
Determinacy Inference for Logic Programs

Lunjin Lu and Andy King

1 Department of Computer Science, Oakland University, Rochester, MI 48309, USA
2 Computing Laboratory, University of Kent, Canterbury, CT2 7NF, UK

Abstract. This paper presents a determinacy inference analysis for logic
programs. The analysis infers determinacy conditions that, if satisfied by
a call, ensures that it computes at most one answer and that answer is
generated only once. The principal component of the technique is a goal-
independent analysis of individual clauses. This derives a condition for
a call that ensures only one clause in the matching predicate possesses
a successful derivation. Another key component of the analysis is back-
wards reasoning stage that strengthens these conditions to derive prop-
erties on a call that assure determinacy. The analysis has applications in
program development, implementation and specialisation.

1 Introduction

One issue in logic programming is checking whether a given program and goal are
deterministic [3, 5, 7, 11, 14], that is, whether the goal has at most one computed
answer (and whether that answer is generated only once). As well as being key
to efficient parallel [6, 10] and sequential [5, 7] implementations, knowledge of
determinacy is important in program development and O’Keefe [18] writes,

“you should keep in mind which . . . predicates are determinate, and when
they are determinate, and you should provide comments for your own
code to remind you of when your own code is determinate.”

This paper presents a determinacy inference analysis. It synthesises a determi-
nacy condition for each predicate that, if satisfied by a call to the predicate,
guarantees that there is at most one computed answer for the call and that the
answer is produced only once if ever. Determinacy inference generalises deter-
minacy checking; rather than verify that a particular goal is deterministic it
deduces, in a single application of the analysis, a class of goals that are deter-
ministic. The analysis has the advantage of being goal-independent, and is a
step towards the ideal when human interaction is only required to inspect the
answers. More exactly, the analysis can be activated by directing the analyser to
a source file and pressing a button; in contrast to goal-dependent techniques the
analysis does not require a top-level goal or module entry point to be specified by
the programmer. As well as being applicable to determinacy checking problems,
the analysis opens up new applications. In program development, if the class of
deterministic goals inferred by the analysis does not match the expectations of
the programmer, then the program is possibly buggy, or at least inefficient. In

program specialisation, it is well-known that if a non-leftmost call in a goal is
unfolded, then the corresponding residual program can be less efficient than the
original one. Determinacy inference can address this issue and it seems promis-
ing as a form of binding-time analysis in the so-called semi-online (or mixline)
approach to program specialisation [13]. In this scheme, the usual static and
dynamic polarisation that is used within classic binding-time analysis [4] is re-
fined by adding an additional binding-type semi. As well as always unfolding
a static call and never unfolding a dynamic call, the unfolding decision for a
semi call is postponed until specialisation time. Determinacy inference fits into
this scheme because a goal-dependent binding-time analysis can verify whether
a determinacy condition for a given call is satisfied and therefore whether the
call is determinate. These calls can then be marked as semi since determinate
goals are prime candidates for unfolding. These semi calls are also annotated
with lightweight conditions that select the clause with which to unfold the call.
The net result is more aggressive unfolding. To summarise, this paper makes the
following contributions:

– it presents a determinacy inference technique which generalises previously
proposed determinacy checking techniques. The analysis also has applica-
tions in the burgeoning area of semi-online program specialisation;

– it shows how determinacy inference can be decomposed into the sub-problems
of (1) deriving a mutual exclusion condition on each call that ensures that
only one matching clause has a successful derivation; (2) applying backward
reasoning to enrich these conditions on calls so as to assure determinacy;

– it shows that (1) can be tackled with techniques such as depth-k [20] and
argument-size analysis [2] when suitably augmented with a projection step;
and that (2) can be tackled with backward analysis [12];

– it reports experimental work that provides evidence that the method scales
and that it can infer rich (and sometimes surprising) determinacy conditions.

Section 2 illustrates the key ideas with a worked example. Section 3 explains
how mutual exclusion conditions can be derived that, when satisfied by a call,
ensures that no more than one clause of the matching predicate can lead to a
successful derivation. Section 4 presents a backward analysis that strengthens
these conditions to obtain determinacy conditions. Section 5 details an initial
experimental evaluation and sections 6 and 7 the related work and conclusions.
To make the ideas accessible to a wider programming language audience, the
analysis is, wherever possible, presented informally with minimal notation.

2 Worked example

This section explains the analysis by way of an example. In order to derive
conditions on calls that are sufficient for determinacy, it is necessary to reason
about individual success patterns of the constituent clauses of a predicate. In
particular, it is necessary to infer conditions under which the success patterns for
any pair of clauses do not overlap. This can be achieved by describing success

2

patterns with suitable abstractions. One such abstraction can be constructed
from the list-length norm that is defined as follows:

‖t‖ =

 t if t is a variable
1 + ‖t2‖ if t = [t1|t2]
0 otherwise

The norm maps a term to a size that is in fact a linear expression defined over
the natural numbers and the variables occurring in the term. Observe that if
two terms t1 and t2 are described by constant expressions of different value,
that is ‖t1‖ 6= ‖t2‖, then t1 and t2 are distinct. In fact, to reason about non-
overlapping sets of success patterns (rather than sets of terms), it is necessary
to work with argument-size relationships [2] which are induced from a given
norm. To illustrate argument-size relationships, and their value in determinacy
inference, the following program will be used as a running example throughout
this section. The program, like all those considered in the paper, is flat in the
sense that the arguments of atoms are vectors of distinct variables. Clauses are
numbered for future reference.
(1) append(Xs, Ys, Zs) :-

Xs = [], Ys = Zs.
(2) append(Xs, Ys, Zs) :-

Xs = [X|Xs1],
Zs = [X|Zs1],
append(Xs1, Ys, Zs1).

(3) rev(Xs,Ys) :-
Xs = [], Ys = [].

(4) rev(Xs,Ys) :-
Xs = [X|Xs1], Ys2 = [X],
rev(Xs1, Ys1),
append(Ys1, Ys2, Ys).

2.1 Computing success patterns

To derive size relationships the program is abstracted by applying the norm to
the terms occurring within it. Applying the norm to the terms in a syntactic
equation t1 = t2 yields a linear equation ‖t1‖ = ‖t2‖. The key idea is that a
variable in the derived program – the so-called abstract program – describes the
size of the corresponding variable in the original program. Since term sizes are
non-negative, it is safe to additionally assert that each variable in the abstract
program is non-negative. The abstract program thus obtained is listed below.

(1) append(Xs, Ys, Zs) :-
Xs ≥ 0,Ys ≥ 0,Zs ≥ 0,
Xs = 0, Ys = Zs.

(2) append(Xs, Ys, Zs) :-
Xs ≥ 0,Ys ≥ 0,Zs ≥ 0,
Xs1 ≥ 0,Zs1 ≥ 0,
Xs = 1 + Xs1,
Zs = 1 + Zs1,
append(Xs1, Ys, Zs1).

(3) rev(Xs, Ys) :-
Xs ≥ 0,Ys ≥ 0,
Xs = 0, Ys = 0.

(4) rev(Xs,Ys) :-
Xs ≥ 0,Ys ≥ 0,
Xs1 ≥ 0,Ys1 ≥ 0,Ys2 ≥ 0,
Xs = 1 + Xs1, Ys2 = 1,
rev(Xs1,Ys1),
append(Ys1,Ys2,Ys).

The value of the abstract program is that its success patterns, which are given
below, describe size attributes of the original program. The key idea is that the
success sets of the abstract program faithfully describe the size relationships on
the success sets of the original program.

3

append(x1, x2, x3) :- (x1 ≥ 0) ∧ (x2 ≥ 0) ∧ (x1 + x2 = x3)
rev(x1, x2) :- (x1 ≥ 0) ∧ (x1 = x2)

The relation x1 + x2 = x3 captures the property that if the original program is
called with a goal append(x1, x2, x3) then any computed answer will satisfy the
property that the size of x1 wrt ‖.‖, when summed with the size of x2 will exactly
coincide with the size of x3. Moreover, the success patterns that are systems of
linear inequalities can be inferred automatically by mimicking the TP operator
[21] and specifically calculating a least fixpoint (lfp) [2].

2.2 Synthesizing mutual exclusion conditions

Mutual exclusion conditions are synthesized next; one condition for each pred-
icate in the program. Such a condition, if satisfied by a call, guarantees that if
one clause of the predicate can lead to a solution then no other clauses can do
so. For example, one mutual exclusion condition for append is that its first argu-
ment is bound to a non-variable term. If the first clause leads to a solution, then
its head must unify with the call. Thus the second clause cannot match the call
and vice versa. Notice, that mutual exclusion is not sufficient for determinacy.
For instance, the call append([W|X],Y,Z) – which satisfies the above mutual
exclusion condition – possesses multiple solutions. Mutual exclusion conditions
are synthesised by computing success patterns for individual clauses. This is ac-
complished by evaluating the body of an abstract clause with the predicate-level
success patterns. This yields the following clause-level success patterns:

1 append(x1, x2, x3) :- (x1 = 0) ∧ (x2 ≥ 0) ∧ (x2 = x3)
2 append(x1, x2, x3) :- (x1 ≥ 1) ∧ (x2 ≥ 0) ∧ (x1 + x2 = x3)
3 rev(x1, x2) :- (x1 = 0) ∧ (x2 = 0)
4 rev(x1, x2) :- (x1 ≥ 1) ∧ (x1 = x2)

The next step is to compute a rigidity property that guarantees that at most
one of its clauses can yield a computed answer. A term t is rigid wrt to a norm
‖.‖ if ‖t‖ is a fixed constant. For example, a term t is rigid wrt list-length if t is
not an open list. More generally, a Boolean function such as x1 ∧ (x2 ↔ x3) can
express rigidity constraints on the arguments of a call; it states that x1 is rigid
wrt ‖.‖ and that x2 is rigid iff x3 is rigid. Suppose now that p(x):-c1 and p(x):-c2
are success patterns for two clauses. A rigidity constraint on the arguments of
p(x) that is sufficient for mutual exclusion can be computed by:

XP (p(x)) =
∨
{∧Y | Y ⊆ var(x) ∧ (∃Y (c1) ∧ ∃Y (c2) = false)}

where var(o) is the set of variables occurring in the syntactic object o. The
projection operator ∃Y (c) maps c onto a weaker linear constraint that ranges
over variables in the set Y . For example, ∃{x2}((x1 ≥ 1)∧(x1 = x2)) = (x2 ≥ 1).
If ∃Y (c1) ∧ ∃Y (c2) is unsatisfiable, then the Boolean formula ∧Y expresses a

4

rigidity condition on the arguments of p(x) that is sufficient for mutual exclusion.
To see this, observe that if the arguments in Y are rigid, then their sizes cannot
change as execution proceeds. Thus the projection ∃Y (ci) holds at the selection
of the respective clause since it holds at the end of a successful derivation. Since
∃Y (c1) ∧ ∃Y (c2) is unsatisfiable when Y are rigid, ∧Y is enough for mutual
exclusion. This tactic generates the following conditions for the reverse program
which states that the clauses of append(x1, x2, x3) are mutually exclusive if either
x1 is rigid or both x2 and x3 are rigid.

XP (append(x1, x2, x3)) = ∨{∧{x1},∧{x2, x3},∧{x1, x2, x3}} = x1 ∨ (x2 ∧ x3)
XP (rev(x1, x2)) = ∨{∧{x1},∧{x2}} = x1 ∨ x2

2.3 Synthesizing determinacy conditions

The last phase in determinacy inference involves calculating a rigidity constraint
for each predicate such that any call satisfying the constraint will yield at most
one computed answer. This is achieved with backward analysis [12] which com-
putes a greatest fixpoint (gfp) to strengthen the mutual exclusion conditions into
determinacy conditions. The gfp makes use of rigidity success patterns which are
computed, again, by simulating the TP operator in a lfp calculation.

Least fixpoint The lfp calculation is performed on another abstract version
of the program. This version is obtained by replacing syntactic constraints with
rigidity constraints. For example, Xs = 1 + Xs1 is replaced with the Boolean
formula Xs↔ Xs1 which expresses that Xs is rigid wrt list-length iff Xs1 is rigid.
The abstract program obtained in this fashion is given below.

(1) append(Xs, Ys, Zs) :-
Xs, Ys↔ Zs.

(2) append(Xs, Ys, Zs) :-
Xs↔ Xs1,
Zs↔ Zs1,
append(Xs1, Ys, Zs1).

(3) rev(Xs, Ys) :-
Xs, Ys.

(4) rev(Xs,Ys) :-
Xs↔ Xs1, Ys2,
rev(Xs1, Ys1),
append(Ys1, Ys2, Ys).

Interpreting this program with a version of TP that operates over Boolean func-
tions, the following success patterns are obtained that express rigidity properties
of the original program. The pattern for rev, for instance, states x1 is rigid iff
x2 is rigid in any computed answer to rev(x1, x2) in the original program.

append(x1, x2, x3) :- x1 ∧ (x2 ↔ x3) rev(x1, x2) :- x1 ∧ x2

Greatest fixpoint Each iteration in the gfp calculation amounts to:

– deriving a determinacy condition for each clause of the predicate that ensures
no more than one derivation commencing with that clause may succeed;

– conjoining these conditions with the mutual exclusion of the predicate.

5

The single resulting condition, which is expressed as rigidity constraint, defines
the next iterate. The iterates that arise when processing reverse are given below:

I0 =
{
append(x1, x2, x2) :- true

rev(x1, x2) :- true

}
I1 =

{
append(x1, x2, x2) :- x1 ∨ (x2 ∧ x3)

rev(x1, x2) :- x1 ∨ x2

}

I3 = I2 =
{
append(x1, x2, x2) :- x1 ∨ (x2 ∧ x3)

rev(x1, x2) :- x1

}
To illustrate the gfp consider computing the determinacy condition for rev
in I2. The first clause of rev possesses body atoms which are deterministic
builtins. Thus the rigidity condition of true is trivially sufficient for this clause
to be deterministic. Consider now the second clause. The two calls in its body,
rev(Xs1,Ys1) and append(Ys1,Ys2,Ys), are processed separately as follows:

– The determinacy condition in I1 for rev(Xs1,Ys1) is Xs1 ∨ Ys1 and the
combined success pattern of the equations that precede it is (Xs↔ Xs1)∧Ys2.
Thus rev(Xs1,Ys1) is deterministic if ((Xs ↔ Xs1) ∧ Ys2) → (Xs1 ∨ Ys1)
holds upon entry to the body of the clause.

– The determinacy condition in I1 for append(Ys1,Ys2,Ys) is Ys1∨(Ys2∧Ys).
The combined success pattern of the equations and the call rev(Xs1,Ys1)
that precede it is (Xs ↔ Xs1) ∧ Ys2 ∧ (Xs1 ∧ Ys1) = Xs ∧ Xs1 ∧ Ys1 ∧ Ys2.
The call append(Ys1,Ys2,Ys) is deterministic if (Xs ∧ Xs1 ∧ Ys1 ∧ Ys2) →
(Ys1 ∨ (Ys2 ∧ Ys)) holds when the body is entered.

These conditions for determinacy of rev(Xs1,Ys1) and append(Ys1,Ys2,Ys)
are then conjoined to give, say f , (in this case conjunction is trivial since the
condition for append is true). The condition f is formulated in terms of the
rigidity of variables occurring in the body of the rev clause. What is actually
required is a condition on a rev call that is sufficient for determinacy. Thus those
variables in f that do not occur in the clause head, namely Xs1, Ys1 and Ys2, are
eliminated from f to obtain a condition sufficient for the call rev(Xs,Ys) to be
deterministic. Eliminating Xs1, Ys1 and Ys2 from f (in the manner prescribed
in section 4) gives Xs. If Xs holds, then f holds. Hence if the second clause is
selected and the call possesses a rigid first argument, then determinacy follows.

Finally, determinacy conditions for the two rev clauses are conjoined with
the mutual exclusion condition to obtain true ∧ Xs ∧ (Xs ∨ Ys) = Xs. Thus the
call rev(Xs,Ys) is guaranteed to be deterministic if Xs is rigid.

3 Synthesising mutual exclusion conditions

To compute mutual exclusion conditions, it is necessary to characterise successful
computations at level of clauses. Specifically, it is necessary to characterise the set
of solutions for any call that can be obtained with a derivation that commences
with a given clause. Success pattern analysis can be adapted to this task.

6

3.1 Success patterns

Example 1. To illustrate a success pattern analysis other than argument-size
analysis, consider a depth-k analysis of the Quicksort program listed below.

(1) sort(X,Y) :- L = [], qsort(X,Y,L).

(2) qsort(X,S,T) :- X = [], S = T.
(3) qsort(X,S,T) :- X = [Y|X1], M1 = [Y|M],

part(X1,Y,L,G), qsort(L,S,M1), qsort(G,M,T).

(4) part(X,M,L,G) :- Xs = [], L = [], G = [].
(5) part(X,M,L,G) :-

X = [Y|X1], L = [Y|L1], Y ≤ M, part(X1,M,L1,G).
(6) part(X,M,L,G) :-

X = [Y|X1], G = [Y|G1], Y > M, part(X1,M,L,G1).

In this context of depth-k analysis, a success pattern is an atom paired with a
Herbrand or linear constraint where the terms occurring in the constraint have
a depth that does not exceed a finite bound k. The success patterns for the
predicates and clauses are given below, to the left and the right, respectively.

sort(x1, x2) :- true
qsort(x1, x2, x3) :- true

part(x1, x2, x3, x4) :- true

1 sort(x1, x2) :- true
2 qsort(x1, x2, x3) :- x1 = [], x2 = x3

3 qsort(x1, x2, x3) :- x1 = [|], x2 = [|]
4 part(x1, x2, x3, x4) :- x1 = [], x3 = [], x4 = []
5 part(x1, x2, x3, x4) :- x1 = [y|], x3 = [y|], y ≤ x2

6 part(x1, x2, x3, x4) :- x1 = [y|], x4 = [y|], y > x2

3.2 Mutual exclusion conditions

The technique previously introduced for synthesising mutual exclusion condi-
tions is formulated in terms of argument-size analysis and rigidity analysis and
the relationship between rigidity and size; rigidity constraints are used to specify
conditions under which pairs of size abstractions are incompatible. To generalise
these ideas to other domains, such as depth-k, it is necessary to generalise the
concept of norm and replace it with a mapping ν from the set of terms to a set of
abstract terms. The concept of rigidity is still meaningful in this general setting:
a term t is rigid wrt ν iff ν(θ(t)) = ν(t) for every θ ∈ Sub where Sub is the set of
substitutions. Let rigidν be the rigidity predicate on terms induced by ν, that
is, rigidν(t) holds if t is rigid wrt ν. For example, if ν is depth-2 abstraction [20]
then rigidν(t) holds iff all the variables in t occur at depth 2 or more.

Mutual exclusion conditions are expressed within a dependency domain that
can specify rigidity requirements. The property that all the variables in a term
occur at or beneath level k can be tracked within the dependency domain, but
it is simpler to trace a property that implies rigidity (rather than the induced
rigidity property itself). Hence let rigid′ν denote any predicate such that rigidν(t)

7

holds if rigid′ν(t) holds. For instance, rigid′ν(t) = ground(t). Such a predicate
can then induce abstraction αrigid′ν

: ℘(Sub) → Pos and concretisation γrigid′ν
:

Pos→ ℘(Sub) maps between Pos and ℘(Sub) as follows:

γrigid′ν
(f) = {θ ∈ Sub | ∀κ ∈ Sub.assign(κ ◦ θ) |= f}

αrigid′ν
(Θ) = ∧{f ∈ Pos | Θ ⊆ γrigid′ν

(f)}

where assign(θ) = ∧{x ↔ rigid′ν(θ(x)) | x ∈ dom(θ)}. Note that although the
underlying domain is Pos – the set of positive Boolean functions – the abstraction
is not necessarily groundness. Indeed, the predicate rigid′ν parameterises the
meaning of αrigid′ν

and γrigid′ν
and these maps define the interpretation of Pos.

Now that a target domain exists in which determinacy conditions can be
expressed, it remains to define a general procedure for inferring these conditions.
Let p(x):-c1 and p(x):-c2 be the success patterns of two clauses C1 and C2 of
p(x) where c1 and c1 are abstract term constraints such as depth-k abstractions.
Let Y ⊆ var(x). The following predicate checks if the condition ∧y∈Y rigid′ν(y)
is enough for C1 and C2 to be mutually exclusive on p(x).

XP (Y, p(x), C1, C2) = (∃Y (c1) ∧ ∃Y (c2) = false)

The following proposition (whose proof is given in [15]) formalises the intuitive
argument that was given in section 2.2.

Proposition 1. Let θ ∈ Sub and Y ⊆ var(x). Suppose XP (Y, p(x), C1, C2)
holds and ∧y∈Y rigid′ν(θ(y)) holds. Then

– all derivations of θ(p(x)) using C1 as the first clause fail or
– all derivations of θ(p(x)) using C2 as the first clause fail.

Now let S denote the set of clauses that define p(x). A rigidity constraint ∧Y is
a mutual exclusion condition for p(x) iff it is a mutual exclusion condition for
all pairs of clauses drawn from S. This observation leads to the following:

XP (p(x)) =
∨
{∧Y | Y ⊆ var(x)∧∀C1, C2 ∈ S.(C1 6= C2 → XP (Y, p(x), C1, C2)}

The following corollary of proposition 1 verifies that XP (p(x)) is truly a mutual
exclusion condition for p(x).

Corollary 1. If αrigid′ν
({θ}) |= XP (p(x)) then at most one clause of p(x) can

lead to a successful derivation of θ(p(x)).

Example 2. The left-hand column gives the exclusion conditions for the quick-
sort program, synthesised from the clause-level depth-k abstractions listed in
example 1 and using the predicate rigid′ν(t) = ground(t). The same predicate
was used to generate the exclusion conditions in the right-hand column using
argument-size abstractions (not provided).

XP (sort(x1, x2)) = true
XP (qsort(x1, x2, x3)) = x1

XP (part(x1, x2, x3, x4)) = x1 ∧ x2

XP (sort(x1, x2)) = true
XP (qsort(x1, x2, x3)) = x1 ∨ (x2 ↔ x3)
XP (part(x1, x2, x3, x4)) = false

8

Note that weaker requirements for mutual exclusion can be obtained by com-
bining these two sets of conditions. Note too that these conditions can only be
combined by operating in a domain defined in terms of a common predicate
ground(t) which is stronger than both rigid‖.‖(t) and rigiddepth−k(t).

4 Synthesising determinacy conditions

This section revisits the backward analysis that strengthens mutual exclusion
conditions to obtain the determinacy conditions. As with the previous section,
the presentation focusses on those issues left open in the worked example section.

4.1 Abstracting the program for general rigidity

The exercise of specifying αrigid′ν
and γrigid′ν

is more than an aesthetic predilec-
tion. It provides a mechanism for deriving an abstract program that captures
rigidity relationships between program variables where the notion of rigidity is
specified by rigid′ν . Consider first how to abstract an equation t1 = t2 in the
context of rigid′ν . The relationship between an equation and its most general
unifiers (mgus) is such that the equation can be safely described by any Boolean
function f such that αrigid′ν

({θ}) |= f where θ is any mgu of t1 = t2. For exam-
ple, if ν′(t) = ‖t‖ then x1 ↔ x3 describes x1 = [x2|x3]. To see this, let κ ∈ Sub
and observe that θ = {x1 7→ [x2|x3]} is a mgu of the equation x1 = [x2|x3]. Then

rigid′ν(κ ◦ θ(x3)) = rigid′ν(κ(x3)) = rigid′ν([κ(x2)|κ(x3)]) = rigid′ν(κ ◦ θ(x1))

Thus assign(κ ◦ θ) |= (x1 ↔ x3) for all κ ∈ Sub, whence it follows that x1 ↔ x3

describes x1 = [x2|x3]. If rigid′ν(t) = ground(t) then t1 = t2 is abstracted by
∧{x ↔ ∧vars(θ(x)) | x ∈ dom(θ)} where θ is a mgu of the equation t1 = t2,
though (∧vars(t1)) ↔ (∧vars(t2)) is a simpler, albeit less precise, abstraction.
A call to a builtin p(x) can be handled by abstracting it with any function f
such that αrigid′ν

(Θ) |= f where Θ is the set of computed answers for p(x). For
instance, if ν′(t) = ground(t) then x1 ∧ x2 describes the call (x1 is x2) whereas
if ν′(t) = ‖t‖ then x1 ∧ x2 describes the builtin length(x1, x2).

Example 3. The following rigidity program is obtained from the quicksort pro-
gram using rigid′ν(t) = ground(t).

(1) sort(X, Y) :- L, qsort(X, Y, L).
(2) qsort(X, S, T) :- X, S↔ T.
(3) qsort(X, S, T) :- X↔ (Y ∧ X1), M1↔ (Y ∧ M),

part(X1, Y, L, G), qsort(L, S, M1), qsort(G, M, T).

(4) part(X, M, L, G) :- Xs, L, G.
(5) part(X, M, L, G) :-

X↔ (Y ∧ X1), L↔ (Y ∧ L1), Y, M, part(X1,M,L1,G).
(6) part(X, M, L, G) :-

X↔ (Y ∧ X1), G↔ (Y ∧ G1), Y, M, part(X1,M,L,G1).

9

Example 4. Once the abstract program is defined, the rigidity success patterns
can be calculated in the manner previously described to give:

part(x1, x2, x3, x4) :- x1 ∧ x3 ∧ x4

qsort(x1, x2, x3) :- x1 ∧ (x2 ↔ x3)
sort(x1, x2) :- x1 ↔ x2

4.2 Determinacy conditions

Synthesis of determinacy conditions commences by assuming that all calls are
trivially determinate, that is, the condition true is sufficient for determinacy.
These conditions are then checked by reasoning backwards across all clauses. If
a condition turns out to be too weak then it is strengthened and the whole process
is repeated until the conditions are verified to be sufficient for determinacy. One
of the more subtle aspects of this procedure relates to variable elimination. If
a condition f , defined in terms of a variable x is sufficient for determinacy,
then it can become necessary to calculate another condition, g say, independent
of x which is also sufficient for determinacy. Universal quantification operator
∀x : Pos 7→ Pos provides a mechanism for doing this:

∀x(f) = if f ′ ∈ Pos then f ′ else false where f ′ = f [x 7→ true] ∧ f [x 7→ false]

The significance of this operator is that ∀x(f) |= f , hence if f is sufficient
for determinacy, then so is ∀x(f). To succinctly define the gfp operator it is
convenient to define a project onto (rather than project out) operator ∀Y (f) =
∀y1(∀y2(· · · ∀yn(f) · · ·)) where each yi is a (free) variable occurring in f which
does not appear in the set of variables Y ; in effect f is projected onto Y .

Example 5. Consider ∀{X,S,T}(e) with e = X ∨ (X1 ∧ M1) ∨ (X1 ∧ Y). Now

e[M1 7→ true] ∧ e[M1 7→ false] = (X ∨ X1) ∧ (X ∨ (X1 ∧ Y)) = X ∨ (X1 ∧ Y)

Thus put e′ = ∀M1(e) = X ∨ (X1 ∧ Y) and repeating this tactic:

e′[X1 7→ true] ∧ e′[X1 7→ false] = (X ∨ Y) ∧ (X) = X

Hence put e′′ = ∀X1(e′) = X and it follows ∀{X,S,T}(e) = X. Observe that X |= e.

The gfp operates on an abstract program P obtained via rigidity abstraction.
To express the operator intuitively, the success set of rigidity patterns, denoted
S, is considered to be a map from atoms to Pos formulae. Similarly, the rigidity
conditions inferred in the gfp, denoted I, are represented as a map from atoms
to formulae. The mechanism that the gfp operator uses to successively update
I is to replace each pattern p(x) :- f ∈ I with another p(x) :- XP (p(x)) ∧ (∧F)
until stability is achieved where the set of Boolean formula F is defined by:

F =

∀x(e)

∣∣∣∣∣∣
p(x) :- f1, · · · , fm, p1(x1), · · · , pn(xn) ∈ P
gi = (∧1≤k≤mfk) ∧ (∧1≤j<iS(p(xj)))

e =
∧

1≤i≤n(gi → I(pi(xi)))

10

The function XP (p(x)) ∧ (∧F) is at least as strong as the formula f it replaces
and thus the operator generates a downward iteration sequence. If I ′ is the gfp
thus obtained, the following theorem states how it characterises determinacy.

Theorem 1. If θ ∈ Sub and αrigid′ν
({θ}) |= I ′(p(x)) then θ(p(x)) has at most

one computed answer.

Example 6. The iterates that arise when processing the quicksort program are

I0 =

part(x1, x2, x3, x4) :- true,
qsort(x1, x2, x3) :- true,

sort(x1, x2) :- true

 I1 =

part(x1, x2, x3, x4) :- x1 ∧ x2,
qsort(x1, x2, x3) :- x1,

sort(x1, x2) :- true

I3 = I2 =

part(x1, x2, x3, x4) :- x1 ∧ x2,
qsort(x1, x2, x3) :- x1,

sort(x1, x2) :- x1

To illustrate how computation proceeds, consider computing the determinacy
condition for qsort in I2. The first abstract clause for qsort(X, S, T) does not
contain any call; hence its determinacy condition is computed as true. The second
abstract clause for qsort(X, S, T) has three calls. The first call part(X1, Y, L, G)
has a determinacy condition X1∧Y in I1. The cumulative success patterns of the
builtins that precede it are (X↔ (Y ∧ X1)) ∧ (M1↔ (Y ∧ M)). Thus if

e1 = ((X↔ Y ∧ X1) ∧ (M1↔ Y ∧ M))→ (X1 ∧ Y)

holds when the body is entered, then part(X1, Y, L, G) will be deterministic.
The second call qsort(L, S, M1) has a determinacy condition L in I1 and the

success pattern of part(X1, Y, L, G) is X1 ∧ L ∧ G. Moreover the Boolean function
f = (X↔ Y)∧ (M1↔ (Y∧M))∧X1∧L∧G describes effect of the calls that precede
qsort(L, S, M1). Hence e2 = f → L = true is a condition which, if it holds at
entry to the body, is sufficient for the call qsort(L, S, M1) to be deterministic.
Likewise e3 = true is sufficient for the qsort(G, M, T) call to be deterministic. The
combined determinacy condition is thus e1 ∧ e2 ∧ e3 = e1 and eliminating the
body variables which do not occur in the head (using the result from example 5)
yields ∀{X,S,T}(e1) = X. Combining this with the mutual exclusion condition gives
X, thus the determinacy requirement for qsort does not change.

An astute reader will have noticed in the worked example section that a call
to the rev(x1, x2) predicate is determinate if either x1 or x2 are rigid. Yet the
analysis only infers that the rigidity of x1 is sufficient for determinacy. If the
rev and append calls in the body of the second rev clause are interchanged,
however, then the analysis will infer that the rigidity of x2 is sufficient for deter-
minacy. This would suggest the following revision of the above operator: infer
a determinacy condition for each permutation of the body atoms; then apply
disjunction to merge these conditions to find a more general condition sufficient
for determinate behaviour of that clause. However, this tactic, as well as being
potentially inefficient, is also in general wrong. To see this, suppose that the
sufficient condition for determinacy for one goal ordering is x1 and the condition
for another is x1 → x2. However, within Pos, x1 ∨ (x1 → x2) = true and yet
true is the vacuous condition which places no constraint on the call rev(x1, x2).

11

benchmark predicate exclusion condition determinacy condition

treesort tree to list aux(x1, x2, x3) x1 x1

tree to list(x1, x2) true x1

list to tree(x1, x2) true x1

insert list(x1, x2, x3) x1 x1 ∧ x2

insert(x1, x2, x3) x1 ∧ (x2 ∨ x3) x1 ∧ (x2 ∨ x3)
treesort(x1, x2) true x1

queens noattack(x1, x2, x3) x2 x2

safe(x1) x1 x1

delete(x1, x2, x3) false false
perm(x1, x2) x1 ∨ x2 false
queens(x1, x2) true false

permsort select(x1, x2, x3) false false
ordered(x1) x1 x1

perm(x1, x2) x1 ∨ x2 false
sort(x1, x2) true false

serialize arrange0(x1, x2) x1 ∨ x2 x1

numbered(x1, x2, x3) x1 x1

palin(x1) true true
pairlists(x1, x2, x3) x1 ∨ x2 ∨ x3 x1 ∨ x2 ∨ x3

serialize0(x1, x2) true x1 ∧ x2

split0(x1, x2, x3, x4) x1 ∧ x2 x1 ∧ x2

go(x1) true false

Fig. 1. Precision results for determinacy inference

5 Experimental evaluation

To evaluate inference analysis, a prototype analyzer has been constructed in
SICStus Prolog 3.8.3. The implementation follows sections 3 and 4 closely. The
depth-k and argument-size analyses (which applies term-size abstraction) com-
pute success patterns for each clause in the input program, syntheses groundness
abstractions sufficient for mutual exclusion. These modules also produce the ab-
stract program on which subsequent analyses are based. The backward analysis is
engineered using much of the machinery described in [12]. One notable difference
is that some builtins require special handling; most builtins are determinate but
others are determinate only when certain conditions are satisfied. For instance,
current op(x1,x2,x3) is determinate only when x2 are x3 are ground.

The analyser has been applied to 50 programs ranging in size between 10
and 4000 LOC. These programs can be found at http://www.oakland.edu/
∼l2lu/Benchmarks-Det.zip. Quantitative precision measures are difficult for
determinacy inference because the number of predicates that the programmer
intended to be determinate is, in general, unknown. To demonstrate the precision
of the analysis, some illustrative results are therefore given for several familiar
programs. The results for the first program listed in Figure 1 illustrate that the
determinacy conditions are often disjunctive reflecting the multi-mode nature of
predicates. The second program demonstrates that the analysis will infer false
for a predicate that is genuinely non-determinate. The third program shows that
even the exclusion conditions are themselves interesting. For example, one might

12

argument-size depth-k
file succ lfp gfp succ lfp gfp

boyer 1666 591 60 441 360 50
bryant 7522 261 90 371 321 80

chat 80 67393 2153 431 494578 4977 631
ga 2146 161 40 2814 290 40
ili 2314 450 111 1222 531 100

ime 653 140 40 120 161 40
nand 17921 1682 421 841 801 260

nbody 877 191 30 241 301 80

argument-size depth-k
file succ lfp gfp succ lfp gfp

peep 404 170 30 761 441 70
peval 6938 621 100 4466 611 90
press 584 251 40 320 381 70

reducer 7867 270 50 190 301 50
rubik 30150 420 70 571 3755 221

sim 10270 561 171 35411 611 100
sim v5-2 2948 581 170 491 701 180

trs 13174 280 91 321 450 100

Fig. 2. Timing results for determinacy inference

have thought that the predicate select(x1, x2, x3) – which selects an element
x1 of the list x2 to give the residual list x3 – is determinate if called with
x1, x2 and x3 ground. However, the call select(1, [1,1,2], [1,2]) succeeds
twice and as a consequence sort([1,1,2], L) manifests the buggy behaviour
that it generates the answer L = [1,1,2] twice. Finally, the fourth program
illustrates a so-called false positive. The top-level predicate go(x1) appears to
be determinate and we conjecture that this can be inferred by replacing the
groundness analysis used in the above experiments with a rigidity analysis [9]
that is sensitive to the particular structure of the trees that arise in serialize.

To assess scalability, timing experiments were performed on the analysis com-
ponents using a 2.49GHz PC with 240 MB RAM running XP. Only the timings
for the larger programs are given in Figure 2. The succ, lfp and gfp columns give
the time in milliseconds required for the argument-size or depth-k analysis and
calculating the lfp and gfp using the exclusion conditions synthesised from one of
these analysis (not both together). Interestingly, the gfp is uniformly faster than
the lfp despite the fact that the gfp operator is more complicated than the lfp
operator. The table shows that the analysis time is dominated by the analyses
that feed the client analysis – the backward analysis. There is no reason why
the argument size analysis cannot be improved by replacing a constraint based
implementation [2] with one based on a polyhedral library [16]. Moreover, the
depth-k analysis would benefit from a more intelligent iteration strategy. Nev-
ertheless, the results demonstrate that determinacy inference is practical even
when component analyses are implemented naively.

6 Related work

Giacobazzi and Ricci [10] recognize the value of goal-independence in determi-
nacy analysis and present a solution that tracks deterministic ground depen-
dencies. A ground dependence from a set of input arguments to a set of output
arguments is deterministic if, whenever the input arguments are ground, the
execution of the predicate binds any output argument to a single ground term.
Hence their proposal cannot reason about predicates that compute the same

13

output multiply. The work predates the domains Def and Pos [1] and thus is
formulated in terms of hypergraphs. However, even defining an order on hy-
pergraphs is surprisingly subtle. For example, the ordering on abstract atoms
proposed in [10] asserts that p(g, g) is less than the atom p(ng, ng) paired with
a deterministic ground dependence from the first argument to the second. Ob-
serve, however, that the first abstract atom describes a set of concrete atoms that
includes p(a, b) and p(a, c) but the set of concrete atoms described by the second
cannot include both. Nevertheless, the proposal is not fundamentally flawed and
in our opinion the work is in many ways ahead of its time.

Some determinacy checking analyses [14, 17, 19] are rich enough to reason
about cuts, if-then-else, and even check for mutual exclusion by applying integer
programming. These works raise a number of intriguing questions for determi-
nacy inference, for example, how can cut be accommodated [17, 19] and how
hard is determinacy inference [14] (presumably inference is as hard as checking).

Determinacy inference was inspired by the modular construction of termina-
tion inference [8] which is itself composed of components that include argument-
size analysis [2] and backward analysis [12]. In termination inference, size re-
lations are used to deduce grounding conditions sufficient to observe size de-
creases, and thus termination, on successive recursive calls. Backward analysis
is applied to derive sufficient conditions for termination for a compound goal
that is executed left-to-right. In determinacy inference, the size issue does not
relate primarily to calls but to the relative sizes of the answers generated from
different clauses. Determinacy inference also differs from termination inference
in that the latter applies the framework of [12] directly whereas the former does
not. While the gfp in [12] propagates requirements from right-to-left across the
body of a clause; the gfp in this paper propagates determinacy requirements on
each call in the body using the conjunction of the success patterns of those calls
that precede it. Observe that this conjunction can be pre-computed; it does not
need to be reevaluated on each application of gfp operator. Thus, the structure
of the gfp presented in this paper enables efficiency savings.

7 Conclusions

This paper has shown how the problem of checking that a goal is determinate can
be reformulated as the problem of inferring a class of determinate goals. Despite
the generality of this problem, this paper has shown how a determinate inference
engine can be constructed by composing classic goal-independent success set
analyses such as argument-size and depth-k analysis with modern backward
analysis techniques. The paper has demonstrated that the analysis is tractable
and the importance of determinacy suggests that the analysis will be useful.

Acknowledgements This work was supported, in part, by NSF grants CCR-
0131862 and INT-0327760. The authors are grateful to John Gallagher for gently
guiding them through the binding-time analysis literature. The authors have
also benefited from discussions on backward analysis with Samir Genaim and
the insightful comments of the referees.

14

References

1. T. Armstrong, K. Marriott, P. Schachte, and H. Søndergaard. Two Classes of
Boolean Functions for Dependency Analysis. Science of Computer Programming,
31(1):3–45, 1998.

2. F. Benoy and A. King. Inferring Argument Size Relationships with CLP(R). In
LOPSTR, volume 1207 of LNCS, pages 204–223. Springer-Verlag, 1997.

3. C. Braem, B. Le Charlier, S. Modar, and P. Van Hentenryck. Cardinality Analysis
of Prolog. In M. Bruynooghe, editor, ISLP, pages 457–471. MIT Press, 1994.

4. M. Bruynooghe, M. Leuschel, and K. Sagonas. A Polyvariant Binding-Time Anal-
ysis for Off-line Partial Deduction. In ESOP, volume 1381 of LNCS, pages 27–41.
Springer-Verlag, 2000.

5. S. Dawson, C. R. Ramakrishnan, I. V. Ramakrishnan, and R. C. Sekar. Extracting
Determinacy in Logic Programs. In ICLP, pages 424–438. MIT Press, 1993.

6. S. K. Debray and N.-W. Lin. Cost Analysis of Logic Programs. ACM Transactions
on Programming Languages and Systems, 15(5):826–875, 1993.

7. J. P. Gallagher and L. Lafave. Regular Approximation of Computation Paths in
Logic and Functional Languages. In International Seminar on Partial Evaluation,
volume 1110 of LNCS, pages 115–136. Springer-Verlag, 1996.

8. S. Genaim and M. Codish. Inferring Termination Conditions for Logic Programs
using Backwards Analysis. TPLP, 5(1&2):75–91, 2005.

9. R. Giacobazzi, S. Debray, and G. Levi. Generalized Semantics and Abstract Inter-
pretation for Constraint Logic Programs. JLP, 25(3):191–248, 1995.

10. R. Giacobazzi and L. Ricci. Detecting Determinate Computation by Bottom-Up
Abstract Interpretation. In ESOP, volume 582 of LNCS, pages 167–181. Springer-
Verlag, 1992.

11. F. Henderson, Z. Somogyi, and T. Conway. Determinism analysis in the Mercury
compiler. In Proceedings of the Australian Computer Science Conference, pages
337–346, 1996.

12. A. King and L. Lu. A Backward Analysis for Constraint Logic Programs. TPLP,
2:517–547, 2002.

13. M. Leuschel, J. Jørgensen, W. Vanhoof, and M. Bruynooghe. Offline Specialisation
in Prolog Using a Hand-Written Compiler Generator. TPLP, 4(1):139–191, 2004.

14. P. López-Garćıa, F. Bueno, and M. Hermenegildo. Determinacy Analysis for Logic
Programs Using Mode and Type information. In Pre-proceedings of LOPSTR,
pages 19–29, 2004.

15. L. Lu and A. King. Determinacy Inference for Logic Programs. Technical Report
19-04, Computing Laboratory, University of Kent, CT2 7NF, 2004.

16. F. Mesnard and R. Bagnara. cTI: A constraint-based termination inference tool
for ISO-Prolog. TPLP, 5(1&2):243–257, 2005.

17. T. Mogensen. A Semantics-Based Determinacy Analysis for Prolog with Cut. In
Ershov Memorial Conference, volume 1181 of LNCS, pages 374–385. Springer-
Verlag, 1996.

18. R. A. O’Keefe. The Craft of Prolog. MIT Press, 1990.
19. D. Sahlin. Determinacy Analysis for Full Prolog. In PEPM, pages 23–30, 1991.

SIGPLAN Notices 26(9).
20. T. Sato and H. Tamaki. Enumeration of Success Patterns in Logic Programs.

Theoretical Computer Science, 34:227–240, 1984.
21. M. H. van Emden and R. A. Kowalski. The Semantics of Predicate Logic as a

Programming Language. Journal of the ACM, 23(4):733–742, 1976.

15

