
Incremental Refinement of Success Patterns of Logic
Programs

Lunjin Lu
Oakland University

lunjin@acm.org

Abstract
We propose a method for incrementally computing success
patterns of logic programs with respect to a class of ab-
stractions. The method is specialised for computing success
patterns for depth and stump abstractions. Equational uni-
fication algorithms for these abstractions are presented.

1. INTRODUCTION
A program analysis is usually performed with respect to

a fixed abstraction, and different analyses corresponding to
different abstractions are performed separately even if there
is a strong relationship between them. Take depth abstrac-
tions [9, 7, 6] for example, a depth 3 analysis will be per-
formed separately from a depth 2 analysis even if the result
of the depth 2 analysis can be used in the depth 3 analysis.

This paper is concerned with refining analyses whereby
the result of a coarser analysis is used to obtain a finer one.
In particular, we are concerned with obtaining finer success
patterns of a logic program from coarser success patterns of
the same program. A pattern describes a set of objects sat-
isfying some properties. Patterns of the ground atoms that
are provable from a program are called its success patterns.

We first show, for a class of abstractions, that the set of
the success patterns of a logic program P with respect to
an abstraction α is equal to the success set of the equa-
tional logic program P ∪Eα where Eα is an equality theory
induced by α. This leads to a method for incrementally re-
fining success patterns. The set of coarser success patterns
of P relative to a stronger abstraction α1 can be obtained by
computing the fixpoint semantics of P ∪Eα1 . If the success
patterns are not fine enough, candidates for finer success
patterns relative to a weaker abstraction α2 are generated
from the coarser success patterns and verified using the pro-
cedural semantics of P ∪ Eα2 . We apply the method to
compute success patterns with respect to depth [9, 7] and
stump [12] abstractions. Equational unification algorithms
for these abstractions are presented.

Section 2 presents a method for incrementally refining suc-
cess patterns. Sections 3 and 4 devote to incremental refine-
ment of success patterns for depth and stump abstractions.
Section 5 concludes. Proofs are omitted due to space limit.

Let Σ, Π,V be respectively a set of function symbols, a set
of predicate symbols and a denumerable set of variables. Let
V ⊆ V. T (Σ, V) denotes the set of terms constructible from
Σ and V, and A(Π, S) denotes the set of atoms constructible
from Π and S where S ⊆ T (Σ,V). The Herbrand universe
HU and the Herbrand base HB of a logic program P are
HU = T (Σ, ∅) and HB = A(Π,HU) respectively. Let T =

T (Σ,V). A substitution θ is an almost identity function
from V to T . The set of substitutions is denoted by Sub.
The application of θ to a term t is written as tθ.

2. INCREMENTAL REFINEMENT
Let T α be a set of patterns of terms, called abstract terms,

and α an abstraction (map) from T to T α. The map α
induces an equivalence relation ≈α on T , (t1 ≈α t2) =
(α(t1) ≡ α(t2)). So, abstract terms are identified with the
equivalence classes of ≈α, i.e., T α = T/≈α where T/≈α is the
quotient of T with respect to ≈α. An abstraction α is called
stable if ∀t, s ∈ T .∀θ ∈ Sub.((t ≈α s) → (tθ ≈α sθ)). Let
Eα = {≈α} be the equality theory on T induced by α. We
extend α to be an abstraction from A(Π, T) to A(Π, T α):
α(p(t1, · · · , tn)) = p(α(t1), · · · , α(tn)). The ≈α and Eα are
extended accordingly. Elements of A(Π, T α) are patterns of
atoms and hence called abstract atoms.

Let t, s ∈ T (resp. A) and σ, θ ∈ Sub. We call σ an Eα-
unifier of t and s if tσ ≈α sσ. We say that t and s are
Eα-unifiable if they have one or more Eα-unifiers. A sub-
stitution σ is more general than another substitution θ with
respect to Eα, denoted as σ≤Eα

θ, iff there is an η ∈ Sub
such that Xση ≈α Xθ for all X ∈ V. An Eα-unifier σ of t
and s is a maximally general Eα-unifier (Eα-mgu) of t and
s iff, for any other Eα-unifier θ of t and s, θ 6 ≤Eα

σ.

2.1 Fixpoint/Procedural Abstract Semantics
We now recall abstract semantics of a logic program P

with respect to a stable abstraction α [5]. The success set of
P equals to T ↑ ω where T : ℘(HB) 7→ ℘(HB) [10] is defined

T(I) =


Hσ

H ← B1, · · · , Bm ∈ P
σ ∈ Sub ∧ ∀i ∈ [1..m].Biσ ∈ I

ff
(1)

For any abstraction α, P∪Eα is an equational logic program.
The fixpoint semantics of P ∪ Eα given by Jaffar et. al [4]
is Tα ↑ ω with Tα : ℘(HB/≈α) 7→ ℘(HB/≈α) being defined

Tα(I[) =


[Hσ]≈α

H ← B1, · · · , Bm ∈ P
σ ∈ Sub ∧ ∀i ∈ [1..m].[Biσ]≈α

∈ I[

ff
(2)

According to [4], (P ∪ Eα |= A) ↔ ([A]≈α
∈ Tα ↑ ω) for

any A ∈ HB. The following lemma states the Tα ↑ ω is
a safe approximation of T ↑ ω with respect to α and hence
contains all the success patterns of P with respect to α.

Lemma 1. (A ∈ T ↑ ω → [A]≈α
∈ Tα ↑ ω) for any A ∈ HB

if α is stable.

The procedural semantics of an equational logic program
P ∪ Eα is the equational SLD resolution with respect to
the equality theory Eα, denoted as SLDα. SLDα plays the
same role for P ∪Eα as SLD for P. SLDα differs from SLD
in that, in SLDα, Eα-unification plays the role of normal
unification in SLD. We now adapt SLDα so that it works
on equivalence classes of ≈α on A. Define [t]≈α

θ = [tθ]≈α
=

α(tθ). Notice that equivalence classes of terms (resp. atoms)
are identified with abstract terms (resp. abstract atoms).
The application of a substitution θ to an equivalence class
[t]≈α

can be accomplished by applying θ to any term t′ in

[t]≈α
and taking [t′θ]≈α

as the result because of the stability
of α which also allows us to define an Eα-mgu of [t]≈α

and
[s]≈α

as an Eα-mgu of t and s. The basic step in SLDα is

defined as follows: Let G[be← A[
1, · · · , A[

p and C a variant
H ← B1, · · · , Bq of a clause in P. If σ is an Eα-mgu of
A[

1 and α(H) then ← α(B1)σ, · · · , α(Bq)σ, A[
2σ, · · · , A[

pσ is

called Eα-derived from G[and C using Eα-mgu σ.
It is proven in [4] that (P ∪ Eα |= A) ↔ (P `α [A]≈α

)
where P `α [A]≈α

denotes that [A]≈α
is provable from P

using SLDα. This and lemma 1 imply that `α can be used
to verify whether an abstract atom [A]≈α

is a success pattern
of P with respect to α. In summary,

(P ∪ Eα |= A)↔ ([A]≈α
∈ Tα ↑ ω)↔ (P `α [A]≈α

) (3)

2.2 Incremental Refinement Method
Let α1 and α2 be two abstractions. Define α1 v α2 iff

t ≈α1 s → t ≈α2 s for all t, s ∈ T . When α1 v α2, we say
that α1 is weaker or finer than α2 and that α2 is stronger or
coarser than α1. Note that if α1 v α2 then [t]≈α1

⊆ [t]≈α2
for any t ∈ T . In other words, ≈α1 is a finer partition on T
(and A) than ≈α2 . If α1 v α2 then Eα1 |= Eα2 and hence

(α1 v α2)→ ((P ∪ Eα1) |= (P ∪ Eα2)) (4)

By equations 3 and 4, if (α1 v α2) then

∀A ∈ HB.(([A]≈α1
∈ Tα1 ↑ ω)→ ([A]≈α2

∈ Tα2 ↑ ω)) (5)

Equation 5 lays the foundation for incremental refinement
of success patterns. An initial set of success patterns can
be obtained by computing Tα ↑ ω which is a safe approx-
imation of T ↑ ω relative to α. If the success patterns in
Tα ↑ ω are not finer enough for the application at hand then
finer success patterns can be computed by a generate-and-
test approach as follows. Firstly, a weaker abstraction α′ is

formed and candidate elements for Tα′ ↑ ω are generated
from Tα ↑ ω. The formation of α′ and generation of candi-

date elements for Tα′ ↑ ω can be done by splitting one or
more equivalence classes of ≈α. Secondly, SLDα′ is used to

verify if a particular candidate is in Tα′ ↑ ω. This process
is repeated until success patterns are fine enough.

When candidates are tested in the above method, each
candidate invokes an SLDα′ derivation, there might be many
identical abstract subgoals (abstract atoms) to solve. Tabling
techniques can be employed to improve efficiency [11]. Tabling
also solves the problem of non-terminating SLDα′ deriva-
tions because there are only finite number of abstract atoms.

If α′ v α, [A]≈α′
⊆ [A]≈α

for any A ∈ HB, i.e., the

≈α′ equivalence class including A is contained in the ≈α

equivalence class including A. Let Rα,α′ be a refinement
operator that splits an ≈α equivalence class C into the set

of ≈α′ equivalence classes contained in C.

Rα,α′(C) = {[A]≈α′
|A ∈ HB ∧ [A]≈α

= C}

Then candidate elements for Tα′ ↑ ω can be generated from
Tα ↑ ω by applying R̃α,α′ to Tα ↑ ω where R̃α,α′(S) =S

C∈SRα,α′(C).
The following two sections demonstrate the above refine-

ment method via depth and stump abstractions.

3. DEPTH ABSTRACTIONS
The idea of enumerating success patterns to a certain

depth is due to [9]. All terms identical to a certain depth are
considered equivalent. For example, both f(a, g(h(0), 1), b)
and f(a, g(2, h(h(0))), b) have main functor f/3 and the first
and the third of their arguments are same. Both of their
second arguments have g/2 as main functor. If this infor-
mation is enough, then we can use either f(a, g(h(0), 1), b)
or f(a, g(2, h(h(0))), b) as a representative of them. Since
we are not interested in the arguments of g/2 we shall re-
place each argument of g/2 with a special symbol , de-
noting any term, i.e., we use f(a, g(,), b) to represent both
f(a, g(h(0), 1), b) and f(a, g(2, h(h(0))), b). f(a, g(,), b) ac-
tually represents an infinite number of terms.

3.1 Depth Abstractions
Let t = f(t1, · · · , tm) be a term. Then t is a depth 0

sub-term of t, and a term s is a depth k sub-term of t
if s is a depth (k − 1) sub-term of ti for some 1 ≤ i ≤
m. The depth k abstraction of a term t, denoted by
dk(t), is obtained by replacing each depth k sub-term of
t with an . Formally, d0(t) = and dk(f(t1, · · · , tm)) =
f(dk−1(t1), · · · , dk−1(tm)) for k > 0.

Lemma 2. For any k ≥ 0, dk is stable.

3.2 Refinement Operator
Let t[be an abstract term denoting an ≈dk−1 equivalence

class. Let Σ = Σ∪{ }. Abstract terms for depth k abstrac-
tion are terms in T (Σ ,V) whose depth k subterms are all

. The operator d̂ : T (Σ , ∅) 7→ ℘(T (Σ , ∅)) defined below

splits t[by replacing each in t[with an abstract term from
HU/≈d1

in all possible ways: d̂() = {f(, · · · ,)|f ∈ Σ} and

d̂(g(t1, · · · , tm)) = {g(r1, · · · , rm)|∀1 ≤ j ≤ m.rj ∈ d̂(tj)}.
The following extension of d̂ gives a refinement operator
d̂ : A(Π, T (Σ , ∅)) 7→ ℘(A(Π, T (Σ , ∅))).

d̂(p(t1, · · · , tn)) = {p(r1, · · · , rn) | ∀1 ≤ j ≤ n.rj ∈ d̂(tj)}

Lemma 3. Rdk,dk+1 = d̂ for any k ≥ 0 and Σ 6= ∅.

3.3 Edk-Unification Algorithm
Now we present an Edk -unification algorithm. The follow-

ing algorithm results from modifying Robinson’s unification
algorithm [8]. Function occur(k, X, t) is true iff X occurs in
t at any depth j < k.

Algorithm 1. This algorithm decides if t1 and t2 are Edk -
unifiable and, if so, returns an Edk -mgu of t1 and t2.

01 function DU(k,t1,t2) ⇒ (flag, σ)

02 { if k = 0 then (flag, σ) ⇐ (true, ∅)
03 else if t1 or t2 is a variable then

04 { let X be the variable and t the other term

05 if X ≡ t then (flag, σ) ⇐ (true, ∅)
06 elseif occur(k,X,t) then (flag, σ)⇐DU(k, X, t{X 7→ t})
07 else (flag, σ) ⇐ (true, {X 7→ dk(t)})
08 } else

09 { let t1 ≡ f(x1, · · · , xn) and t2 ≡ g(x1, · · · , xm)

10 if f 6= g or m 6= n then flag ⇐ false else

11 { j ⇐ 0, (flag, σ0) ⇐ (true, ∅)
12 while j < m and flag do

13 { j ⇐ j + 1

14 (flag, τj) ⇐ DU(k − 1, xjσj−1, yjσj−1)

15 if flag then σj ⇐ σj−1τj }
16 σ ⇐ σm } }
17 return (flag, σ) }

Line 06 in algorithm 1 deals with the Edk -unification of
X and t in the case X occurs in t at some depth j < k. This
does not necessarily mean failure of the Edk -unification of
X and t. For instance, {X 7→ f(Y)} is a Ed1 -mgu of X and
f(X). Algorithm 1 reduces the Edk -unification of X and t
into that of X and t{X 7→ t}.

Lemma 4. If two terms t1 and t2 are Edk -unifiable then
algorithm 1 terminates and gives a unique (module renam-
ing) Edk -mgu of t1 and t2. Otherwise, it terminates and
reports failure.

3.4 Refinement of Success Patterns
All depth abstractions are comparable with respect to v.

Abstractions corresponding to bigger depths are finer than
those corresponding to smaller depths.

Lemma 5. For any 0 ≤ j ≤ k, dk v dj.

Lemma 5 implies that, for any A ∈ HB, if [A]≈dk
∈ Tdk ↑

ω then [A]≈dk−1
∈ Tdk−1 ↑ ω. This enables us to compute

Tdk ↑ ω by (i) applying R̃dk−1,dk to Tdk−1 ↑ ω to obtain

candidate elements for Tdk ↑ ω; and (ii) applying SLDdk to
eliminate false candidates.

Example 1. This example illustrates incremental refine-
ment of success patterns. Let α = d1 and

P = {a(f(c)). b(f(h(c))). p(x)← a(x), b(x).}

We have Td1 ↑ ω = {a(f()), b(f()), p(f())}.
Suppose we want to compute Td2 ↑ ω. We first generate a

set of candidate elements for Td2 ↑ ω and then use SLDd2

resolution to eliminate false candidates. The generation of
candidates is accomplished by applying the refinement op-
erator Rd1,d2 to elements in Td1 ↑ ω. For each element
in Td1 ↑ ω, Rd1,d2 generates a set of candidates by substi-
tuting each occurrence of with elements from HU/≈d1

=

{c, f(), h()}. Thus, the set of candidates is
a(f(c)), a(f(f())), a(f(h())), b(f(c)), b(f(f())),
b(f(h())), p(f(c)), p(f(f())), p(f(h()))

ff
After eliminating false candidates that are not provable

from P using SLDd2 , we have Td2 ↑ ω = {a(f(c)), b(f(h()))}.
The atom p(f(c)) has been eliminated as follows. First,
← p(f(c)) is resolved with the clause p(x)← a(x), b(x) using
Ed2 -mgu {X 7→ f(c)}, deriving ← a(f(c)), b(f(c)). Then
goal ← a(f(c)) is resolved with the unit clause a(f(c)) using
Ed2 -mgu ∅, deriving ← b(f(c)). However, ← b(f(c)) can-
not be resolved with b(f(h(c)) because d2(b(f(c))) = b(f(c))

while d2(b(f(h(c)))) = b(f(h())). There is no other `α

derivations from ← p(f(c)). So, p(f(c)) is eliminated.

4. STUMP ABSTRACTIONS
Xu and Warren introduced a family of abstractions, called

stump abstractions [12]. The idea is to detail each atom in
T ↑ ω to the extent some function symbol has been repeated
for a given number of times.

4.1 Stump Abstractions
Let t be a term and s a sub-term of t. We define fc(s, t) as

a function which, for each function symbol g in Σ, counts the
number of nodes labeled by g in the path from the root of the
term tree of t to but excluding the root of the term tree of
s. Let w ∈ (Σ 7→ N) where N is the set of natural numbers.
Define w ⊕ f = w[f 7→ (w(f) + 1)] and w 	 f = w[f 7→
(w(f) − 1)]. Formally, fc : T × T �→(Σ 7→ N) is defined as
follows. If s ≡ t then fc(s, t) = λf.0. If t = f(t1, · · · , tm), s
is a sub-term of ti and fc(s, ti) = w then fc(s, t) = w⊕ f . If
s = g(s1, · · · , sk) then the repetition depth of s in t, denoted
as rd(s, t) is defined as fc(s, t)(g). For instance, letting t =
f(g(h(1), g(1, 2)), h(f(h(1), f(3, 2)))), rd(f(3, 2), t) = 2 and
rd(g(1, 2), t) = 1.

Let t ∈ T , and w ∈ Σ 7→ N. An abstract term sw(t)
is obtained by replacing each sub-term s = g(s1, · · · , sk)
of t satisfying rd(s, t) = w(g) with g(, · · · ,). Formally,
sw(f(t1, · · · , tm)) = f(sw	f (t1), · · · , sw	f (tm)) if w(f) 6=
0 and otherwise, sw(f(t1, · · · , tm)) = f(, · · · ,). For in-
stance, sw(r(g(s(g(1))))) = r(g()) if w = {r 7→ 1, g 7→
0, s 7→ 1}.

Lemma 6. For any w ∈ Σ 7→ N, sw is stable.

4.2 Refinement Operator
Let x, y ∈ (Σ 7→ N) and define x P y = ∀f ∈ Σ.x(f) ≤

y(f). As will be shown later, x P y ↔ sy v sx. Intuitively,
the bigger the limit for each function symbol, the weaker
the abstraction. Define s̄ : (Σ 7→ N) × Σ 7→ ℘(T (Σ , ∅))
as follows: s̄(w, f) = {f(, · · · ,)} if w(f) = 0 and, oth-
erwise, s̄(w, f) = {f(t1, · · · , tm)|tj ∈

S
g∈Σ s̄(w 	 f, g)}.

Given w ∈ Σ 7→ N and f ∈ Σ, s̄(w, f) is the set of the
abstract terms identifying the ≈sw equivalence classes of
the ground terms whose main functors is f . The follow-
ing function ŝ : (Σ 7→ N) × T (Σ , ∅) 7→ ℘(T (Σ , ∅)) splits
an equivalence class of ground terms for a coarser stump
abstraction into the set of equivalence classes of ground
terms for a finer stump abstraction: ŝ(w,) =

S
f∈Σ s̄(w, f)

and ŝ(w, g(t1, · · · , tm)) = {g(r1, · · · , rm)|∀1 ≤ j ≤ m.rj ∈
ŝ(w 	 g, tj)}. A refinement operator is obtained as this ex-
tension of ŝ: ŝ(w, p(t1, · · · , tm)) = {p(r1, · · · , rm)|∀1 ≤ j ≤
m.rj ∈ ŝ(w, tj)}.

Lemma 7. For any x P y, Rsx,sy = ŝ(y, ·).

4.3 Esw-Unification Algorithm
The Esw -unification algorithm is given in algorithm 2.

The function SU has three parameters. The first parameter
w maps each function symbol into the limit of its repetition
depth. The second and third parameters are terms to be
unified. For any variable X and term t, occur(w, X, t) is
true iff X occurs in sw(t).

Algorithm 2. This algorithm decides if t1 and t2 are Esw -
unifiable and, if so, returns an Esw -mgu of t1 and t2.

01 function SU(w, t1,t2) ⇒ (flag, σ)

02 { if t1 or t2 is a variable then

03 { let X be the variable and t the other term

04 if X ≡ t then (flag, σ) ⇐ (true, ∅)
05 elseif occur(w,X,t) then (flag, σ)⇐SU(w, X, t{X 7→ t})
06 else (flag, σ) ⇐ (true, {X 7→ sw(t)})
07 } else

08 { let t1 ≡ f(x1, · · · , xn) and t2 ≡ g(x1, · · · , xm)

09 if f 6= g or m 6= n then flag ⇐ false else

10 if w(f) = 0 then (flag, σ) ⇐ (true, ∅) else

11 { j ⇐ 0, (flag, σ0) ⇐ (true, ∅)
12 while j < m and flag do

13 { j ⇐ j + 1

14 (flag, τj) ⇐ SU(w 	 f, xjσj−1, yjσj−1)

15 if flag then σj ⇐ σj−1τj }
16 σ ⇐ σm } }
17 return (flag, σ) }

Line 05 in algorithm 2 deals with the Esw -unification of
X and t in the case X occurs in sw(t) by reducing the Esw -
unification of X and t into that of X and t{X 7→ t}.

Lemma 8. Let t1 and t2 be terms. If t1 and t2 are Esw -
unifiable then algorithm 2 terminates and gives a unique
(module renaming) Esw -mgu of t1 and t2. Otherwise, it
terminates and reports failure.

4.4 Refinement of Success Patterns
The following lemma establishes the applicability of the

incremental refinement method for stump abstractions.

Lemma 9. For any x, y ∈ (Σ 7→ N), x P y ↔ sy v sx.

Lemma 9 implies that if [A]≈sy
∈ Tsy ↑ ω then [A]≈sx

∈
Tsx ↑ ω for any x P y. This enables us to refine success pat-
terns of P by increasing repetition depths for some function
symbols.

5. CONCLUSION AND FUTURE WORK
We have presented a method for incrementally computing

success patterns of logic programs for stable abstractions.
The method makes use of a fixed-point and a procedural
abstract semantics of logic programs with respect to stable
abstractions, a refinement operator that splits an equiva-
lence class induced by a coarser abstraction into a set of
equivalence classes induced by a finer abstraction, and equa-
tional unification. Incremental program analysis has been
studied before [2, 3]. In [3], the authors present a method
for incrementally analyzing the program after it is modified.
The new program is analyzed with respect to the same ab-
straction as the old one. This paper addresses a different
issue, it presents a method for computing a finer analysis
of a program from a coarser analysis of the same program.
In [2], a method for refining success patterns is proposed.
The program is first transformed using coarser success pat-
terns and the transformed program is analyzed to finer suc-
cess patterns. The method proposed in this paper doesn’t
transform the program. Instead, it generates candidate finer
success patterns from coarser success patterns and then ap-
plies abstract procedural semantics to verify the generated
candidates.

We have applied the method for depth and stump ab-
stractions by constructing suitable refinement operators and
equational unification algorithms. For depth abstractions,
abstraction depth can be increased uniformly while for stump
abstractions, repetition depth for each function symbol can
be increased independently.

For depth abstractions, abstraction depth can only be in-
creased uniformly. That means that every equivalence class
has to be split when analysis is refined. It might be better
to be able to split some equivalence classes and keep others
intact. It is interesting to find out if such a fine-tuning ap-
proach will guarantee the stability of the resulting abstrac-
tion α which is a prerequisite for using SLDα to eliminate
false candidates. Another interesting topic on incremental
refinement is to study the possibility of applying Tα to elim-
inate some false candidates before SLDα is applied. Yet an-
other interesting topic on incremental refinement of success
patterns is to combine domain refinement such as that pro-
posed in this paper with compositional approach towards
logic program analysis proposed by Codish et. al [1] since
compositional approach is the only feasible way to analyse
large programs.

Acknowledgements. This work was supported, in part, by
NSF grants CCR-0131862 and INT-0327760.

6. REFERENCES
[1] M. Codish, S.K. Debray, and R. Giacobazzi.

Compositional analysis of modular logic programs. In
POPL’93, pages 451–464. The ACM Press, 1993.

[2] S. Genaim and M. Codish. Incremental refinement of
semantic based program analysis for logic programs.
In ACSC’99. Springer, 1999.

[3] M. V. Hermenegildo, G. Puebla, K. Marriott, and
P. J. Stuckey. Incremental analysis of constraint logic
programs. ACM TOPLAS, 22(2):187–223, 2000.

[4] J. Jaffar, J. L. Lassez, and M. J. Maher. A theory of
complete logic programs with equality. Journal of
Logic Programming, 1(3):211–223, 1984.

[5] L. Lu and P. Greenfield. Abstract fixpoint semantics
and abstract procedural semantics of definite logic
programs. In ICCL’92, pages 147–154. IEEE
Computer Society Press, 1992.

[6] L. Lu and A. King. Determinacy inference for logic
programs. Lecture Notes in Computer Science,
3444:108–123. 2005.

[7] K. Marriott and H. Søndergaard. Bottom-up dataflow
analysis of normal logic programs. Journal of Logic
Programming, 13(1–4):181–204, 1992.

[8] J. A. Robinson. A machine-oriented logic based on the
resolution principle. JACM, 12(1):23–41, 1965.

[9] T. Sato and H. Tamaki. Enumeration of success
patterns in logic programs. Theoretical Computer
Science, 34(1):227–240, 1984.

[10] M.H. van Emden and R.A. Kowalski. The semantics
of predicate logic as a programming language.
Artificial Intelligence, 23(10):733–742, 1976.

[11] D. S. Warren. Memoing for logic programs. CACM,
35(3):93–111, 1992.

[12] J. Xu and D.S. Warren. A type inference system for
Prolog. In JICSLP’88, pages 604–619. The MIT Press,
1988.

