposium, pages 432–
446. The MIT Press, 1995.

30. J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.
31. L. Lu. Abstract interpretation, bug detection and bug diagnosis in normal logic

programs. PhD thesis, University of Birmingham, 1994.
32. L. Lu. A polymorphic type analysis in logic programs by abstract interpreta-

tion. Journal of Logic Programming, 36(1):1–54, 1998.
33. L. Lu. A precise type analysis of logic programs. In M. Gabbrielli and

F. Pfenning, editors, Proceedings of the Second International ACM SIGPLAN
Conference on Principles and Practice of Declarative Programming, pages
214–225. The ACM Press, 2000.

34. L. Lu and A. King. Type inference generalises type checking. In
M. Hermenegildo and G. Puebla, editors, Proceedings of Ninth International
Static Analysis Symposium, volume 2477 of Lecture Notes in Computer Science,
pages 85–101, 2002.

35. K. Marriott and H. Søndergaard. Bottom-up abstract interpretation of logic
programs. In Kowalski and Bowen [27], pages 733–748.

36. K. Marriott and H. Søndergaard. Bottom-up dataflow analysis of normal logic
programs. Journal of Logic Programming, 13(1–4):181–204, 1992.

37. K. Marriott, H. Søndergaard, and N. D. Jones. Denotational abstract interpre-
tation of logic programs. ACM Transactions on Programming Languages and
Systems, 16(3):607–648, 1994.

HOSC03.tex; 27/11/2004; 12:27; p.30

31

38. N. Mazur, G. Janssens, and W. Vanhoof. Collecting potential optimizations.
In Proceedings of International Symposium on Logic-based Program Synthesis
and Transformation, pages 115–120, 2002.

39. C. Mellish. Abstract interpretation of Prolog programs. In S. Abramsky and
C. Hankin, editors, Abstract interpretation of declarative languages, pages 181–
198. Ellis Horwood Limited, 1987.

40. K. Muthukumar and M. Hermenegildo. Compile-time derivation of variable
dependency using abstract interpretation. Journal of Logic Programming,
13(1–4):315–347, 1992.

41. F. Nielson and H. Riis Nielson. Infinitary control flow analysis: a collecting
semantics for closure analysis. In Proc. POPL’97, pages 332–345. ACM Press,
1997.

42. F. Nielson, H. Riis Nielson, and C. L. Hankin. Principles of Program Analysis.
Springer, 1999.

43. U. Nilsson. Towards a framework for abstract interpretation of logic programs.
In Deransart et al. [16], pages 68–82.

44. T. Reps. Shape analysis as a generalized path problem. In Proceedings of
the ACM SIGPLAN Symposium on Partial evaluation and semantics-based
program manipulation, pages 1–11. The ACM Press, 1995.

45. T. Reps. Program analysis via graph-reachability. In Proceedings of the 1997
international symposium on Logic programming, pages 5–19. The MIT Press,
1997.

46. T. Reps. Undecidability of context-sensitive data-dependence analysis. ACM
Transactions on Programming Languages and Systems, 22(1):162–186, 2000.

47. T. Reps, S. Horwitz, M. Sagiv, and G. Rosay. Speeding up slicing. ACM
SIGSOFT Software Engineering Notes, 19(5):11–20, 1994.

48. B. G. Ryder, W. A. Landi, P. H. Stocks, S. Zhang, and R. Altucher. A schema
for interprocedural modification side-effect analysis with pointer aliasing. ACM
Transactions on Programming Languages and Systems, 23(2):105–186, 2001.

49. D. De Schreye and M. Bruynooghe. An application of abstract interpretation
in source level program transformation. In Deransart et al. [16], pages 35–57.

50. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.
In S.S. Muchnick and N.D. Jones, editors, Program Flow Analysis, pages 189–
233. Prentice Hall International, 1981.

51. H. Søndergaard. An application of abstract interpretation of logic programs:
occur check problem. In B. Robinet and R. Wilhelm, editors, ESOP 86, Euro-
pean Symposium on Programming, volume 213 of Lecture Notes in Computer
Science, pages 324–338. Springer, 1986.

52. H. Tamaki and T. Sato. OLD resolution with tabulation. In Proceedings of the
Third International Conference on Logic Programming, pages 84–98, London,
U.K., 1986.

53. A. Taylor. Removal of dereferencing and trailing in Prolog compilation.
In G. Levi and M. Martelli, editors, Proceedings of the Sixth International
Conference on Logic Programming, pages 48–60. The MIT Press, 1989.

54. M.H. van Emden and R.A. Kowalski. The semantics of predicate logic as a
programming language. Artificial Intelligence, 23(10):733–742, 1976.

55. K. Verschaetse and D. De Schreye. Deriving termination proofs for logic pro-
grams, using abstract procedures. In K. Furukawa, editor, Proceedings of the
Eighth International Conference on Logic Programming, pages 301–315. The
MIT Press, 1991.

HOSC03.tex; 27/11/2004; 12:27; p.31

32

56. A. Waern. An implementation technique for the abstract interpretation of
Prolog. In Kowalski and Bowen [27], pages 700–710.

57. W. Winsborough. Path-Dependent Reachability Analysis for Multiple Special-
ization. In E. L. Lusk and R. A. Overbeek, editors, Proceedings of the North
American Conference on Logic Programming, pages 133–153, Cleveland, Ohio,
USA, 1989.

Appendix

A. Proofs

A.1. Auxiliary lemmas

This section contains auxiliary lemmas used in proofs. Let rang(θ)

be the range of a substitution θ, i.e. rang(θ)
def
=
⋃
{vars(θ(x)) | x ∈

dom(θ)}. Let o1
∼= o2 denote the relation o1 = ρ(o2) for some renaming

substitution ρ. Then ∼= is an equivalence relation. The parentheses in
the application of a substitution to a term and the function composition
operator ◦ in the composition of two substitutions will be omitted when
no ambiguity arises. We also assume that ◦ binds stronger than ↑.

LEMMA A.1. Let ρ be a renaming substitution such that (vars(ρ(a))∪
vars(ρ(φ))) ∩ (vars(b) ∪ vars(ψ)) = ∅. If (ρ(φ))(ρ(a)) and ψ(b) unify
then ρ(a) and b unify.

Proof: Let a′ be ρ(a) and φ′ be ρ(φ). Assume that φ′(a′) and
ψ(b) unify. There is a substitution θ such that θ(φ′(a′)) = θ(ψ(b)). By
hypothesis, vars(a′) ∩ dom(ψ) = ∅ and rang(ψ) ∩ dom(φ′) = ∅ and
vars(b) ∩ dom(φ′) = ∅. Hence, θφ′ψ(a′) = θφ′ψ(b). Therefore, ρ(a) and
b unify.

LEMMA A.2. Let a and b be two atoms, and ρ1 and ρ2 be two
renaming substitutions such that

dom(ρ1) = dom(ρ2) ⊇ vars(b) (11)
rang(ρi) ∩ vars(a) = ∅ for i = 1, 2 (12)

Then

(a) a and ρ1b unify iff a and ρ2b unify.

(b) mgu(a, ρ1b) ↑ vars(a) ∼= mgu(a, ρ2b) ↑ vars(a).

(c) mgu(a, ρ1b)ρ1 ↑ dom(ρ1) ∼= mgu(a, ρ2b)ρ2 ↑ dom(ρ2).

HOSC03.tex; 27/11/2004; 12:27; p.32

33

Proof: Let

vars(a) = {X1, · · · , Xk}
dom(ρ1) = dom(ρ2) = {V1, · · · , Vl}

ρ1 = {V1/Y1, · · · , Vl/Yl}
ρ2 = {V1/Z1, · · · , Vl/Zl}
ρ3 = {Z1/Y1, · · · , Zl/Yl}
ρ4 = {Y1/Z1, · · · , Yl/Zl}
Y = {Y1, · · · , Yl}
Z = {Z1, · · · , Zl}
V = {V1, · · · , Vl}

Then

ρ1 = ρ3ρ2 ↑ V (13)
ρ2 = ρ4ρ1 ↑ V (14)

Suppose that a and ρ1b unify with the most general unifier

θ1 = {Xi1/xi1 , · · · , Xis/xis , Yj1/yj1 , · · · , Yjt/yjt} (15)

with 1 ≤ i1 ≤ · · · ≤ is ≤ k and 1 ≤ j1 ≤ · · · ≤ jt ≤ l. Define

yh
def
=
{
Yh If h 6∈ {j1, j2, · · · , jt}
yh If h ∈ {j1, j2, · · · , jt}

(16)

By Eq. 15-16,
θ1ρ1 ↑ V = {V1/y1, · · · , Vl/yl} (17)

θ1ρ3a = θ1a = θ1ρ1b = θ1(ρ3ρ2 ↑ V)b = θ1ρ3ρ2b by Eq. 11, 12, 13, 15
and 16. So, a and ρ2b unify with θ1ρ3 being one of their unifiers if
θ1 = mgu(a, ρ1b).

Suppose a and ρ2b unify with most general unifier

θ2 = {Xu1/xu1 , · · · , Xup/xup , Zv1/zv1 , · · · , Zvq/zvq} (18)

with 1 ≤ u1 ≤ · · · ≤ up ≤ k and 1 ≤ v1 ≤ · · · ≤ vq ≤ l. Define

zh
def
=
{
Zh If h 6∈ {v1, v2, · · · , vq}
zh If h ∈ {v1, v2, · · · , vq}

(19)

By Eq. 18-19,
θ2ρ2 ↑ V = {V1/z1, · · · , Vl/zl} (20)

θ2ρ4a = θ2a = θ2ρ2b = θ2(ρ4ρ1 ↑ V)b = θ2ρ4ρ1b by equations 11-12,
14, and 18-19. So, a and ρ1b unify with θ2ρ4 being one of their unifiers
if θ2 = mgu(a, ρ2b). Therefore, (a) holds.

HOSC03.tex; 27/11/2004; 12:27; p.33

34

The following equations results from Eq. 15 and 18.

θ1ρ3 =

 {Xi1/xi1 , · · · , Xis/xis}
∪ {Yjo/yjo | 1 ≤ o ≤ t ∧ Yjo 6∈ Z}
∪ {Z1/y1, · · · , Zl/yl}

 (21)

θ2ρ4 =

 {Xu1/xu1 , · · · , Xup/xup}
∪ {Zvo/zvo | 1 ≤ o ≤ q ∧ Zvo 6∈ Y}
∪ {Y1/z1, · · · , Yl/zl}

 (22)

Since θ2ρ4 (resp. θ1ρ3) is a unifier of a and ρ1b (resp. ρ2b), there is
a substitution ζ1 (resp. ζ2) such that θ2ρ4 = ζ1θ1 (resp. θ1ρ3 = ζ2θ2).
By Eq. 15 and 22 (Eq. 18 and 21),

 {Xu1/xu1 , · · · , Xup/xup}
∪ {Zvo/zvo | 1 ≤ o ≤ q ∧ Zvo 6∈ Y}
∪ {Y1/z1, · · · , Yl/zl}

 = (23)

ζ1({Xi1/xi1 , · · · , Xis/xis} ∪ {Yj1/yj1 , · · · , Yjt/yjt}) {Xi1/xi1 , · · · , Xis/xis}
∪ {Yjo/yjo | 1 ≤ o ≤ t ∧ Yjo 6∈ Z}
∪ {Z1/y1, · · · , Zl/yl}

 = (24)

ζ2({Xu1/xu1 , · · · , Xup/xup} ∪ {Zv1/zv1 , · · · , Zvq/zvq})

By Eq. 23 and 24, {Xi1 , · · · , Xis} ⊆ {Xu1 , · · · , Xup} and
{Xu1 , · · · , Xup} ⊆ {Xi1 , · · · , Xis}. So, {Xi1 , · · · , Xis} = {Xu1 , · · · , Xup}.
Hence, s = p and io = uo for 1 ≤ o ≤ s. Also, xio = ζ2(xio) and
xio = ζ1(xio). So, xio ∼= xio for 1 ≤ o ≤ s. Therefore, (b) holds.

By Eq. 23,

Yh/zh ∈ ζ1 If h 6∈ {j1, · · · , jt}
zh = ζ1(yh) If h ∈ {j1, · · · , jt}

By Eq. 16, yh = Yh for h 6∈ {j1, · · · , jt} and hence zh = ζ1(yh) for
h 6∈ {j1, · · · , jt}. So, for all 1 ≤ h ≤ l,

zh = ζ1(yh) (25)

It can be proved in a similar way from Eq. 24 and 19 that

yh = ζ2(zh) (26)

By Eq. 17, 20, 25 and 26, θ1ρ1 ↑ V ∼= θ2ρ2 ↑ V. Therefore, (c) holds.

HOSC03.tex; 27/11/2004; 12:27; p.34

35

COROLLARY A.3. Let a and b be two atoms and ρ be a renaming
substitution such that dom(ρ) ⊇ vars(b). If vars(a) ∩ vars(b) = ∅ and
vars(a) ∩ vars(ρb) = ∅ then a and b unify iff a and ρb unify, and

mgu(a, b) ↑ vars(b) ∼= (mgu(a, ρb) ρ) ↑ vars(b)

Proof: The proof results immediately from lemma A.2.(a) and (c)
by letting ρ2 = ρ and ρ1 be a renaming substitution such that ρ1X = X
for each X ∈ vars(b).

COROLLARY A.4. Let a1 and a2 be two atoms, ρ1 and ρ2 be renaming
substitutions. If

dom(ρ1) ⊇ vars(a1)
dom(ρ2) ⊇ vars(a2)

vars(ρ1a1) ∩ vars(a2) = ∅
vars(ρ2a2) ∩ vars(a1) = ∅

then ρ1a1 and a2 unify iff a1 and ρ2a2 unify, and

(mgu(ρ1a1, a2) ρ1) ↑ dom(ρ1) ∼= mgu(a1, ρ2a2) ↑ vars(a1)

Proof: We only prove the if part since the only if part is dual.
Let ρ′2 be a renaming substitution such that dom(ρ′2) = dom(ρ2),
vars(ρ′2a2) ∩ vars(a1) = ∅ and vars(ρ1a1) ∩ vars(ρ′2a2) = ∅.

Suppose a1 and ρ2a2 unify. By lemma A.2.(a), a1 and ρ′2a2 unify,
and

mgu(a1, ρ
′
2a2) ↑ vars(a1) ∼= mgu(a1, ρ2a2) ↑ vars(a1) (27)

by lemma A.2.(b). By corollary A.3, ρ1a1 and ρ′2a2 unify, and

mgu(ρ1a1, ρ
′
2a2) ρ1 ↑ vars(a1) ∼= mgu(a1, ρ

′
2a2) ↑ vars(a1) (28)

So, by Eq. 27-28,

mgu(ρ1a1, ρ
′
2a2) ρ1 ↑ vars(a1) ∼= mgu(a1, ρ2a2) ↑ vars(a1) (29)

By corollary A.3, ρ1a1 and a2 unify,

mgu(ρ1a1, a2) ↑ vars(ρ1a1) ∼= mgu(ρ1a1, ρ
′
2a2) ↑ vars(ρ1a1)

that implies

mgu(ρ1a1, a2) ρ1 ↑ vars(a1) ∼= mgu(ρ1a1, ρ
′
2a2)ρ1 ↑ vars(a1) (30)

HOSC03.tex; 27/11/2004; 12:27; p.35

36

So, mgu(ρ1a1, a2)ρ1 ↑ vars(a1) ∼= mgu(a1, ρ2a2) ↑ vars(a1) by Eq. 29-
30. It now suffices to prove

mgu(ρ1a1, a2) ρ1 ↑ dom(ρ1) ∼= mgu(ρ1a1, a2) ρ1 ↑ vars(a1)

Let ρ1
1 = ρ1 ↑ vars(a1) and ρ2

1 = ρ1 ↑ (dom(ρ1) \ vars(a1)). Then
ρ1 = ρ1

1 ∪ ρ2
1,

mgu(ρ1a1, a2) ρ1 ↑dom(ρ1) = mgu((ρ1
1 ∪ ρ2

1)a1, a2) (ρ1
1 ∪ ρ2

1)↑dom(ρ1)
= mgu(ρ1

1a1, a2)ρ1
1 ↑ vars(a1) ∪ ρ2

1

and

mgu(ρ1a1, a2)ρ1 ↑ vars(a1) = mgu(a1(ρ1
1 ∪ ρ2

1), a2)(ρ1
1 ∪ ρ2

1) ↑ vars(a1)
= mgu(ρ1

1a1, a2)ρ1
1 ↑ vars(a1)

Also, rang(mgu(ρ1
1a1, a2)ρ1

1 ↑ vars(a1)) ∩ dom(ρ2
1) = ∅ and dom(ρ2

1) ∩
vars(a1) = ∅. So,

(mgu(ρ1a1, a2)ρ1 ↑ vars(a1))ρ2
1 = (mgu(ρ1

1a1, a2)ρ1
1 ↑ vars(a1))ρ2

1

= mgu(ρ1
1a1, a2)ρ1

1 ↑ vars(a1) ∪ ρ2
1

= mgu(ρ1a1, a2)ρ1 ↑ dom(ρ1)

Therefore, mgu(ρ1a1, a2)ρ1 ↑ dom(ρ1) ∼= mgu(ρ1a1, a2)ρ1 ↑ vars(a1)
since ρ2

1 is a renaming substitution.

LEMMA A.5. Let θ1 and θ2 be two substitutions and V a set of
variables.

θ2θ1 ↑ V = θ2(θ1 ↑ V) ↑ V

Proof: Let (X/t) ∈ θ2θ1 ↑ V. Then X ∈ V. Either X ∈ dom(θ1)
or X 6∈ dom(θ1) ∧X ∈ dom(θ2). If X ∈ dom(θ1) then there is t1 such
that ((X/t1) ∈ θ1 ∧ t = θ2(t1)). Since X ∈ V, (X/t1) ∈ θ1 ↑ V and
hence X/θ2(t1) = (X/t) ∈ θ2(θ1 ↑ V) ↑ V. Otherwise, X ∈ dom(θ2),
(X/t) ∈ θ2 and (X/t) ∈ θ2 (θ1 ↑ V) ↑ V.

Let (X/t) ∈ θ2(θ1 ↑ V) ↑ V. Then X ∈ V. Either X ∈ dom(θ1 ↑ V)
or X 6∈ θ1 ↑ V ∧ X ∈ dom(θ2). If X ∈ dom(θ1 ↑ V) then there is t2
such that ((X/t2) ∈ θ1 ↑ V ∧ t = θ2(t2)). (X/t2) ∈ θ1 and (X/t) ∈ θ2θ1.
So, (X/t) ∈ θ2θ1 ↑ V. Otherwise, (X/t) ∈ θ2 and X 6∈ dom(θ1)∩V. So,
(X/t) ∈ θ2θ1 ↑ V.

HOSC03.tex; 27/11/2004; 12:27; p.36

37

A.2. Proof of lemma 3.3

The proof has two parts. The first part corresponds to procedure-entry
operation and the second part to procedure-exit operation.

Consider procedure-entry operation first. Let τq(ρC(A(q))G) be a
goal in LD where A(q) is an atom in the body of a clause C and ρC
the renaming substitution applied to C, VC = vars(C) and (qδ′, σq)s
the current ILD state. Let C ′ = (H ← B) be an arbitrary clause
with p = entry(C ′) and VC′ = vars(C ′). We prove that if σq ↑ VC ∼=
τqρC ↑ VC then τq(ρC(A(q))G) LD−→ τp(ρC′(B)τq(G)) iff (qδ′, σq)s

ILD−→
(pqδ′, σp)(qδ′, σq)s and σp ↑ VC′ ∼= τpρC′ ↑ VC′ where ρC′ is the renam-
ing substitution applied to C ′ in LD.

Let σq ↑ VC ∼= τqρC ↑ VC . Then there is a renaming substitution ζ
such that

ζ(σq ↑ VC) = τqρC ↑ VC (31)

By corollary A.4, τq(ρC(A(q))G) LD−→ τp(ρC′(B)τq(G)) iff (qδ′, σq)s
ILD−→

(pqδ′, σp)(qδ′, σq)s. Suppose τq(ρC(A(q))G) LD−→ τp(ρC′(B)τq(G)). Then

τqρCA(q)
= (τqρC ↑ VC)A(q) (˙.˙ vars(A(q)) ⊆ VC)
= (ζ(σq ↑ VC))A(q) (˙.˙ Eq. 31)
= ζσqA(q) (˙.˙ vars(A(q)) ⊆ VC) (32)

and
τpρC′ ↑ VC′

= mgu(ρC′H, τqρCA(q)) ρC′ ↑ VC′
= mgu(ρC′H, ζσqA(q)) ρC′ ↑ VC′ (˙.˙ Eq. 32) (33)

Let ζ be the inverse of ζ and ψ be a renaming substitution.

σp ↑ VC′
= mgu(H,ψσqA(q)) ↑ VC′
= mgu(H,ψζζσqA(q)) ↑ VC′ (˙.˙ ζζ is identity)
= mgu(H, (ψζ)(ζσqA(q))) ↑ VC′
= mgu(H, (ψζ)(ζσqA(q))) ↑ vars(H) (34)

σp ↑ VC′ ∼= τpρC′ ↑ VC′ by corollary A.4 and Eq. 33-34. This completes
the first part of the proof.

Now consider procedure-exit operation. Let r = exit(C ′), the cur-
rent ILD state be (rδ′′pqδ′, σr)(qδ′, σq)s and the current goal in LD
be τr(G). Let (rδ′′pqδ′, σr)(qδ′, σq)s

ILD−→ (q+rδ′′pqδ′, σq+)s. We prove
that if σr ↑ VC′ ∼= τrρC′ ↑ VC′ then σq+ ↑ VC ∼= τrρC ↑ VC . Let ζ ′

be a renaming substitution such that σr ↑ VC′ = ζ ′(τrρC′ ↑ VC′) and
ζ ′ be the inverse of ζ ′. Then σr ↑ VC′ = ζ ′τrρC′ ↑ VC′ . Let φ′ be a

HOSC03.tex; 27/11/2004; 12:27; p.37

38

renaming substitution and θ be the computed answer to τp(ρC′(B)).
Then, τr = θτp and

φ′σrH
= φ′ζ ′τrρC′H
= φ′ζ ′θητqρC′H
= φ′ζ ′θηρC′H (˙.˙ vars(ρC′C ′) ∩ vars(ρCC) = ∅)
= φ′ζ ′θητqρCA(q) (35)

where η = mgu(ρC′H, τqρCA(q)). By Eq. 31,

σq ↑ VC = ζτqρC ↑ VC (36)

So,
σqA(q)

= (ζτqρC ↑ VC)A(q) (˙.˙ Eq. 36)
= ζτqρCA(q) (˙.˙ vars(A(q)) ⊆ VC) (37)

Therefore, letting A = τqρCA(q),

σq+ ↑ VC
= mgu(ζA, φ′ζ ′θηA) ζτqρC ↑ VC
= (mgu(ζA, φ′ζ ′θηA)ζ ↑ vars(A))τqρC ↑ VC (˙.˙ A.5)
∼= (mgu(A,φ′ζ ′θηA) ↑ vars(A))τqρC ↑ VC (˙.˙ A.3)
= mgu(A,φ′ζ ′θηA)τqρC ↑ VC (˙.˙ A.5)
= φ′ζ ′θητqρC ↑ VC
∼= θητqρC ↑ VC
= τrρC ↑ VC

This completes the proof of the lemma.

A.3. Proof of lemma 4.1

Let X] and Y] be arbitrary elements in D] and s = (δn, θn) · · · (δ1, θ1)
be an arbitrary element in S. By the definitions of γ] and u],

s ∈ γ](X] u] Y]) ⇔

 ∀1 ≤ i ≤ n.(θi ∈ (X] u] Y])(δi))
∧

∀1 ≤ j < n.(δj ∈ suf (δj+1))


⇔

 ∀1 ≤ i ≤ n.(θi ∈ (X](δi) ∩ Y](δi))
∧

∀1 ≤ j < n.(δj ∈ suf (δj+1))



⇔


∀1 ≤ i ≤ n.(θi ∈ X](δi))

∧
∀1 ≤ i ≤ n.(θi ∈ Y](δi))

∧
∀1 ≤ j < n.(δj ∈ suf (δj+1))



HOSC03.tex; 27/11/2004; 12:27; p.38

39

⇔ (s ∈ γ](X])) ∧ (s ∈ γ](Y]))
⇔ s ∈ (γ](X]) ∩ γ](Y]))

Therefore, γ](X] u] Y]) = γ](X]) ∩ γ](Y]) since X], Y] and s are
arbitrarily chosen and hence γ is a complete meet-morphism. This
completes the proof of the lemma.

A.4. Proof of lemma 4.3

The operational semantics [[P]] is first characterised as the fixed-point
of the following function.

F (X)
def
=

⋃
0≤≤2

F(X) (38)

F0(X)
def
= {(ι, θ) | θ ∈ Θι} (39)

F1(X)
def
=


(pqδ′, σ)(qδ′, θ)s

p↼q ∈ Ecall
∧

(qδ′, θ)s ∈ X
∧

σ = unify(A(q), θ,H(p), ε) 6= fail


(40)

F2(X)
def
=

(pqδ′p δ′′, σ)s

p↼q ∈ Eret
∧

(qδ′p δ′′, θ)(p δ′′, ω)s ∈ X
∧

σ = unify(H(q), θ,A(p), ω) 6= fail

(41)

The function F is monotonic on < ℘(S),⊆>. It can be verified that
[[P]] = lfp F .

It is now sufficient to prove that F ↑ k ⊆ γ](F] ↑ k) for any ordinal
k. The proof is done by transfinite induction.

Basis. F ↑ 0 = ∅ = γ](⊥]) = γ](F] ↑ 0).
Induction. Let F ↑ k′ ⊆ γ](F] ↑ k′) for any k′ < k. If k is a limit

ordinal then F] ↑ k = t]{F] ↑ k′ | k′ < k}. Therefore, γ](F] ↑ k) ⊇
γ](F] ↑ k′) for any k′ < k by Eq. 2. By the induction hypothesis,
γ](F] ↑ k) ⊇ F ↑ k′ for any k′ < k. So, F ↑ k ⊆ γ](F] ↑ k).

Let k not be a limit ordinal. Let s′ ∈ F ↑ k. There is 0 ≤  ≤ 2 such
that s′ ∈ F(F ↑ (k − 1)) by Eq. 38 and Eq. 2.

Let  = 0. By Eq. 39, s′ = (p, θ) and θ ∈ Θι. So, by Eq. 3 and Eq. 2,
s′ ∈ γ](F] ↑ k).

Let  = 1. By Eq. 40, s′ = (pqδ′, σ)(qδ′, θ)s such that p↼q ∈ Ecall,
(qδ′, θ)s ∈ F ↑ (k − 1) and σ = unify(A(q), θ,H(p), ε) 6= fail . By the

HOSC03.tex; 27/11/2004; 12:27; p.39

40

induction hypothesis, (qδ′, θ)s ∈ γ](F] ↑ (k − 1)). By Eq. 4 and Eq. 2
and the monotonicity of F], s′ ∈ γ](F] ↑ k).

Let  = 2. By Eq. 41, s′ = (pqδ′p δ′′, σ)s and there is an ω such
that p↼q ∈ Eret and (qδ′p δ′′, θ)(p δ′′, ω)s ∈ F ↑ (k − 1) and σ =
unify(H(q), θ,A(p), ω) 6= fail . By the induction hypothesis,
(qδ′p δ′′, θ)(p δ′′, ω)s ∈ γ](F] ↑ (k − 1)). Therefore, s′ ∈ γ](F] ↑ k)
by Eq. 5 and Eq. 2 and the monotonicity of F].

Therefore, F ↑ k ⊆ γ](F] ↑ k) for any ordinal k. This completes the
proof of the lemma.

A.5. Proof of lemma 5.1

Let X[and Y [be arbitrary elements in D[. By the definitions of γ[

and u[,

γ[(X[u[Y [) = λδ ∈ ∆.γ((X[u[Y [)(β(δ)))

= λδ ∈ ∆.γ(X[(β(δ))uY [(β(δ)))

= λδ ∈ ∆.(γ(X[(β(δ))) ∩ γ(Y [(β(δ))))

= γ[(X[) ∩ γ[(Y [)

where the fourth formula is derived from the third using C2. Since X[

and Y [are arbitrarily chosen, γ[is a complete meet-morphism. This
completes the proof of the lemma.

A.6. Proof of theorem 5.2

The condition (C4) implies that F [is monotonic and therefore lfp F [

exists. It suffices to prove that, for any X[∈ D[, F] ◦ γ[(X[) v] γ[◦
F [(X[). Let σ ∈ [F] ◦ γ[(X[)](δ). It suffices to prove

σ ∈ [γ[◦ F [(X[)](δ)

for any δ ∈ ∆.
Let δ = ι. By Eq. 3, σ ∈ γ(πι). By Eq. 8, σ ∈ γ([F [(X[)](β(δ))).

Thus, σ ∈ [γ[◦ F [(X[)](δ) by Eq. 7.
Let δ = pqδ′ such that p↼q ∈ Ecall. By Eq. 4,

σ ∈ cunify(A(q), [γ[(X[)](qδ′),H(p), {ε}). By Eq. 4 and Eq. 7, C3 and
the monotonicity of function cunify in its fourth argument,

σ ∈ cunify(A(q), γ(X[(β(qδ′))),H(p), γ(id))
⊆ γ ◦ aunify(A(q), X[(β(qδ′)),H(p), id)

HOSC03.tex; 27/11/2004; 12:27; p.40

41

So, by Eq. 7 and Eq. 9 and the monotonicity of γ,

σ ∈ γ([F [(X[)](β(pqδ′))
⊆ γ([F [(X[)](β(pqδ′))
= [γ[◦ F [(X[)](pqδ′)
= [γ[◦ F [(X[)](δ)

Let δ = pqδ′p δ′′ such that p↼q ∈ Eret and qδ′ ∈ ∆c. Then

σ ∈ cunify(H(q), [γ[(X[)](qδ′p δ′′),A(p), [γ[(X[)](p δ′′))

by Eq. 5. Note that β(p δ′′)� β(qδ′p δ′′). By Eq. 7 and Eq. 10,

σ ∈ cunify(H(q), γ(X[(β(qδ′p δ′′))),A(p), γ(X[(β(p δ′′))))
⊆ γ ◦ aunify(H(q), X[(β(qδ′p δ′′)),A(p), X[(β(p δ′′)))
⊆ γ([F [(X[)](β(δ)))
= [γ[◦ F [(X[)](δ)

This completes the proof of the theorem.

HOSC03.tex; 27/11/2004; 12:27; p.41

HOSC03.tex; 27/11/2004; 12:27; p.42

