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Abstract

This paper presents an approach for embodying non-
functional requirements (NFRs) into software architec-
ture using architectural tactics. Architectural tactics are
reusable architectural building blocks, providing general
architectural solutions for commonly occurring issues re-
lated to quality attributes. In this approach, architectural
tactics are represented as feature models, and their seman-
tics is defined using the Role-Based Metamodeling Lan-
guage (RBML) which is a UML-based pattern specification
notation. Given a set of NFRs, architectural tactics are se-
lected and composed. The composed tactic is then used to
instantiate an initial architecture for the application where
the NFRs are embodied. A stock trading system is used to
demonstrate the approach.

1 Introduction

Software development is initiated with application re-
quirements which consist of functional requirements (FRs)
and non-functional requirements (NFRs). Functional re-
quirements describe what the software should do, while
non-functional requirements impose constraints on the solu-
tion how the system should accomplish the functionality of
the system, determining the quality of the system. The inter-
dependency between FRs and NFRs requires consideration
of both FRs and NFRs throughout the development. How-
ever, in practice, NFRs are considered only in the late phase
of the development, while FRs are well exercised through-
out the development. This makes it difficult to satisfy NFRs
and often causes changes to the previously developed arti-
facts such as architectures and designs. This is mainly at-
tributed to the lack of techniques that help systematic em-
bodiment of NFRs in the early development phase.

There has been some work on addressing NFRs at the
architectural level (e.g., see [3, 4, 5, 11, 15, 16]. There are

two major streams. One is to specify NFRs as architectural
constraints in the functional architecture of the application.
In the approach, NFRs and functional architectures are usu-
ally described in the same language for better compatibil-
ity. While this approach helps to check the satisfaction of
NFRs, it does not provide a solution for NFRs. In the other
approach, quality attributes (e.g., security, performance) in
a specific domain are specified with domain constraints as
reusable architectural building blocks in that domain. How-
ever, their building blocks are not general enough to be used
in other domains, which reduces their reusability. Also,
the granularity of building blocks is coarse (e.g., one archi-
tecture building block per quality attribute), which requires
significant tailoring work to satisfy specific requirements.

To address the above issues, we propose a systematic ap-
proach for building a software architecture that embodies
NFRs using architectural tactics [1]. An architectural tac-
tic is a reusable architectural building block that provides
a generic solution to address issues related to quality at-
tributes. In our approach, architectural tactics are selected
based on a given set of NFRs, and the selected tactics are
composed to produce a tactic that combines the solutions of
the selected tactics. The composed tactic is then instantiated
to create an initial architecture of the application where the
NFRs are embodied. We use feature modeling [6] to repre-
sent tactics and their relationships. The structure and behav-
ior of tactics are described using the Role-Based Modeling
Language (RBML) which is a UML-based pattern speci-
fication language developed in our previous work [7, 9].
We present architectural tactics for availability and perfor-
mance, and demonstrate how the tactics can be used to em-
body the NFRs for the availability and performance of a
stock trading system into its architecture.

The major contributions of this paper are 1) the analy-
sis of the relationships of the architectural tactics for avail-
ability and performance, 2) the semantic specifications of
availability and performance tactics, and 3) the composition
mechanism of tactics to build a high quality architecture for
a specific application that embodies the NFRs of the appli-

1541-7719/08 $25.00 © 2008 IEEE
DOI 10.1109/EDOC.2008.18

IEEE
139 computer
psouety

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on October 22, 2009 at 16:17 from IEEE Xplore. Restrictions apply.



cation.

The remainder of this paper is structured as follows. Sec-
tion 2 gives an overview of related work. Section 3 gives a
background on architectural tactics, feature modeling and
the RBML. Section 4 presents feature models for availabil-
ity and performance tactics and the RBML specifications
of the tactics. Section 5 demonstrates how availability and
performance tactics can be used to build an architecture that
satisfies NFRs of a stock trading system. Section 6 con-
cludes the paper.

2 Related Work

There has been much work on addressing NFRs at the ar-
chitecture level. Chung et al. [4] proposed a framework that
guides the selection of architectural design alternatives for
NFRs. In the framework, NFRs are expressed as goals, and
the complementing and conflicting relationships of goals
are expressed in and and or relationships. Goals are refined
into lower-level goals which are eventually concretized into
specific solutions. While their architectural solutions are
specific to an application, the architectural tactics in our
work are generic, and as such reusable. More importantly,
they do not define the semantics of architectural methods.

Based on Chung et al.’s work [4], Crysneiros and Leite
[5] presented an approach for eliciting NFRs and realizing
them in a conceptual model using Language Enhanced Lex-
icons (LELs) which capture domain vocabularies. In their
work, a quality attribute is designed as a goal graph where
each node in the graph specifies conditions in terms of lexi-
cons. When a modeling element (e.g., use cases, classes)
related to a quality attribute is developed, the element is
checked for the lexicons involved in the quality attribute.
If any of the lexicons is involved in the element, the condi-
tions specified in the goal graph of the attribute is evaluated
for the element. However, their approach is for verification
of NFRs, not for NFRs embodiment.

Some researchers [3, 8, 12] have attempted to incorpo-
rate NFRs directly into architecture. Rosa et al. [12] de-
scribe NFRs in the Z language and specify them as quality
constraints in an architecture. Similar to Rose ef al., Khan
et al. [3] specify NFRs in WRIGHT, an architectural de-
scription language, as constraints for components and con-
nectors. Franch et al. [8] proposed NoFun, a language for
describing NFRs in architectural components and connec-
tors. Based on Franch et al.’s work, Botella et al. [16] trans-
late NoFun NFRs into OCL expressions attached as notes in
UML class diagrams. While these works help ensuring the
satisfaction of NFRs, they do not provide a solution to em-
body NFRs into an architecture. Also, their notations are
not standardized, which makes it difficult to adapt their ap-
proaches.

Mehta and Medvidovic [11] proposed architectural prim-
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itives which are reusable architectural building blocks that
specify quality attributes. Architectural primitives are in-
corporated into an architectural style, and NFRs are em-
bodied into an architecture by extending the architectural
primitives in the architectural style (e.g., client-server). Ar-
chitectural primitives are described in Alloy, a formal speci-
fication language. The architectural primitives in their work
can be viewed as architectural tactics in our work. How-
ever, their approach assumes that architectural styles are
used in the architecture design, which we view as a restric-
tion. From an architect’s point of view, use of architectural
style should be optional.

Xu [15] classifies NFRs into operationalizable NFRs
and checkable NFRs. Operationalizable NFRs are those
that can be realized by functional components, and qual-
ity attributes of operationalizable NFRs are designed as an
Aspectual Component. Checkable NFRs are those that can
be checked or verified, and quality attributes (e.g., perfor-
mance) of checkable NFRs are designed as a Monitoring
Component. Aspectural and monitoring components are de-
scribed in a programming template which is woven with a
functional architecture based on a set of binding rules that
are described in XML. While use of templates simplifies
weaving process, templates cannot capture structural varia-
tions of components.

3 Background

In this section, we give an overview of architectural tac-
tics which form the basis of this work, feature modeling for
categorizing architectural tactics and the RBML for defin-
ing the semantics of an architectural tactic.

3.1 Architectural Tactics

An architectural tactic is a fine-grained reusable archi-
tectural building block that provides an architectural so-
lution built from experience for achieving a quality at-
tribute. There have been many architectural tactics pro-
posed for various quality attributes including availability,
performance, security, modifiability, usability and testabil-
ity. The following are brief descriptions of some example
tactics for availability, modifiability and security.

e Exception - An availability tactic for recognizing and
handling faults.

e Ping/Echo - An availability tactic for checking the
availability of a component by sending ping messages.

e Heartbeat - An availability tactic for checking the
availability of a component by listening to heartbeat
messages from the component.

e Semantic Coherence - A modifiability tactic for lower-
ing architectural coupling using inheritance while rais-
ing cohesion.
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e [D/Password - A security tactic for user authentication
using IDs and passwords.

e Maintain Data Confidentiality - A security tactic for
protecting against unauthorized modifications of data
using encryption.

A tactic may be either required or optional for a quality
attribute. For example, a fault detection tactic is required
for availability because it is a prerequisite for other tactics
(e.g., fault recovery or recovery reintroduction) to recover
the system. Optional tactics provide the architect maneu-
verability in building an architecture according to an archi-
tectural strategy. Tactics may be related to one another. A
tactic may require another complementary tactic or exclude
a conflicting tactic. For instance, the Exception, Ping/Echo
and Heartbeat tactics are often used together for rigorous
fault detection. A tactic may also be refined into more con-
crete tactics that provide a specific solution to achieve the
quality attribute of the tactic. In some cases, use of tactics
for one quality attribute may affect another quality attribute.
For example, use of both the ID/Password and Maintain
Data Confidentiality tactics for security usually decreases
performance due to encryption of login information.

3.2 Feature Modeling

Based on our analysis in Subsection 3.1, we found
feature modeling [6] suitable for representing the relation-
ships of architectural tactics. Feature modeling is a de-
sign methodology for modeling the commonalities and vari-
ations of an application family and their interdependen-
cies. A feature model consists of mandatory features captur-
ing commonalities, optional features capturing variations,
feature relationships representing logical groupings of fea-
tures and configuration constraints. There are two types
of groups, exclusive-or and inclusive-or. An exclusive-or
group constrains that only one feature can be selected from
the group, while an inclusive-or group specifies that one
or more features can be selected from the group. Configu-
ration constraints are feature relationships constraining fea-
ture selection. There are two types of relationships, requires
and mutually exclusive. A requires relationship constrains
that selection of one feature in the relationship requires the
other feature. A mutually exclusive relationship specifies
that the two features in the relationship cannot co-exist. In
this work, we introduce another type of relationships, sug-
gested to specify complementary relationships for a syner-
gistic combination in tactic selection. Unlike requires rela-
tionships which are mandatory, suggested relationships are
only suggestive.

Fig. 1 shows an example of a feature model for cellular
phones. The feature model has the root feature of Cellu-
lar Phone which has three mandatory subfeatures of LCD,
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Figure 1. A Feature Model

Input Device and Battery and one optional subfeature of Ex-
ternal Memory. An LCD can be either a normal screen or
a touch screen, but cannot be both. This is specified by
the exclusive-or group of the Normal and Touch Screen fea-
tures, denoted by the empty arc underneath the LCD fea-
ture. An input device can be a keypad or a digitized pen, or
both. This is specified by the inclusive-or group of the Key-
pad and Digitized Pen features, denoted by the filled arc un-
derneath the Input Device feature. The requires constraint
specifies that use of the Digitized Pen feature requires the
Touch Screen feature. The Battery feature can be described
similar to the LCD feature. The suggested relationship spec-
ifies that use of a touch screen suggests a large size battery
due to more power consumption.

3.3 Role-Based Metamodeling Language

We use the Role-Based Metamodeling Language
(RBML), which is a UML-based pattern specification lan-
guage developed in our previous work [7, 9], to define the
semantics of an architectural tactic. The RBML specifies
tactic semantics in terms of roles which are played by UML
model elements (e.g., classes, messages). A role is based
on a UML metaclass and defines a set of constraints on the
metaclass to tailor the type of elements that can play the
role. Only the instances of the base metaclass that satisfy
the constraints can play the role. Every role has a realiza-
tion multiplicity which constrains the number of elements
that can play the role. If it is not specified, the default mul-
tiplicity /..* is used specifying that there must be at least
one element playing the role. Major benefits of using the
RBML for defining architectural tactics are 1) the RBML
facilitates the use of tactics at the model-level, and 2) the
RBML is capable of capturing both the generic structure of
a tactic and its variations through realization multiplicities,
which increases the reusability of tactics.

A Structural Pattern Specification (SPS) is a type of
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RBML specification, characterizing the structural aspects
of an architectural tactic in a class diagram view. An SPS
consists of classifier and relationship roles whose bases are,
respectively, the Classifier and Relationship metaclasses in
the UML metamodel. A classifier role is associated with
a set of feature roles that determine the characteristics of
the classifier role. A classifier role is connected to other
classifier roles by relationship roles. An Interaction Pattern
Specification (IPS) is another type of RBML specification,
defining an interaction view of tactic participants in terms
of lifeline and message roles whose bases are the Lifeline
and Message metaclasses, respectively. IPSs are dependent
on SPSs. For example, a lifeline role characterizes a set of
lifelines that are instances of a classifier that plays the cor-
responding classifier role in the associated SPSs of the IPS.

Availability ::Fault Detection :: Exception ‘

tifies P
|ExceptionNotifier Inotiffes

Notify Exception

‘ :|[ExceptionNotifier

|[ExceptionHandler

[notifyException ()
|handleException ()

:|[ExceptionHandler

[notifyException ()

|handleExption()

Figure 2. An RBML Specification for the Ex-
ception Tactic

Fig. 2 shows an RBML specification for the Exception
tactic for availability. In the figure, the upper compartment
shows an SPS, and the lower compartment shows an IPS.
The “|” symbol in the diagrams denotes roles. The SPS has
two class roles, |ExceptionNotifier and |ExceptionHandler,
and one association role |notifies. The |ExceptionHandler
role has two behavioral feature roles, (|notifyException()
and |handleException()) which constrain that a class play-
ing the |ExceptionHandler role must have operations play-
ing the behavioral feature roles. In this paper, the classes
playing a class role are considered to be architectural com-
ponents. The IPS specifies that when an exception occurs,
it is notified to an exception handler. The UML package
notation is used to group related SPSs and IPSs for a tactic.

4 Specifying Architectural Tactics

In this section, we define feature models for availabil-
ity and performance tactics and the semantics of the tactics
using the RBML. The feature models and RBML specifica-
tions are developed based on the work [1, 2, 14].
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4.1 Tactics for Availability

Auvailability is the degree to which an application is avail-
able with the expected functionality. There are several tac-
tics for availability which can be categorized into fault de-
tection, recovery-preparation and repair, and recovery rein-
troduction [1, 13] as shown in Fig. 3.

Availability

i ecovery -| R rer
Fault Detection R“m‘ycry Prc!’_z“'“”"" Recovery
and Repair Reintroduction
© O
Ping/Ech i
i
requires
State

‘ Exception ‘ State Redundancy H

Q

Resynchronization

Active Redundancy

Passive Redund ‘

Figure 3. Availability Architectural Tactic Fea-
ture Model

The Fault Detection tactic is concerned with detecting
a fault and notifying a monitoring component or the sys-
tem administrator. The Fault Detection tactic can be re-
fined into Ping/Echo, Heartbeat and Exception tactics. The
Ping/Echo tactic detects a fault by sending ping messages
to receivers regularly. If the sender does not receive an echo
message back from a receiver within a certain time period,
the receiver is considered to have failed. Fig. 4 defines the
Ping/Echo tactic.

The SPS shows that the Ping/Echo tactic involves three
concepts of senders, receivers and a monitor which are cap-
tured by the |PingSender, |PingReceiver and |FaultMonitor
roles, respectively. The |maxWaitingTime feature role in the
|PingSenderrole specifies the maximum waiting time for an
echo after sending a ping message. The |timelnterval fea-
ture role specifies the time interval to send ping messages.
The LOOP fragment in the IPS specifies that a sender sends
a ping message to all receivers every certain time. rcvs in
the LOOP is a function that returns the number of receivers.
Note that the LOOP operator is not the UML loop opera-
tor, but an RBML operator that constrains the structure of
instantiations of the IPS [9]. The inner loop fragment de-
scribes the behavior of sending a ping message and receiv-
ing an echo back every specified time interval. If a receiver
does not send an echo back within the maximum waiting
time, the sender throws an exception to the monitor. This is
specified by the NotifyException fragment in the Exception
tactic (see Fig. 2 in Section 3). The mapping in the Excep-
tion fragment specifies the binding information between the
Ping/Echo and Exception tactics. The realization multiplic-
ity 1 in the |FaultMonitor role constrains that there must be
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Figure 4. The Ping/Echo Tactic

only one monitor.

The Heartbeat tactic detects a fault by listening to the
heartbeat messages from monitored components periodi-
cally. A sender sends a heartbeat message to all the re-
ceivers every specified time interval. The receivers update
the current time when the message is received. If the mes-
sage is not received within a set time, the monitored com-
ponent is considered to be unavailable. Fig. 5 defines the
Heartbeat tactic.

Similar to the Ping/Echo tactic, the Heartbeat tac-
tic involves three concepts of senders, receivers and a
monitor which are captured by the |HeartbeatSender,
|HeartbeatReceiver and |FaultMonitor roles. The
|sendingInterval role in the HeartbeatSender role specifies
the time when a heartbeat message is sent periodically.
The |checkingTime and |lastUpdatedTime roles in the
HeartbeatReceiver role specify the last checking time and
the time when the last heartbeat message was received,
respectively. The |checkinglnterval role denotes a time
to check regularly the aliveness of heartbeat senders by
comparing the latency time between the current time and
last updated time with the expire time. The |expireTime
role specifies the max waiting time for the next heartbeat
message. The IPS specifies that sending heartbeat messages
and checking aliveness are executed on separate threads
for concurrency. Once a fault occurs, the fault should be
recognized and informed to an exception handler. This
is captured by the NotifyException fragment in Fig. 5.
Typically, the component that raises an exception executes
in the same process of the exception handling component.
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Availability ::Fault Detection ::Heartbeat
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Figure 5. The Heartbeat Tactic

As shown above, the Exception tactic is generally used
together with the Ping/Echo tactic and Heartbeat tactic for
handling faults.

The Recovery Preparation and Repair tactic is con-
cerned with recovering and repairing a component from a
failure. The tactic can be refined into Voting and State Re-
dundancy tactics. The Voting tactic uses algorithm redun-
dancy for recovery preparation. In this tactic, the same algo-
rithm is run on redundant components, and the voter moni-
tors their behavior. When the behavior of one component is
different from the rest, the voter fails the component. Even
with the failure of one component, the system still runs nor-
mally with rest of the components. The State Redundancy
tactic uses redundant state data on multiple components for
recovery preparation. There are two ways to use state re-
dundancy. One is to select only one response from the re-
sponses received concurrently from redundant components
for a service request. If a redundant component fails, it re-
covers the component by resynchronizing the state with one
of the alive components. This is called the Active Redun-
dancy tactic. The other way is to use the response from a
specific component (primary) and inform other components
to update their state with that of the primary component.
If the primary component fails, its state is resynchronized
with the state of a redundant component. This is captured
by the Passive Redundancy tactic. Fig. 6 shows the Active
Redundancy tactic.

The SPS in Fig. 6 describes that the Active Redundancy
tactic involves clients, redundant components, a redundancy
manager and a state resynchronization manager. The Pro-
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Figure 6. The Active Redundancy Tactic

cessRequest TIPS specifies that when there is a request for
service, the redundancy manager broadcasts the request to
redundant components which respond in parallel. The re-
dundancy mananger selects one of the responses and returns
to the client. The Recovery IPS specifies that a failed com-
ponent is recovered by resynchronizing its state with that
of a live component. The RecoverState fragment in the IPS
references the State Resynchronization tactic which is de-
scribed in the following. The RBML specification of the
Passive Redundancy tactic is not presented due to space lim-
itation.

The Recovery Reintroduction tactic is concerned with
restoring the state of a failed component. One way to re-
store is by resynchronizing the state of the failed compo-
nent with that of a live component. This is called the State
Resynchronization tactic which is defined in Fig. 7.

The State Resynchronization tactic involves concepts of
a state resynchronization manager, source components and
backup components. The state resynchronization manager
is responsible for synchronizing the state between a source
component and a backup component. A synchronization
can occur when either the state of a source component is
changed, or the source component is recovered from a fail-
ure. In the former case, the state of backup components
is synchronized with that of the source component. This
is captured by the SynchronizeState IPS where the LOOP
fragment specifies updating the state of each backup com-
ponent. In the latter case, the synchronization is opposite
where the state of the source component is resychronized
with that of a backup component. This is captured by the
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Figure 7. The State Resynchronization Tactic

RecoverState 1PS.
4.2 Tactics for Performance

Performance is concerned with the response time of the
system for events such as interrupts, messages or user re-
quests. Tactics for performance can be classified into re-
source arbitration and resource management as shown in
Fig. 8.

Performance

Resource Arbitration

Maintain Multiple

‘ FIFO ‘ ‘ Priority Scheduling ‘ Introduce Concurrency ‘ ‘ Copies(Cache)
suggested )
Dynamic Priority

Fixed Priority
‘ ‘ ‘ State Resynchronization

Availability:
Scheduling ‘

Scheduling

Figure 8. Performance Architectural Tactic
Feature Model

The Resource Arbitration tactic improves performance
by scheduling requests for resources (e.g., processors, net-
works). There are three general ways to schedule resource
requests. One is to use FIFOs where requests are treated
equally in the order they are received. This is called the
FIFO tactic which is defined in Fig. 9.

The FIFO tactic involves producers, FIFO queues and
consumers. The Enqueue IPS describes the behavior of en-
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Figure 9. The FIFO Tactic

queueing data, and the Dequeue IPS describes the dequeue-
ing behavior. The FIFO tactic is often used for job distribu-
tion for threads and processes, especially in network.

Another way is to assign a priority to resources, and
based on the priority, the resource requests are scheduled.
This is called the Priority Scheduling tactic. Using the Pri-
ority Scheduling tactic, performance can be improved by
balancing the request load by priority. For example, a lower
priority may be given to resources that have high requests.
Priority can be given by assigning either a fixed priority or
a dynamic priority, which is captured by the Fixed Priority
Scheduling tactic and the Dynamic Priority Scheduling tac-
tic, respectively. In the Dynamic Priority Scheduling tactic,
priorities are determined at runtime based on execution pa-
rameters such as upcoming deadlines or other runtime con-
ditions. The Fixed Priority Scheduling and Dynamic Prior-
ity Scheduling tactics may be used with the FIFO tactic to
prevent the starvation issue for low priority resources.

The Resource Management tactic improves performance
by managing the resources that affect response time. One
way for managing resources is to allocate threads or pro-
cesses to resources for concurrent execution. In this way,
blocked time in response can be significantly reduced. This
is called the Introduce Concurrency tactic which is defined
in Fig. 10.

Performance ::Resource Management :: IntroduceConcurrency

|ConcurrentComp

Figure 10. The Introduce Concurrency Tactic

The |ConcurrentComp role in the tactic captures concur-
rent components that have their own thread (or process)
which is denoted by the double lines at the ends of the
box. The Introduce Concurrency tactic is often used with
a resource arbitration tactic for concurrent communication
among threads. This is specified by the suggested relation-

ship in Fig. 8.

Another way for managing resources is to keep replicas
of resources on separate repositories, so that contention for
resources is reduced. This is called the Maintain Multi-
ple Copies tactic. Caching is used to replicate resources.
An important issue in this tactic is to maintain consistency
among the copies and keep them synchronized. To ad-
dress this issue, the State Resynchronization tactic in Sub-
section 4.1 can be used together.

The RBML specifications of the Fixed Priority Schedul-
ing, Dynamic Priority Scheduling and Maintain Multiple
Copies tactics are not presented.

5 Case Study: Stock Trading System

In this section, we demonstrate how the performance and
availability tactics presented in Section 4 can be used to
embody NFRs of a stock trading system (STS) into the ar-
chitecture of the system. The STS is an online stock trad-
ing system that provides real-time services for checking the
current price of stocks, placing buy and sell orders and re-
viewing traded stock volume. It sends orders to the stock
exchange system (SES) for trading and receives the settle-
ment information from the SES. The system can also trade
options and futures. Fig. 11 shows a context diagram of the
STS.

5 y
request send
stock trading, order info.
stock lrading Stock L Stock
stock info. -
——— > Trading Send Exchange

System settlement System

info.

Figure 11. Stock Trading System

In addition to the functional requirements, the system has
the following non-functional requirements for availability
and performance.

e NFR1. The STS should be available during the trad-
ing time (8:00 AM — 4:00 PM) from Monday through
Friday. If there is no response from the SES for 30
seconds, the STS should notify the administrator.

e NFR2. The system should be able to process 5000
transactions per second and 200,000 transactions per
day. A client may place multiple orders of different
kinds (e.g., stocks, options, futures), and the orders
should be sent to the SES within 1 second in the or-
der they were placed.

5.1 Configuring Tactics for NFR1

NFRI1 requires high availability of the system during the
trading time. To support this, the Ping/Echo and Heart-
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beat tactics in Section 3.1 can be used together. Using the
Ping/Echo tactic, the availability of the STS can be checked
by sending a ping message regularly and listening to an
echo. However, in some cases, the ping sender may receive
an echo even if the STS has failed [2]. To detect such a
case, the Heartbeat tactic can be used together. Using the
Heartbeat tactic, the failure of the STS can be detected by
listening to heartbeat messages from the STS. Furthermore,
even in a typical failure, the combined use of the two tac-
tics can detect the failure earlier by sending a ping message
during the latency time between heartbeat messages. Tac-
tic selection, however, really depends on the architect based
on his experience and an architectural strategy. In our ap-
proach, feature models provide some guidelines for tactic
selection, denoted by suggested relationships.

Two tactics are composed based on sets of binding rules
and composition rules. Binding rules define the correspond-
ing roles in the two tactics, while composition rules de-
fine operational steps for changes to be made in the com-
posed tactic. The following defines the binding rule for the
Ping/Echo and Heartbeat tactics:

B1. Ping/Echo::|FaultMonitor
Heartbeat::|FaultMonitor

This rule describes that the |FaultMonitor role in the
Ping/Echo tactic corresponds to the |FaultMonitor role in
the Hearttbeat tactic. Thus, the two |FaultMonitor roles are
merged into one in the composed tactic. Given the binding
rule, the following composition rules are defined:

SPS_C1. Put the |PingReceiver and |HeartbeatSender
roles into the same package role and name the pack-
age role |Subsystem].

SPS_C2. Put the |PingSender, |HeartbeatReceiver and
|FaultMonitor roles into the same package role and
name the package role |Subsystem?2.

IPS_C3. Create a parallel fragment of three operands.

IPS_C4. Add the behavior of the two parallel operands of
the CheckHeartbeat tactic into the first two operands
of the new parallel fragment.

IPS_C5 Add the behavior of CheckPing/Echo tactic into
the last operands of the new parallel fragment.

IPS_C6. Name the composed IPS CheckAvailability.

SPS_C1 and SPS_C2 are the composition rules for SPSs.
SPS_C1 specifies that ping receivers and heartbeat senders
should be deployed in the same subsystem. Similarly,
SPS_C2 specifies that ping senders, heartbeat receivers
and the monitor together should be deployed in the same
subsystem (monitoring subsystem). The subsystem of
SPS_C1 should be deployed physically separate from that
of SPS_C2. These rules enable the monitoring subsystem
to both send ping messages and receive heartbeat messages.
IPS_C3 to IPS_C6 describe the composition rules for IPSs.
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The rules specify that the behavior of the Ping/Echo tactic
and the behavior of the Heartbeat tactic should be executed
concurrently for rigorous monitoring.

Availability ::Fault Detection ::Ping/Echo
Availability ::Fault Detection ::Heartbeat

|Subsystem?2
[PingSender
[Subsystem1 .
|maxWaiting Time
[timelnterval .
|PingReceiver dchecks elapsedTime notifyExcept P
ping() lecho() FautiMons 1
aultMonitor
[HeartbeatReceiver
Heartbeats [notifies » [checkingTime
[lastUpdatedTime notifyExcept b
|sendinglnterval checkingInterval
[expireTime
[pitapat ()
JupdateTime ()
[checkAlive()

CheckA vailability

par L—
LOOP i~I.revs

Toop every [sendingInterval

i |pitapat()
’ b\updchlmc()

Toop every |checkingInterval

1
{[FaultMonitor

[hr[i}: HeartbeatReceiver JPingSender || |pril:[PingReceiver

JisAlive=lcheckAl

ve()

LOOP i=1..rcvs
loop every [timelnterval |

[op1]

Iping()

dxWaiting Time |

Exception::NotifyException

rv = [echo()

Figure 12. Composition of the Ping/Echo and
Heartbeat Tactics

By applying the binding rule and composition rules, the
Ping/Echo and Heartbeat tactics are composed as shown in
12. In the composed tactic, high availability is supported
by checking both ping/echo and heartbeat messages con-
currently. Given the composed tactic, an initial architec-
ture can be instantiated in consideration of the functional
requirements of the STS. Fig. 13 shows an instantiated ar-
chitecture.

In the figure, the stereotypes represent the roles from
which the architectural elements are instantiated. For ex-
ample, the OrdDIvPingReceiver component is an instance
of the |PingReceiver role in Fig. 12. The architecture de-
signs that the Order Delivery subsystem is responsible for
sending orders and receiving settlement information from
the SES, and the subsystem is monitored by the Monitoring
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<<subsystem 2>>
Monitoring Subsystem
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maxWaiting Time <<notifyExcept>>
<<PingReceiver>> <<checks>> timelnterval notifyFailure P
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— checkOrdDIvwithPing() <<FaultMonitor>>
responsePing () OrdDIvLiveness
. Monitor
<<HeartbeatReceiver>> -
OrdDIVHeartbeatReceiver notifyFault()
—enotifics =] updateOrdDIvStatus ()
<<HeartbeatSender>> =<notifies> checkingTime
OrdDIVH d pitapat > lastOrdDIvUpdateTime <<notifyExcept>>
- checkinglnterval notifyFailure »
sendingInterval
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:0rdDIv OrdDIv :OrdDIvLiveness :OrdDlv

:0rdDly ‘ ‘
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loop every sendinglnterval

receiveHeartbeat()
updateLastOrdD Live ()
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E:DchcckSESLwc()'l Alive

0Pt ] TisAlive=false ]
5 notifyFault()
b updateOrdDIVS

loop every timelnterval ]

tus ()

responscPing ()_ L

opt

[elapsedTime > maxWaitingTime ]

notifyFault ()
updateOrdDIv]tatus()

checkOrdDIvwithPing ()

Figure 13. An Instantiated Architecture for
the STS Embodying NFR1

subsystem using ping/echo and heart messages. The Moni-
toring subsystem is deployed separately on the network. In
this example, the structure of the instantiation architecture
is same as the composed tactic. However, it is not always
the case as will be shown in the following subsection for
performance architecture.

5.2 Configuring Tactics for NFR2

NFR2 is concerned with the performance of the STS,
requiring handling considerable amount of transactions by
their kinds in very short time. To embody NFR2, the FIFO
and IntroduceConcurrency tactics can be used together. Us-
ing the FIFO tactic, each type of orders can be assigned to a
dedicated FIFO queue instance for immediate process. Use
of the Introduce Concurrency tactic with the FIFO tactic can
further improve the performance by adding a thread to the
STS interface ports for order delivery to the SES. This im-
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proves the performance by dispatching the same kind of or-
ders concurrently. The two tactics can be composed based
on the following binding rules:

B1. IntroduceConcurrency::|ConcurrentComp —
FIFO::|Producer
B2. IntroduceConcurrency::|ConcurrentComp —

FIFO::|Consumer

These rules allocate a thread to each of FIFO producers
and consumers, making them concurrent. By applying the
binding rules, the FIFO and IntroduceConcurrency tactics
are composed as shown in Fig. 14.

Performance ::ResourceArbitration ::FIFO
Performance ::Resource Management ::IntroduceConcurrency

roduces P consumes P
| [Producer Ip ‘ |Consumer

|[FIFOQueue

| enqueue(|data)
| dequeue(): |data

Enqueue ) Dequeue ]
H :|Producer H‘ :[FIFOQueue ‘ [FIFOQueue :|Consumer

\enqueue(\data)i

i |dequeue(): |da; i

Figure 14. Composition of the FIFO and Intro-
duce Concurrency Tactics

Using the composed tactic, an initial architecture for the
performance of the STS can be instantiated as shown in
Fig. 15. In the figure, the order placing component (Or-
deringWebComp) places the same kind of orders into a ded-
icated queue instance. Also, each queue has a dedicated
delivery component that has its own thread for dispatching
the orders. The concurrent streamline of order processing
greatly improves the performance of the STS by reducing
the blocked time of orders. Various structures of architec-
ture can be instantiated from the composed tactic via the
variation points captured in the roles of the composed tac-
tic.

6 Conclusion

In this paper, we have presented an approach for system-
atically embodying NFRs into software architecture using
architectural tactics. The feature modeling of tactics pro-
vides maneuverability for configuring tactics for a given set
of NFRs. The RBML specifications of tactics with the rig-
orous composition rules facilitate the mechanical compo-
sition of tactics. The presented approach is not intended
to give an implementation solution that directly addresses
NFRs, but aims at providing an architectural solution that

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on October 22, 2009 at 16:17 from IEEE Xplore. Restrictions apply.



Performance Architecture for Stock Trading System ‘
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Figure 15. An Instantiated Architecture for
the STS Embodying NFR2

helps to realize NFRs. We found that some tactics (e.g.,
resource demand tactics [1]) are hard to formalize due to
the abstract nature of their solutions. Such tactics should
be realized by the architect. A composed tactic can be au-
tomatically instantiated using RBML-PI, a tool developed
in our previous work for instantiating RBML models [10],
to generate an initial architecture. Using the tool, various
architectural structures can be generated. We are currently
developing tool support for composing tactics.
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