
Backward Pair Sharing Analysis

Lunjin Lu1 and Andy King2

1 Oakland University, MI 48309, USA.
2 University of Kent, CT2 7NF, UK.

Abstract. This paper presents a backward sharing analysis for logic
programs. The analysis computes pre-conditions for a query that guar-
antee a given post-condition is satisfied after the query is successfully
executed. The analysis uses a pair sharing domain and is capable of in-
ferring pre-conditions that ensure the absence of sharing. This, in turn,
has many applications in logic programming. The work is unique in that
it demonstrates that backward analysis is applicable even for properties
that are not closed under instantiation.
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1 Introduction

Sharing analysis is useful in specialising, optimising, compiling and parallelising
logic programs and thus sharing analysis is an important topic of both abstract
interpretation and logic programming. Sharing domains track possible sharing
between program variables since optimisations and transformations can typically
only be applied in the absence of sharing. Conventionally, sharing is traced in
the direction of the control-flow in a query-directed fashion from an initial state.
This paper considers the dual problem: the problem of inferring a set of initial
states for which an optimisation or transformation is applicable. Specifically, the
paper presents a novel backward sharing analysis that propagates information
against the control-flow to infer pre-conditions on the variable sharing of a query.
The pre-conditions are inferred from a given post-condition which encodes the
sharing requirement. The analysis guarantees that if the inferred pre-condition
holds for a query, then any successful computation will satisfy the post-condition,
thereby ensuring that the optimisation or transformation is applicable.

This paper presents a novel, backward sharing analysis that is realised with
abstract interpretation [2]. It is constructed as a suite of abstract operations
on the classic pair-sharing domain [1, 14, 24] which captures information about
linearity and variable independence. These operations instantiate a backward
analysis framework which, in turn, takes care of the algorithmic concerns asso-
ciated with a fixpoint calculation. This paper focuses on the two key abstract
operations: the backward abstract unification and the backward abstract com-
position operations. The backward abstract unification operation computes a
pre-condition for a given equation and its post-condition. The backward abstract
composition operation calculates a pre-condition for a call from its post-condition
and a description of its answer substitutions. The other abstract operations are



much simpler and are more or less straightforward to construct. These operations
are omitted from the paper for brevity.

The remainder of the paper is organised as follows. Section 2 introduces basic
concepts used throughout the paper. Section 3 contains a brief description of the
abstract interpretation framework within which the backward sharing analysis
sits. Sections 4-6 introduce the abstract domain and the abstract operations.
Section 7 reviews related work and section 8 concludes. Proofs are omitted due
to space limitation.

2 Preliminaries

This section recalls some basic concepts in logic programming and abstract in-
terpretation. The reader is referred to [17] and [2] for more detailed exposition.

Let Σ be a set of function symbols, V a denumerable set of variables. We
assume that Σ contains at least one function symbol of arity 0. Term denotes
the set of terms that can be constructed from Σ and V.

An equation is a formula of the form t1 = t2 with t1, t2 ∈ Term. The set of
all equations is denoted as Eqn whereas the set of all substitutions is denoted
Sub. Let dom(θ) be the domain of a substitution θ, and V(o) the set of variables
in the syntactic object o. Let Subfail = Sub ∪ {fail}. Given e ∈ Eqn, mgu :
Eqn 7→ Subfail returns either a most general unifier for e if e is unifiable or fail
otherwise. For brevity, let mgu(t1, t2) = mgu(t1 = t2). The function composition
operation ◦ is defined as f ◦ g = λx.f(g(x)). Denote the size of a term t by |t|
and the number of elements in a set S by |S|.

Let 〈C,vC ,tC ,uC ,>C ,⊥C〉 be a complete lattice and S ⊆ C. S is a Moore
family iff >C ∈ S and s1 uC s2 ∈ S for any s1, s2 ∈ S. Let 〈D,vD〉 be a poset.
A function γ : D 7→ C is a concretization function iff γ is a monotone and
γ(D) is a Moore family. A concretization function from D to C induces a Galois
connection between D and C [2]. The induced adjoint, called an abstraction
function, is α(c) = uD{d ∈ D | c vC γ(d)}.

3 Framework for Backward Analysis

The backward sharing analysis is based on a novel abstract semantics [18]. The
abstract semantics is sketched below so that the paper is self-contained. It is a
(lower) approximation to a collecting semantics that maps a call p(x) and a set
Θ of substitutions into a set Ξ of substitutions such that, for any ξ ∈ Ξ, if δ
is a computed answer for ξ(p(x)) then δ ◦ ξ ∈ Θ, i.e., {Ξ}p(x){Θ} is a valid
partial correctness formula. Note that Ξ = ∅ is a valid solution. In a more precise
solution, Ξ contains more substitutions without compromising correctness. The
collecting semantics is defined on the concrete domain 〈℘(Sub),⊆〉. It is defined
in terms of a suite of concrete operations. The two most important operators
are uf −1 : Eqn ×℘(Sub) 7→ ℘(Sub) and ◦−1 : ℘(Sub)×℘(Sub) 7→ ℘(Sub) defined

uf −1(e,Θ) = {ξ ∈ Sub | mgu(ξ(e)) ◦ ξ ∈ Θ}
Ψ ◦−1 Θ = {ω ∈ Sub | ∀ψ ∈ Ψ.(ψ ◦ ω ∈ Θ)}



The concrete operation uf −1 reverses unification. For a given equation e and a
set Θ of success substitutions, it returns the set of those initial substitutions
ξ such that the unification of e under ξ results in a success substitution in Θ.
The concrete operation ◦−1 reverses the composition of one substitution with
another. Given a set Θ of success substitutions and a set Ψ of computed answer
substitutions, it calculates the set of those initial substitutions ω such that the
composition of any ψ ∈ Ψ with ω obtains a success substitution in Θ.

The abstract semantics is parameterised by an abstract domain 〈Z,v〉 but
actually operates on the disjunctive completion of 〈Z,v〉. Let S ⊆ Z and define
↓(S) = {z1 ∈ Z | ∃z2 ∈ S.z1 v z2}. The set of order-ideals of Z, denoted ℘↓(Z),
is defined by ℘↓(Z) = {S ⊆ Z | S =↓ (S)}. Note that each order-ideal can be
represented by the collection of its maximal elements. This representation of an
order-ideal will be used in the sequel. The abstract semantics operates over ℘↓(Z)
to express pre-conditions which are disjunctive [18]. The semantics essentially
computes a denotation for each call which maps a single post-condition (in Z)
to a disjunction of pre-conditions (in ℘↓(Z)). The abstract semantics is defined
in terms of a suite of abstract operations - one for each concrete operation.
Implementing these operations instantiates the abstract semantics to obtain a
backward analysis. The two abstract operations that mimic uf −1 and ◦−1 are
uf

−1
: Eqn × Z 7→ ℘↓(Z) and ◦−1 : Z × Z 7→ ℘↓(Z). The backward abstract

unification operation uf
−1

computes a pre-condition for a given equation and
its post-condition. The backward abstract composition operation ◦−1 calculates
a pre-condition for an atom from its post-condition and a description of its
answer substitutions. These abstract operations are obtained by inverting the
corresponding abstract operations from a forward sharing analysis. Let γ : Z 7→
℘(Sub) be a concretization function. Define γ∪(Y ) =

⋃
y∈Y γ(y). These abstract

operations are required to satisfy their local safety requirements.

(a) γ∪(uf
−1

(e, z)) ⊆ uf −1(e, γ(z)) for any e ∈ Eqn and any z ∈ Z, and
(b) γ∪(z◦−1z′) ⊆ γ(z) ◦−1 γ(z′) for any z, z′ ∈ Z.

These requirements state that each abstract operation faithfully lower approxi-
mates its corresponding concrete operation.

The following three sections present the backward sharing analysis. The shar-
ing domain captures information about linearity and dependencies between vari-
ables of interest. The abstract operations are obtained by inverting abstract
operations from a forward sharing analysis.

4 Abstract Domain

A term t is linear iff it does not contain multiple occurrences of any variable. Let
the predicate linear(t) hold iff t is linear. Two terms s and t share a variable iff
V(s) ∩V(t) 6= ∅. Two variables x and y share under a substitution θ if θ(x) and
θ(y) share. The possible sharing and possible non-linearity of variables under a
substitution θ are represented as a symmetric relation π ⊆ VI×VI [24] where VI
is the set of variables in the program. Let PS be the set of symmetric relations



over VI . The abstract domain for sharing and linearity, dubbed pair sharing, is
〈PS ,⊆, ∅,VI 2,∩,∪〉 which is a complete lattice. A Galois connection between
〈PS ,⊆〉 and 〈℘(Sub),⊆〉 is obtained as follows [1].

α : ℘(Sub) 7→ PS
γ : PS 7→ ℘(Sub)

α(Θ) =
⋃
θ∈Θ

〈x, y〉 ∈ VI 2
(x 6= y ∧V(θ(x)) ∩V(θ(y)) 6= ∅)

∨
(x = y ∧ ¬linear(θ(x)))


γ(π) =

⋃
{Θ ⊆ Sub | α(Θ) ⊆ π}

We will write (u ↔ v) ∈ π to stand for {〈u, v〉, 〈v, u〉} ⊆ π. Thus, the set
{x1 ↔ y1, · · · , xn ↔ yn} abbreviates ∪ni=1{〈xi, yi〉, 〈yi, xi〉}. If (u↔ v) ∈ π then
(u↔ v) is called a link in π. We will also use u π↔ v to abbreviate (u↔ v) ∈ π
and u π⇔ v to indicate (u = v ∨ u π↔ v). Define X ⊗ Y = X × Y ∪ Y ×X where
X × Y is the Cartesian product of X and Y . X ⊗ Y is used to generate a link
between each variable of X and each variable of Y . For instance {x} ⊗ {y, z} =
{x ↔ y, x ↔ z}. Define πx = {y | (x ↔ y) ∈ π}. The set πx includes all the
variables that share with x in π. Note that x ∈ πx if 〈x, x〉 ∈ π. As a further
example, πx = {y, z} and πy = {x, y} where π = {x↔ y, x↔ z, y ↔ y}. Define
φX =

⋃
x∈X φx where X ⊆ VI .

The next stage in the design of the backward sharing analysis is to construct
the abstract operations and argue their correctness.

5 Abstract Operation uf
−1

The backward abstract unification operation uf
−1

computes a pre-condition for
a given equation and a given post-condition. It is constructed by inverting a
forward abstract unification operation given below. The following predicate χ :
Term ×PS 7→ {true, false} will be used in the definition of the forward abstract
unification operation: χ(t, π) = ¬linear(t) ∨ ((V(t))2 ∩ π 6= ∅). The predicate
χ(t, π) holds if θ(t) is non-linear for some θ ∈ γ(π) [1]. We abbreviate χ(t, π) =
true as χ(t, π). The forward abstract unification operation is derived from an
operation given in [14].

uf (s = t, π) =π \ (V(s)⊗VI ) if V(t) = ∅
π \ (V(t)⊗VI ) if V(s) = ∅
π ∪ link(s, t, π) ∪ (χ(t, π) � link(s, s, π)) ∪ (χ(s, π) � link(t, t, π)) otherwise

where link(s, t, π) = {u ↔ v | x ∈ V(s) ∧ x π⇔ u ∧ v π⇔ y ∧ y ∈ V(t)} and
� is defined B � π = (if B then π else ∅) . The forward abstract unification
operation safely upper approximates the forward concrete unification operation
uf [14] where

uf (e,Θ) = {mgu(θ(e)) ◦ θ | θ ∈ Θ}



The following lemma justifies the construction of the backward abstract uni-
fication operation by inverting the forward abstract unification operation.

Lemma 1. If uf (s = t, π) ⊆ ψ then γ(π) ⊆ uf −1(s = t, γ(ψ)).

According to lemma 1, a pre-condition for an equation and a post-condition
can be obtained as follows. The forward abstract unification operator is run on
the equation s = t and each π ∈ PS . The pre-condition contains those π such
that uf (s = t, π) ⊆ ψ which are also maximal. Therefore, the following is a
correct specification for the backward abstract unification operation.

uf
−1

(s = t, ψ) = {π | uf (s = t, π) ⊆ ψ ∧∀π′ ∈ PS .(uf (s = t, π′) ⊆ ψ ⇒ π 6⊂ π′)}

Computing uf
−1

(s = t, ψ) via membership checking is however not feasible.
Suppose that VI contains n variables. The abstract domain then has 2

n(n+1)
2

elements. Running uf on all these elements is practically impossible even for a
relatively small n, say 7. The remainder of this subsection gives a polynomial
method for computing uf

−1
(s = t, ψ) starting with simple cases. Without loss

of generality, we assume that s and t unify for otherwise, {VI 2} is a valid pre-
condition.

Case V(t) = ∅. The effect of the forward abstract unification of s = t in a pair
sharing π is to remove those links that are incident to variables in V(s). Let ψ be
the result of this pruning process – the post-condition. Then the unique maximal
pre-condition is given by ψ∪(V(s)⊗VI ). So, uf

−1
(s = t, ψ) = {ψ∪(V(s)⊗VI )}.

Example 1. Let ψ = {w ↔ x, x↔ x} and VI = {w, x, y, z}. Then uf
−1

(f(x, y) =
f(a, b), ψ) = {{w ↔ x,w ↔ y, x↔ x, x↔ y, x↔ z, y ↔ y, y ↔ z }}.

Case V(s) = ∅. By symmetry to the above, uf
−1

(s = t, ψ) = {ψ∪ (V(t)⊗VI )}.
When V(t) = ∅ and V(s) = ∅, both cases apply and uf

−1
(s = t, ψ) = {ψ}.

Case V(s) 6= ∅ ∧V(t) 6= ∅. By the definition of uf , we have π ⊆ uf (s = t, π) for
any π. Thus if uf (s = t, π) ⊆ ψ then π ⊆ ψ, hence π can be obtained by removing
a symmetric subset τ of ψ. The problem is how to find τ . The forward abstract
unification operation uf produces a link u ↔ v from s = t and a subset of the
links in ψ. Such a subset of links justifies the presence of u↔ v in uf (s = t, ψ);
and is henceforth called a support set for u↔ v.

Example 2. Let ψ = {w ↔ x, x ↔ y, x ↔ z, y ↔ z}. We have χ(x, ψ) =
false and χ(f(y, z), ψ) = true. So, uf (x = f(y, z), ψ) = ψ ∪ link(x, f(y, z), ψ) ∪
(true � link(x, x, ψ))∪ (false � link(f(y, z), f(y, z), ψ)) = ψ∪ link(x, f(y, z), ψ)∪
link(x, x, ψ). That (w ↔ y) ∈ link(x, f(y, z), ψ) has two justifications: one is
that (w ↔ x) ∈ ψ, x ∈ V(s) and y ∈ V(f(y, z)); the other is that (w ↔ x) ∈ ψ,
x ∈ V(x), z ∈ V(f(y, z)) and (y ↔ z) ∈ ψ. The link (w ↔ y) occurs in
link(x, x, ψ) because (w ↔ x) ∈ ψ, x ∈ V(x), x ∈ V(x) and (x↔ y) ∈ ψ. Thus,
there are three support sets for w ↔ y: S1 = {w ↔ x} and S2 = {w ↔ x, y ↔ z}
and S3 = {w ↔ x, x↔ y}.



In order to ensure that forward abstract unification cannot produce a link
u ↔ v that is not in ψ, all the support sets for u ↔ v must be destroyed. A
support set is destroyed if just one of its links is removed. Therefore, to prevent
u↔ v from being produced, it is necessary to remove a set of links that contains
one link from each of its support sets. Such a set is called a frontier for u↔ v.

Definition 1. Let h : PS 7→ PS be monotonic and ψ ∈ PS and τ ⊆ ψ. If
(u ↔ v) ∈ h(ψ) and (u ↔ v) 6∈ h(ψ \ τ), we say that (removal of) τ (from
ψ) excludes u ↔ v from h(ψ) and that τ is a frontier for u ↔ v in h(ψ). Let
φ ∈ PS. We say that τ is a frontier for φ in h(ψ) if, for each link u↔ v ∈ φ, τ
is a frontier for u↔ v in h(ψ).

The particular notions of frontier and exclusion that are required to define back-
ward abstract unification are obtained by putting h = λφ.uf (s = t, φ). Another
instance of these concepts appears in section 6.

Example 3. There are four frontiers for the w ↔ y link of example 2. They
are F1 = {w ↔ x}, F2 = {w ↔ x, x ↔ y}, F3 = {w ↔ x, y ↔ z} and
F4 = {w ↔ x, x ↔ y, y ↔ z}. Removing any Fi for 1 ≤ i ≤ 4 from ψ will
prevent w ↔ y from being produced.

The above example demonstrates that one frontier for a link may be con-
tained in another. Removing one frontier from ψ results in a pair sharing that is
a superset of that obtained by removing another frontier from ψ. Since the pre-
condition that is the object of the computation contains maximal pair sharings,
only minimal frontiers for the link should be removed. The following example
shows that a link may have more than one minimal frontiers.

Example 4. Let ψ = {w ↔ x, y ↔ z}. Then (w ↔ z) ∈ uf (x = g(y), ψ). The
link has one support set: {w ↔ x, y ↔ z}. Two minimal frontiers for w ↔ z are
{w ↔ x} and {y ↔ z} which are incomparable.

Some links have no frontiers at all. For example, let ψ = ∅. Then uf (x, y, ψ) =
{x↔ y}. This indicates that the post-condition ψ is unsatisfiable.

Definition 2. Let h : PS 7→ PS be monotonic, ψ ∈ PS and Π ⊆ PS. Π is a
complete set of frontiers for a link u↔ v (a set φ of links respectively) in h(ψ)
if

(i) every π ∈ Π is a frontier for u↔ v (φ respectively) in h(ψ); and
(ii) every minimal frontier for u↔ v (φ respectively) in h(ψ) is in Π.

Observe that a complete set of frontiers may contain a non-minimal frontier.

5.1 Minimal Frontier Function

By the definition of uf , a link (u↔ v) 6∈ ψ occurs in uf (s = t, ψ) iff it occurs in
link(s, t, π), or χ(t, π)� link(s, s, π) or χ(s, π)� link(t, t, π). Thus, it is excluded



from uf (s = t, ψ) iff it is excluded from link(s, t, π), and χ(t, π) � link(s, s, π)
and χ(s, π) � link(t, t, π).

We first consider how to exclude a link u ↔ v from link(s, t, ψ). We rewrite
the definition of link(s, t, ψ) into link(s, t, ψ) =

⋃4
i=1 σi(s, t, ψ) where

σ1(s, t, ψ) = {u↔ v | u ∈ V(s) ∧ v ∈ V(t)}
σ2(s, t, ψ) = {u↔ v | u ∈ V(s) ∧ v 6∈ V(t) ∧ (ψv ∩V(t)) 6= ∅}
σ3(s, t, ψ) = {u↔ v | u 6∈ V(s) ∧ v ∈ V(t) ∧ (ψu ∩V(s)) 6= ∅}
σ4(s, t, ψ) = {u↔ v | u 6∈ V(s) ∧ v 6∈ V(t) ∧ (ψu ∩V(s)) 6= ∅ ∧ (ψv ∩V(t)) 6= ∅}

Observe that (u↔ v) ∈ link(s, t, ψ) iff (u↔ v) ∈ σi(s, t, ψ) for some 1 ≤ i ≤ 4.
Note that (u ↔ v) ∈ σi(s, t, ψ) implies (u ↔ v) 6∈ σj(s, t, ψ) for j 6= i. The
following computes the set of minimal frontiers for u↔ v in link(s, t, ψ).

mf link (u, v, s, t, ψ) =


∅ if u ∈ V(s) ∧ v ∈ V(t)
{({v}⊗V(t)) ∩ ψ} if u ∈ V(s) ∧ v 6∈ V(t)
{({u}⊗V(s)) ∩ ψ} if u 6∈ V(s) ∧ v ∈ V(t)
{({u}⊗V(s)) ∩ ψ, ({v}⊗V(t)) ∩ ψ} if u 6∈ V(s) ∧ v 6∈ V(t)

Each element in mf link (u, v, s, t, ψ) excludes u↔ v from link(s, t, ψ). The empty
set in the first branch indicates that the presence of u ↔ v in σ1(s, t, ψ) is
independent of ψ and hence cannot be excluded. The second contains one frontier
that consists of links between v and variables in V(t). The third is dual to the
second. The fourth returns a set of two minimal frontiers. One consists of links
between v and variables in V(t); and the other consists of links between u and
variables in V(s).

Lemma 2. mf link (u, v, s, t, ψ) is a complete set of frontiers for u ↔ v in
link(s, t, ψ).

We now consider how to exclude u ↔ v from (χ(t, ψ) � link(s, s, ψ)). By
the definition of �, χ(t, ψ) � link(s, s, ψ) = (if χ(t, ψ) then link(s, s, ψ) else ∅).
Thus, we can either make the condition χ(t, ψ) false or exclude u ↔ v from
link(s, s, ψ). The latter can be accomplished by removing from ψ any element
in mf link (u, v, s, s, ψ). Note that χ(t, ψ) = ¬linear(t) ∨ ((V(t))2 ∩ ψ 6= ∅). If
¬linear(t) holds then χ(t, ψ) cannot be falsified by removing any part of ψ. In
this case, we can exclude u↔ v from χ(t, ψ) � link(s, s, ψ) only by removing an
element in mf link (u, v, s, s, ψ). Otherwise, linear(t) holds. We can alternatively
choose to falsify ((V(t))2 ∩ ψ 6= ∅). This can be done by removing all the links
in (V(t))2 ∩ ψ. Thus, each element in (linear(t)∧ ((V(t))2 ∩ ψ 6= ∅) � {(V(t))2 ∩
ψ}) ∪mf link (u, v, s, s, ψ) excludes u ↔ v from χ(t, ψ) � link(s, s, ψ). Excluding
u↔ v from (χ(s, ψ) � link(t, t, ψ)) is symmetric.

Lemma 3. (linear(t) ∧ ((V(t))2 ∩ ψ 6= ∅) � {(V(t))2 ∩ ψ}) ∪mf link (u, v, s, s, ψ)
is a complete set of frontiers for u↔ v in χ(t, ψ) � link(s, s, ψ).



In order to exclude a link u↔ v from h1(ψ)∪h2(ψ), it is necessary to exclude
u↔ v from both h1(ψ) and h2(ψ). This can be accomplished by removing from
ψ a frontier for u↔ v in h1(ψ) and a frontier for u↔ v in h2(ψ). The union of
a frontier for u ↔ v in h1(ψ) and a frontier for u ↔ v in h2(ψ) is a frontier for
u↔ v in h1(ψ)∪h2(ψ). To this end, define Ψ ]Φ = min({ψ∪φ | ψ ∈ Ψ ∧φ ∈ Φ})
where min(Π) returns the set of the elements in Π that are minimal with respect
to ⊆. The operation ] is commutative and associative.

Lemma 4. Let ψ ∈ PS, h1, h2 : PS 7→ PS monotonic functions, and Φi a
complete set of frontiers for a link u↔ v in hi(ψ) for 1 ≤ i ≤ 2. Then Φ1 ] Φ2

is a complete set of frontiers for u↔ v in h1(ψ) ∪ h2(ψ).

The function mf (u, v, s, t, ψ) below returns the set of all minimal frontiers
for u↔ v in uf (s = t, ψ).

mf (u, v, s, t, ψ) =
mf link (u, v, s, t, ψ)

] ((linear(t) ∧ ((V(t))2 ∩ ψ 6= ∅) � {(V(t))2 ∩ ψ}) ∪ mf link (u, v, s, s, ψ))
] ((linear(s) ∧ ((V(s))2 ∩ ψ 6= ∅) � {(V(t))2 ∩ ψ}) ∪ mf link (u, v, t, t, ψ))

Note that non-minimal frontiers for a link are removed by the min operation
employed in the ] operation and that minimal frontiers for a link are computed
without computing support sets for the link.

Lemma 5. mf (u, v, s, t, ψ) is a complete set of frontiers for u ↔ v in
uf (s = t, ψ).

Example 5. Let ψ = {w ↔ x, y ↔ z}. Then (w ↔ z) ∈ uf (x = g(y), ψ).
The set mf (w, z, x, g(y), ψ) of minimal frontiers for w ↔ z in uf (x = g(y), ψ)
is computed as follows. We calculate linear(g(y)) = true and V(g(y))2 ∩ ψ =
{y ↔ y} ∩ ψ = ∅. Thus, (linear(g(y)) ∧ (V(g(y))2 ∩ ψ 6= ∅)) = false and hence
(linear(g(y)) ∧ (V(g(y))2 ∩ ψ 6= ∅)) � {V(g(y))2 ∩ ψ} = ∅. We can also obtain
(linear(x) ∧ (V(x)2 ∩ ψ 6= ∅)) � {V(x)2 ∩ ψ} = ∅. Thus, mf (w, z, x, g(y), ψ) =
mf link (w, z, x, g(y), ψ)](∅∪mf link (w, z, x, x, ψ))](∅∪mf link (w, z, g(y), g(y), ψ)).
We first calculate mf link (w, z, x, g(y), ψ) = {({w} ⊗ {x}) ∩ ψ, ({z} ⊗ {y}) ∩
ψ} = {{w ↔ x}, {y ↔ z}} since w 6∈ {x} and z 6∈ {y}. We can also obtain
mf link (w, z, x, x, ψ) = {{w ↔ x}} and mf link (w, z, g(y), g(y), ψ) = {{y ↔ z}}.
So, mf (w, z, x, g(y), ψ) = {{w ↔ x}, {y ↔ z}} ] {{w ↔ x}} ] {{y ↔ z}} =
{{w ↔ x}, {y ↔ z}}.

Suppose that two links u↔ v and u′ ↔ v′ need be excluded from uf (s = t, ψ).
Removing from ψ a frontier for one link will exclude the link. Both links will
be excluded if the union of a frontier for u ↔ v and a frontier for u′ ↔ v′ is
removed from ψ. A frontier for a set of n links is the union of n frontiers - one
for each link.



Lemma 6. Let ψ ∈ PS, h : PS 7→ PS a monotonic function, φi ∈ PS and
Πi ⊆ PS for 1 ≤ i ≤ 2. If Πi is a complete set of frontiers for φi in h(ψ) then
Π1 ]Π2 is a complete set of frontiers for φ1 ∪ φ2 in h(ψ).

The following lemma provides a constructive method for computing
uf

−1
(s = t, ψ) for the case V(s) 6= ∅ ∧ V(t) 6= ∅. The forward abstract unifi-

cation operation uf is first employed to compute ψ′ = uf (s = t, ψ). The set of
minimal frontiers for ψ′ \ψ is then computed. It is ](u↔v)∈(ψ′\ψ)mf (u, v, s, t, ψ).
Each pair sharing in uf

−1
(s = t, ψ) is obtained by removing one of these minimal

frontiers from ψ.

Lemma 7. uf
−1

(s = t, ψ) = {ψ \ τ | τ ∈ ](u↔v)∈(ψ′\ψ)mf (u, v, s, t, ψ)} where
ψ′ = uf (s = t, ψ).

Lemmas 1 and 7 imply the correctness of uf
−1

. We now show that
uf

−1
(s = t, ψ) is polynomial in |s| + |t| + |VI |. Operations ∪, ∩ and ⊗ are

polynomial in |VI |. Let Π be a set of minimal frontiers and π1, π2 ∈ Π such
that π2 6= π1. Then π1 contains at least one link that does not belong to π2.
Thus, |Π| ≤ |VI |2 because |π1| ≤ |VI |2. So, ] is polynomial in |VI |. The forward
abstract unification ψ′ = uf (s = t, ψ) is polynomial in |s|+ |t|+ |VI | [1]. All links
u↔ v in ψ′\ψ invoke mf (u, v, s, t, ψ) with the same s, t and ψ. Thus, V(s), V(t),
linear(s) and linear(t) can be computed with their results being memoised for
use in computing mf (u, v, s, t, ψ) for different links u↔ v. This takes O(|s|+ |t|)
time. Using the memoised results, mf link (u, v, s, t, ψ) is polynomial in |VI |; so
is mf (u, v, s, t, ψ). The computation ](u↔v)∈(ψ′\ψ)mf (u, v, s, t, ψ) is polynomial
in |VI | since it invokes mf and ] for |ψ′ \ ψ| ≤ |VI |2 times and both mf and ]
are polynomial in |VI |. So, uf

−1
(s = t, ψ) is polynomial in |s|+ |t|+ |VI |.

6 Abstract Operation ◦−1

The operator ◦ : PS ×PS 7→ PS was originally proposed in [1] for composing an
abstract initial substitution for an atom with an abstract answer substitution
(for the atom and the abstract initial substitution) to obtain an abstract success
substitution. It will inverted to obtain ◦−1 and it is defined

π◦φ = {〈u, v〉 | u φ↔ v ∨ ∃x, y.(u φ⇔ x ∧ x π↔ y ∧ y φ⇔ v)}

Note that ◦ is not commutative. The following result is Lemma 4.4 in [1].

Proposition 1 (Codish, Dams and Yardeni). Let σ ∈ γ(π) and θ ∈ γ(φ).
Then σ ◦ θ ∈ γ(π◦φ).

The following lemma justifies the construction tactic of inverting ◦ to obtain
◦−1 : PS × PS 7→ PS .

Lemma 8. If π◦φ ⊆ ψ then γ(φ) ⊆ (γ(π) ◦−1 γ(ψ)).



The above lemma implies that the following is a correct specification for ◦−1.

π◦−1ψ = {φ | (π◦φ ⊆ ψ) ∧ ∀φ′ ∈ PS .((π◦φ′ ⊆ ψ) ⇒ (φ′ 6⊃ φ))

Again, we need to find a practical method for computing π◦−1ψ. For any π, φ ∈
PS , we have φ ⊆ π◦φ. Thus, if π◦φ ⊆ ψ then φ ⊆ ψ. A pair sharing in π◦−1ψ
can be obtained by removing a set τ of links from ψ. The problem is thus again
equivalent to finding τ . The notion of a support set and that of a frontier carry
over with λφ.(π◦φ) taking the place of λφ.uf (s = t, φ).

Example 6. Let ψ = {w ↔ x, x ↔ y, y ↔ z} and π = {x ↔ y}. Then π◦ψ =
π ∪ ψ ∪ {w ↔ y, w ↔ z, x ↔ x, x ↔ z, y ↔ y}. There is one support set for
w ↔ z: {w ↔ x, y ↔ z}. Two minimal frontiers are obtained from the support
set: {w ↔ x} and {y ↔ z}. Removing either of them excludes w ↔ z from π◦ψ.

By expanding the definition of ◦, we have π◦ψ = π ∪ ψ ∪ (ψ 1 π) ∪ (π 1

ψ)∪ (ψ 1 π 1 ψ) where π1 1 π2 = {u↔ v | ∃w.(u π1↔ w∧w π2↔ v)} is associative.
The following function computes the set of minimal frontiers for u↔ v in π◦ψ.

mftc(u, v, π, ψ) = {({u} ⊗ πv) ∩ ψ} ] {(πu ⊗ {v}) ∩ ψ}
]{({u} ⊗ πψv ) ∩ ψ, ({v} ⊗ πψu) ∩ ψ}

Some explanation is in order. Assume that (u ↔ v) 6∈ ψ and (u ↔ v) 6∈ π.
Consider how to exclude u↔ v from π◦ψ. The link u↔ v belongs to ψ 1 π if u
is linked via ψ to any variable that is linked to v via π. Thus, it is necessary to
remove all links in ({u} ⊗ πv) ∩ ψ. Excluding u ↔ v from π 1 ψ is symmetric.
Observe that πψv consists of those variables that are linked to v via a link in π
followed by a link in ψ. In order to exclude u ↔ v from ψ 1 π 1 ψ, we either
remove the set of all links from u to variables in πψv

or remove the set of all
links from v to variables in πψu . The former is ({u} ⊗ πψv )∩ ψ and the latter is
({v} ⊗ πψu) ∩ ψ. Finally, the link u ↔ v is excluded from π◦ψ if it is excluded
from ψ 1 π, π 1 ψ and ψ 1 π 1 ψ.

Lemma 9. For any π ∈ PS, mftc(u, v, π, ψ) is a complete set of frontiers for
u↔ v in (ψ 1 π) ∪ (π 1 ψ) ∪ (ψ 1 π 1 ψ).

The following lemma provides a polynomial method for computing π◦−1ψ.
Together with lemma 8, it ensures the correctness of the abstract operation ◦−1.
If π 6⊆ ψ then π◦φ 6⊆ ψ for any φ ∈ PS . In this case, the post-condition ψ
is unsatisfiable and hence the pre-condition is the empty set of pair sharings.
Otherwise, the pre-condition consists of those pair sharings that are obtained by
removing minimal frontiers for (π◦ψ) \ ψ.

Lemma 10. For any π, ψ ∈ PS,

π◦−1ψ =
{
∅ if π 6⊆ ψ
{ψ \ τ | τ ∈ ](u↔v)∈(π◦ψ)\ψmftc(u, v, π, ψ)} otherwise



Example 7. Continuing with example 6, (π◦ψ) \ ψ = {w ↔ y, w ↔ z, x ↔
x, x ↔ z, y ↔ y}. We have πw = πz = ∅, πψz = πy = {x} and πψw =
πx = {y}. Thus, mftc(w, z, π, ψ) = {∅} ] {∅} ] {({w} ⊗ πψz ) ∩ ψ, ({z} ⊗ πψw) ∩
ψ} = {{w ↔ x}, {y ↔ z}}. Omitting details, we obtain other sets of mini-
mal frontiers: mftc(w, y, π, ψ) = {{w ↔ x}}, mftc(x, z, π, ψ) = {{y ↔ z}} and
mftc(x, x, π, ψ) = mftc(y, y, π, ψ) = {{x↔ y}}. The set of minimal frontiers for
(π◦ψ)\ψ is ](u↔v)∈(π◦ψ)\ψmftc(u, v, π, ψ) = mftc(w, y, π, ψ)]mftc(w, z, π, ψ)]
mftc(x, x, π, ψ)]mftc(x, z, π, ψ)]mftc(y, y, π, ψ) = {{w ↔ x, x↔ y, y ↔ z}} =
{ψ}. Thus, π◦−1ψ = {∅}.

We now turn to the time complexity of π◦−1ψ. Observe that π◦ψ is polynomial
in |VI | since 1 and ∪ are polynomial in |VI |. Since ], ⊗ and ∩ are polynomial in
|VI |, mftc(u, v, π, ψ) is polynomial in |VI |. Thus, ](u↔v)∈(π◦ψ)\ψmftc(u, v, π, ψ)
is polynomial in |VI |; so is π◦−1ψ. Both uf

−1
(s = t, ψ) and π◦−1ψ are polynomial;

in contrast the widely-used set-sharing analysis has a forward abstract unification
operator that is exponential [13].

7 Related work

Though backward analysis has been a subject of intense research in functional
programming [25, 11, 5], backward analysis has until very recently [9, 15, 19, 22]
been rarely applied in logic programming. One notable exception is the demand
analysis of [4]. This analysis infers the degree of instantiation necessary to al-
low the guards of a concurrent constraint program to reduce: it is local analysis
that does not consider the possible suspension of body calls. The information it
infers is useful in detecting (uni-modal) predicates which can be implemented
with relatively straightforward suspension machinery. A more elaborate back-
ward analysis for concurrent constraint programs is [6]. This demand analysis
infers how much input is necessary for a procedure to generate a certain amount
of output. This information is useful for adding synchronisation constraints to
a procedure to delay execution and thereby increase grain size, and yet not
introduce deadlock.

Mazur, Janssens and Bruynooghe [21] present a kind of ad hoc backward
analysis to derive reuse conditions from a goal-independent reuse analysis. The
analysis propagates reuse information from a point where a structure is decom-
posed in a clause to the point where the clause is invoked in its parent clause.
This is similar in spirit to how demand is passed from a callee to a caller in
the backward analysis described in this paper. However, the reuse analysis does
not propagate information right-to-left across a clause, resulting in a less precise
analysis. The above backward analyses are not specialisations of any framework
for logic program analysis. In [22], a backward analysis is proposed to infer spe-
cialisation conditions that decide whether a call to a predicate from a particular
call site should invoke a specialised version of the predicate or an unoptimised
version. Specifically, if these conditions are satisfied by an (abstract) call in a
goal-dependent analysis then the call will possibly lead to valuable optimisations,



and therefore it should not be merged with calls that lead to a lower level of op-
timisation. The specialisation conditions produced by the backward analysis are
not sufficient conditions and need to be checked by an ensuing forward analysis.
In contrast, the pre-conditions obtained by the backward sharing analysis are
guaranteed to be sufficient and thus need not be checked by a forward analysis.

In [15], the authors of the current paper present an abstract semantics for
backward analysis of logic programs and specialise it to infer safe modes for
queries which ensure that the groundness assertions are not violated using the
groundness domain Pos [20]. The backward groundness analysis is also used in
termination inference by [9]. A backward analysis using the abstract semantics
is performed by first computing an upper approximation to the success set of the
program and then a lower approximation to the set of programs states (substi-
tutions) that will not violate any assertion. The key operation that propagates
information backwards the control-flow is the (intuitionistic) logical implication
operation. Thus, the abstract domain of the analysis is required to condense.
This, however, is a strong requirement for any domain. The abstract domain
for the backward sharing analysis does not condense. The approach advocated
in this paper is to found backward analysis on a novel abstract semantics for
backward analysis which relaxes this requirement. An analysis using the new ab-
stract semantics is a greatest fixpoint computation whilst an analysis with the
abstract semantics in [15] additionally computes a least fixpoint computation.

The authors of this paper have also shown how backward analysis can be used
to perform type inference [19]. Given type signatures for a collection of selected
predicates such as builtin or library predicates, the analysis of [19] infers type
signatures for other predicates such that the execution of any query satisfying
the inferred type signatures will not violate the given type signatures. Thus, the
backward type analysis generalises type checking in which the programmer man-
ually specifies type signatures for all predicates that are checked for consistency
by a type checker. The work of [19] is distinct from that reported in this paper.
The property considered in [19] is closed under instantiation whilst that in this
paper is not.

Very recently, Gallagher [8] has proposed a program transformation as a tac-
tic for realising backward analysis in terms of forward analysis. Assertions are
realised with a meta-predicate d(G,P ). The meta-predicate d(G,P ) expresses
the relationship between an initial goal G and a property P to be checked at
some program point. The meta-predicate d(G,P ) holds if there is a derivation
starting from G leading to the program point with which P is associated. The
transformed program defining the predicate d can be seen as a realisation of
the resultants semantics [7]. Backward analysis is performed by examining the
meaning of d, which can be approximated using a standard forward analysis, to
deduce goals G that imply that the property P holds. This work is both promis-
ing and intriguing because it finesses the requirement of calculating a greatest
fixpoint. One interesting line of enquiry would be to compare the expressive
power of transformation – the pre-conditions its infers – against those deduced
via a be-spoke backward analysis framework [15, 19].



Giacobazzi [10] proposes a method for an abductive analysis of modular logic
programs. From a specification of the success patterns of a predicate defined in
one module which calls open predicates defined in other modules, the method
derives a specification for the success patterns of the open predicates. In contrast,
our method derives a specification for the call patterns of some (unspecified)
predicates from a specification of the call patterns of other (specified) predicates.

Pedreschi and Ruggieri [23] develop a calculus of weakest pre-conditions and
weakest liberal pre-conditions, the latter of which is essentially a reformulation
of Hoare’s logic. Weakest liberal pre-conditions are characterised as the greatest
fixpoint of a co-continuous function on the space of interpretations. Our work
takes these ideas forward to show how abstract interpretation can infer weakest
liberal pre-conditions.

Cousot and Cousot [3] explain how a backward collecting semantics can be
used to precisely characterise states that arise in finite SLD-derivations. They
present both a forward collecting semantics that records the descendant states
that arise from a set of initial states and a backward collecting semantics that
records those states which occur as ascendant states of the final states. By com-
bining both semantics, they characterise the set of descendant states of the initial
states which are also ascendant states of the final states of the transition system.
This use of backward analysis is primarily as a device to improve the precision
of a goal-dependent analysis. Our work is more radical in the sense that it shows
how a bottom-up analysis performed in a backward fashion, can be used to char-
acterise initial queries. Moreover it is used for lower approximation rather than
upper approximation.

Hughes and Launchbury [12] shows how and when to reverse an analysis
based on abstract interpretation. Their work is concerned with analyses of func-
tional programs. In fact, Hughes and Launchbury argue that ideally the direction
of an analysis should be reversed without reference to the concrete semantics.
Our work demonstrates that this can be accomplished in the analysis of logic
programs.

A systematic comparison of the relative precision of forward and backward
abstract interpretation of logic programs is given in [16].

8 Conclusions

A backward sharing analysis for logic programs has been presented. From a given
post-condition for an atom, it derives a pre-condition. Any successful execution
of the atom in any state satisfying the pre-condition ends in a state satisfying
the post-condition. Abstract operations for the backward sharing analysis are
constructed by inverting those for a forward sharing analysis. The work demon-
strates that backward analysis is applicable for properties that are not closed
under instantiation.
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