
1

The art of progress is to preserve order
amid change and to preserve change amid order.

Alfred North Whitehead

CHAPTER 1: INTRODUCTION

1.1 A Technology Overview

 The past three decades has introduced technology that has radically changed the

way in which the world is analyzed and controlled. In the early 1970s, developments in

computer architecture and IC fabrication begot the first microprocessor, introduced by

Intel Corporation, the 4-bit 4004. A later by-product of the development of the

microprocessor is the less well-known and abundantly used microcontroller. These

devices are responsible for smart VCRs, clock radios, washers and dryers, video games,

telephones, microwaves, TVs, automobiles, toys, vending machines, copiers, elevators,

irons, and other intelligent products that are "programmable." 1

 Programmable Logic Devices (PLDs), like Field Programmable Gate Arrays

(FPGAs) have a long-standing reputation for being slower, more expensive, less flexible

and more time consuming to use for developing embedded systems. In the past,

2

Application Specific Integrated Circuits (ASICs) have emerged as a cost-optimized,

though still expensive, custom solution for bringing programmability and other benefits

to a design. In the past couple of years, cutting edge process technologies have

significantly reduced die sizes. As a result of these advancements, FPGA vendors are

now able to provide a low-cost solution to ASIC designers.

Microprocessors must be used with external resources including RAM, ROM, I/O

ports and timers to make them functional. A microcontroller has a CPU in addition to

RAM, ROM, I/O ports, and timers all on a single chip.1 Microprocessors and

microcontrollers are widely used in embedded systems. Figure 1.1 shows a

microprocessor system contrasted with a microcontroller system.

Figure 1.1: A microprocessor contrasted with a microcontroller. [Source: Dhir and Mousavi]

3

Customarily, an embedded system uses a microprocessor (or microcontroller) to

perform a single task. Critical considerations for using microprocessors or

microcontrollers to produce a system include the amount of space occupied (number of

logic cells), power consumption, price per unit, computing power and amount of

development time required for integration.

1.2 Hardware/Software Co-design

 Traditionally, an embedded system requires the cooperative design of hardware

and software. One of the goals of co-design is to shorten the time-to-market while

reducing the design effort and costs of the designed products. Therefore, the designer has

to take advantage of the target architecture using both software and hardware. Many

consider using processors an advantage because software executed by the processor is

more flexible and cheaper than a design made completely of hardware. The flexibility of

designing parts of the system in software allows late design changes and simplifies

debugging. Furthermore, the software may be reused by porting it to other processors.

This may reduce the time-to-market and design effort. In the past, it was much cheaper

to use microprocessors compared to developing ASICs, because of their high-volume

production.2

Although software components introduce a degree of simplification with available

compilers and code that can potentially be reused, speed is sacrificed. Replacing

software with hardware increases the speed of the input-to-output transfer, however,

hardware solutions require logic gates; more chip space, and therefore, additional costs.

In the past three years, aforementioned advancements in technology and processes have

4

created affordable FPGAs with large densities that are increasing every 6 months.

Designs that would be extremely expensive to implement in hardware and realize the

tremendous speed advantage are becoming significantly cheaper. Figure 1.2 shows the

reduction in costs and increase in chip densities of a market leader in FPGA design and

production, Xilinx Corporation.

Figure 1.2: A cost reduction and increase in chip density and the number of gates available on
FPGA chips provided by Xilinx Corporation. [Source: Xilinx, Inc.]

Notice that FPGAs with a capacity of approximately 36,000 gates cost the same in 1997

as a chip that has 1,000,000+ gates available in 1999. Ralf Niemann writes,

Co-design is an interdisciplinary activity, bringing concepts and ideas from
different disciplines together, e.g. system-level modeling, hardware design and
software design.2

5

1.3 The Need for a Simplified Co-design Process

 The hardware/software co-design process, shown in Figure 1.3, introduces a high-

risk step, determining which components will be designed in hardware and which will be

designed in software. Furthermore, the microprocessor selected to design the software

components must support the formulated software requirements, minimize hardware

costs and be sufficiently flexible for anticipated design changes that may be introduced

during development. In general, these critical factors introduce enough potential risks

that many co-designed systems have resulted in over-budget, lengthy and unsuccessful

projects due to the lack of ability for the hardware to support unforeseen software

requirements and vice versa.

Figure 1.3: The hardware/software co-design process with rapid prototyping. [Source: RAASP
model for hardware/software prototyping]

The co-design process requires the use of heterogeneous design methodologies.

Many design processes, for example, the Unified Software Development Process, aren't

completely sufficient for hardware/software co-design.

6

The Unified Process is an iterative and incremental process that asserts designers

to perform several iterations of Requirements, Analysis, Design, Implementation, and

Testing. It is also Architecture-Centric using the architecture to understand the system,

organize development, foster software reuse, and evolve the system. While developing

software under the Unified Process, developers perform iterations concerning the use

cases that introduce the highest element of risk that has not been specifically addressed

and interface with the boundary actors throughout the process. The system architecture is

also developed iteratively. If a change in a use-case or unforeseen requirement surfaces,

developers identify the required classes that the change affects and make necessary

design changes to accommodate the use-case changes. For hardware/software co-design,

a change in a use-case or nonfunctional requirement, such as a timing constraint, may be

beyond the capability of the selected microprocessor. This may require the selection of a

new microprocessor with the added capability, within cost constraints, to perform the

necessary operations at the required speed to realize the change and possibly require

software programmers to retrace all of their code and port it to the new microprocessor.

In some cases, significant changes to the original architectural plan are required.3 For

software development, this process minimizes risk and has proven to be successful in

many large, requirement intensive projects.

 The step in the co-design process introducing the most risk is the

hardware/software-partitioning step. In this phase, developers decide which components

of the overall system architecture will be implemented using software and which will be

hardware. It is this step that results in the specifications for the microprocessor that will

7

be used which, in turn, begins the platform specifications for the software developers.

Incidentally, it is also the step that frequently is revisited as timing constraints and

requirements present changes that the system needs to accommodate. Changes at this

juncture can lead to significant re-development of software and/or hardware.

1.4 A Proposed Solution

 What is a fundamental difference between hardware/software co-design and

software development? Architecture. In most software development environments, code

written in high-level languages are compiled to a fixed instruction set that remains

compatible with each new release of a faster, more recent release of the architecture. For

hardware/software co-design, the entire system could be developed with components in

software and components in hardware. The developers must design the architecture

before the development of the system can begin. Generally, for software programs,

particularly on a PC or mainframe, more functionality requires more disk space, possibly

more RAM and more programming time that typically is linearly related to the

programming time of the system.

In theory, the best time to actually decide which components can bear to be

designed in the less-optimized, slower software environment and which components

require the speed of the hardware is after the software has been written and the number of

clock cycles required for each function can be computed. The software, however, can be

written only after a determination has been made regarding the type of microprocessor on

which the software will run. The microprocessor, on the other hand can be selected only

8

after considering the minimization of implementation cost by selecting a minimal

function set required for the microprocessor by the software.

An effective solution to this paradox would be to eliminate packaged

microprocessors. In 1994, Andŕe DeHon from the Artificial Intelligence Laboratory at

the Massachusetts Institute of Technology included in his paper given at an IEEE

workshop on FPGAs for Custom Computing Machines that "for broader application,

future microprocessors should dedicate a portion of their silicon real-estate to

reconfigurable logic… A single reconfigurable microprocessor design can serve as the

principal building block for a wide range of applications including personal computers,

embedded systems, application-specific computers, and general- and special-purpose

multiprocessors." 4 DeHon's idea for the future of FPGAs and microprocessors was for a

microprocessor to contain reconfigurable gates on its chip. Several groups have explored

developing unified hardware development processes and tools including formal

specification languages such as LUSTRE, KRONOS, POLIS, SIGNAL, REACTIVE C,

Synchronous Language (SL), LOTOS, and SDL. If the co-design problem were reduced

to a microprocessorless, common platform, co-design would resemble software

development and software engineering processes such as the Unified Software

Development Process alone could be used to guide the development of a

hardware/software system.

9

References

1. Dhir, A., Mousavi, Saeid, “High-performance Spartan-II 8-bit Microcontroller Solution,” Xilinx White
Paper number 114, version 1.0, March 16, 2000.

2. A general overview of the basic co-design process is given by Ralf Niemann, PhD., from the University
of Dortmund, Germany, at http://ls12-www.informatik.uni-dortmund.de/~niemann/codesign/codesign.html;
Internet; Accessed September 2000.

3. Jacobson, Ivar, Booch, Grady and Rumbaugh, James, The Unified Software Development Process.
Addison Wesley Longman, copyright 1999, Reading, Massachusetts.

4. DeHon, Andŕe, “DPGA-Coupled Microprocessors: Commodity ICs for the Early 21st Century,”
Artificial Intelligence Laboratory at Massachusetts Institute of Technology, April 1994.

5. Jantsch, Axel, et al, “A Software Oriented Approach to Hardware/Software Codesign,” International
Conf. on Compiler Construction, CC-94, pp. 93 - 102, Edinburgh, Scotland.

6. Arpnikanondt, Chonlameth and Madisetti, Vijay K., “Constraint-Based Codesign (CBC) of Embedded
Systems: The UML Approach,” Center for Signal & Image Processing (CSIP) Georgia Tech, December
12, 1999, Yamacraw Technical Report #: YES-TR-99-01.

10

The important thing in science is not
so much to obtain new facts as to discover

new ways of thinking about them.

Sir William Bragg

CHAPTER 2: A SIMPLIFIED RECONFIGURABLE MICROPROCESSOR CORE

2.1 The Microcontroller

Most traditional microprocessors can be categorized as having either a Complex

Instruction Set Computer (CISC) architecture or a Reduced Instruction Set Computer

(RISC) architecture.1 Both of these architectures involve a set of registers and multiple

addressing modes. A simpler architecture that is easier to implement in an FPGA is a

stack-based processor in which all arithmetic and logical operations are performed on the

top elements of a data stack.

Forth is a programming language invented by Chuck Moore in the late 1960s

while programming minicomputers in assembly language. His idea was to create a

simple system that would allow him to write many more useful programs than he could

by writing his programs in assembly language. The essence of Forth is simplicity --

always try to do things in the simplest possible way. Forth is a way of thinking about

11

problems in a modular way. It is modular in the extreme. Everything in Forth is a word

and every word is a module that does something useful. There is an action associated

with Forth words. The words execute themselves. In this sense they are very object-

oriented. Words are sent parameters on the data stack and told to execute themselves. In

return, the answers are placed on the data stack; a black box approach.

Forth has been implemented in a number of different ways. Chuck Moore's

original Forth had what is called an indirect-threaded inner interpreter. Other Forths

have used what is called a direct-threaded inner interpreter. These inner interpreters get

executed every time you go from one Forth word to the next; i.e. all the time. A unique

version of Forth called WHYP (pronounced whip) has recently been described in a new

book on using the Motorola 68HC12 microcontroller in embedded systems.2 WHYP

stands for Words to Help You Program. WHYP is what is called a subroutine-threaded

Forth. This means that the subroutine calling mechanism that is built into the 68HC12 is

what is used to go from one WHYP word to the next. In other words, WHYP words are

just regular 68HC12 subroutines.

Inasmuch as Forth (and WHYP) programs consist of a sequence of words, the

most often executed instruction is a call to the next word. This means executing the inner

interpreter (NEXT) in traditional Forths, or calling a subroutine in WHYP. Up to 25% of

the execution time of a typical Forth program is used up in calling the next word. To

overcome this problem, Chuck Moore designed a computer chip, called NOVIX, in the

mid-eighties which could call the next word (equivalent to a subroutine call) in a single

clock cycle.3 Many of the Forth primitive instructions would also execute in a single

12

clock cycle. The design of the NOVIX chip was eventually sold to Harris Semiconductor

where it was redesigned as the RTX 2000.4 Similar 32-bit Forth engines were also

developed. In the late eighties Chuck Moore designed a 32-bit microprocessor called

ShBoom that had 64 8-bit instructions and was designed to interface to DRAM.8 Later

Chuck Moore and C. H. Ting designed the MuP21 that has been described by Ting.9 The

WnX microcontroller described in this section is a simplified reconfigurable

microprocessor based on ideas developed in these early Forth engines. It is designed

using VHDL. Different versions, both simplified and extended have been implemented

in a Xilinx FPGA at Oakland University.

2.2 The Simplified WnX Microcontroller

Return Stack

R

P reg

I Reg

Controller

Program
ROM

P mux

R mux

plus1

mux4g

Reg_Array

ALU

T mux
creg

A Reg

minus1

Figure 2.1: A block diagram of the simplified WnX microcontroller.

13

The WnX is a high-performance microcontroller that can be implemented to perform

useful functions on an FPGA. The overall structure of the WnX is shown in Figure 2.1. The

data busses in this figure are 8 bits wide and each instruction contains 8 bits. All busses in

the microcontroller are defined as generic sizes allowing the WnX to be reconfigured to an n-

bit microcontroller. In addition to the simplified microcontroller, the WnX has extended

components such as a multiplier, divider, fuzzy-inference component and interrupt vector

tables with an interrupt handler. In successive chapters, the WnX will be reconfigured for a

specific co-design application. The WnX instruction set is given in Table 2.1.

Table 2.1: The Simplified WnX Instruction Set

Opcode Name Function
00 DUP Duplicate T and push data stack.
01 DROP Drop T and pop data stack.
02 SWAP Exchange T and N1.
03 NIP Drop N1 and pop rest of data stack.
04 ROT Rotate top 3 elements on stack clockwise.
05 MROT Rotate top 3 elements on stack counter-clockwise.
06 OVER Duplicate N1 into T and push data stack.
07 TUCK Duplicate T into N2 and push rest of data stack.
08 NOP No operation
09 TOR “To-R” Pop T and push it on return stack.
0A RFROM “R-from” Pop return stack R and push it into T.
0B RFETCH “R-fetch” Copy R to T and push register stack
10 LSL Logic shift left T
11 ASR Arithmetic shift right T
12 LSR Logic shift right T
13 ROTR Rotate right T (carry unchanged)
14 ROTL Rotate left T (carry unchanged)
20 ZEROS Clear all bits in T to ‘0’.
21 PLUS Pop N1 and add it to T.
22 MINUS Pop T and subtract it from N1.
23 ANDD Pop N1 and AND it to T.
24 ORR Pop N1 and AND it to T.
25 XORR Pop N1 and AND it to T.
26 INVERT Complement all bits of T.
27 ONES Set all bits in T to ‘1’.
28 ZEQUAL TRUE if all bits in T are ‘0’.
29 ZLESS TRUE if sign bit of T is ‘1’.

14

Table 2.1 Continued

2A CTOT Push carry bit to top of register stack
2B 1PLUS Add 1 to T
2C 1MINUS Subtract 1 from T
2D MPP Multiply partial product
2E SHLD Shift left T and N1 for division
2F SUBC If T > N1, subtract N1 from T and set N1(0) to '1'
40 LIT Load inline literal to T and push data stack.
31 C@ Fetch the byte at addr T in RAM and load it into T
32 C! Store the byte in N1 at the address T
41 JMP Jump to inline address
42 JZ Jump if all bits in T are ‘0’
43 JNC Jump if carry is cleared
44 DRJNE Decrement R and jump if R is not zero
45 CALL Call subroutine
46 RET Subroutine return
47 PUSHD Load external value to T and push data stack
48 JNZ Jump if all bits in T are not '0'

The data stack in the WnX is a register array designed with four multiplexers combined

with four registers. The multiplexer for a stack register switches the output from any of

the other three registers to its input as shown in Figure 2.2.

clkclk
load(0)

sel0(1:0)

R0

S0

clr

clk
load(1)

sel1(1:0)

R1

S1

clr

clk
load(2)

sel1(1:0)
S2

R2
clr

load(3)

sel3(1:0)

R3

S3

clr

d0(3:0)

q0(3:0) q1(3:0) q2(3:0) q3(3:0)

3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

d1(3:0) d2(3:0) d3(3:0)

y0(3:0) y1(3:0) y2(3:0) y3(3:0)

Figure 2.2: A register-array data stack.

15

The multiplexed-register stack provides flexibility to implement the stack

instructions in one clock cycle. Although each of the stack registers have the capability,

by design, to be loaded, the WnX only uses the load provided to the register designated as

the top of the stack. This design provides an n x 4 register array data stack and an n x 16

return stack. The return stack is not an array-based stack since the flexibility to

manipulate individual return stack data is not necessary to obtain single clock-cycle

instructions. The input to the data stack is multiplexed from two sources, the ALU and a

4-input multiplexer. The ALU of the simplified microcontroller performs the operations

shown in Table 2.2.

Table 2.2: WnX ALU Operations

ALU Select Operation
"000"
"001"
"010"
"011"
"100"
"101"
"110"
"111"

all zeros
a + b
b - a
a and b
a or b
a xor b
not a

all ones

The n-bit inputs into the ALU are T and N, the top and second elements in the

stack, respectively. The 4-input multiplexer provides an external signal, the carry out

from the ALU, the top of the return stack, and the current value in the program memory

addressed by the program counter. The program for the WnX is stored in a program

ROM. The ROM is addressed by the program counter that can be loaded with a value

from the return stack or from memory for return-from-subroutine instructions or

instructions that may jump to an inline address. The return stack can be loaded with

values from the top of the data stack and the program counter plus one. A control unit

16

and instruction register controls the WnX microcontroller. The microcontroller is the

mealy state machine shown below in Figure 2.3.

St
at

e
R

eg
is

te
r

C1

x(t)

s(t+1)

s(t)
z(t)

clk

clr

present
 statepresent

 input

next
state

C2

process(clk, init)

process(present_state, x)

process(present_state, x)

Figure 2.3: The WnX state machine.

This state machine has three states: Fetch, Execute, and Execute-Fetch. A

portion of its VHDL implementation is shown in Figure 2.4. The controller begins in the

 end case

C1: process(current_state, M)
begin

case current_state is
when fetch =>
if M(6) = ‘1’ then

 next_state <= exec;
else

 next_state <= exec_fetch;
end if;

when exec_fetch =>
if M(6) = ‘1’ then

 next_state <= exec;
else

 next_state <= exec_fetch;
end if;

when exec =>
 next_state <= fetch;

;
end process C1;

fetch

exec
exec_
fetch

M(6)=‘1’M(6)=‘0’

M(6)=‘0’ M(6)=‘1’

Figure 2.4: A three-state VHDL implementation.

17

fetch state to 'fetch' the next instruction from the program ROM. If the instruction

requires only a single clock cycle to execute, the current instruction is executed and the

next instruction is read from the program ROM in the Execute-Fetch state. The

instructions continue to be executed and fetched at the same time until it is presented with

an instruction that requires more than one clock cycle.

These multi-cycle instructions have been assigned opcodes with a '1' in the 6th bit

position, the second most significant bit of the opcode. For instructions requiring two

clock cycles, the controller executes the current instruction without 'fetching' the next

word from the program ROM. On the second clock cycle, the microcontroller returns to

the fetch state to 'fetch' the next instruction.

The top of stack register in the Register Array of the extended microcontroller is

an SPI (Serial Peripheral Interface). The SPI top-of-stack register is shown below in

Figure 2.5.

LBF

SPI Register

CLR

CPOL

CPHA

MISO

T_IN

LEFT RIGHT
SPI_EN

MOSI

 SPI_CLK CLK T

Figure 2.5: The WnX top-of-stack SPI register.

An instruction, SPI, is included in the extended instruction set. Obviously, this

instruction requires more than one or two clock cycles. The microcontroller remains in

the execute state for the correct number of clock cycles to complete the SPI transmission.

18

The SPI runs in all four standard SPI modes: active high and low with CPHA = 1 and

active high and low with CPHA = 0. Using the SPI interface, the WnX will now accept

data directly into and transfer data directly from the top of the stack. This design was

synthesized on a Xilinx 4010 FPGA and simulated using the Aldec Active VHDL

simulator. A simulation is shown below in Figure 2.6.

Figure 2.6: The WnX SPI simulation with CPHA=0 CPOL=0.

19

References

1. Mano, M. M. and C. R. Kime., Logic and Computer Design Fundamentals, 2nd Ed., Prentice Hall, Upper
Saddle River, NJ, 2000.

2. Haskell, R. E., Design of Embedded Systems Using 68HC12/11 Microcontrollers, Prentice Hall, Upper
Saddle River, NJ, 2000.

3. Golden, J., Moore, C. H., and Brodie, L., “Fast Processor Chip Takes Its Instructions Directly from
Forth," Electronic Design, March 21, 1985, pp. 127-138.

4. Hand, T., "The Harris RTX 2000 Microcontroller," Journal of Forth Application and Research, Vol. 6,
No. 1, pp. 5-13, 1990.

5. Koopman, Jr., P., "32-Bit RTX Chip Prototype," Journal of Forth Application and Research, Vol. 5,
No. 2, pp. 331-335, 1988.

6. Hayes, J. R., Fraeman, M.E., Williams, R. L., and Zaremba, T., "A 32-Bit Forth Microprocessor,"
Journal of Forth Application and Research, Vol. 5, No. 1, pp. 39-48, 1987.

7. Hayes, J. and Lee, S., "The Architecture of the SC32 Forth Engine," Journal of Forth Application and
Research, Vol. 5, No. 4, pp. 49-71, 1989.

8. Moore, C., "ShBoom on ShBoom: A Microcosm of Software and Hardware Tools," Proc. 1990
Rochester Forth Conference, pp. 21-27, June 12-15, 1990.

9. Ting, C. H., "P Series of Microprocessors," in More on Forth Engines, Vol. 22, pp. 1-17, Sept. 1997.

10. Ting, C. H., "P16 Microprocessor Design in VHDL," in More on Forth Engines, Vol. 22, pp. 44-51,
Sept. 1997.

11. Ashenden, P. J., The Designer's Guide to VHDL, Morgan Kaufmann, San Francisco, 1996.

20

The shortest answer is doing.

Lord Herbert 1583-1648

CHAPTER 3: A MICROPROCESSOR/FPGA DESIGN COMPARISON:

TO FPGA OR NOT TO FPGA

3.1 A Basic Implementation Example – An Ultrasonic Tape Measure

 Interfacing a pre-packaged or pre-designed component to build an embedded

solution typically requires the use of a microprocessor. If the interface to the

microprocessor were eliminated and the design could be implemented using software that

optimized the system to hardware and embedded software, the hardware and software

would be optimally split after the design has been completed. To this extent, committing

to a specific limited microprocessor or an expensive functional-rich microprocessor is not

necessary. Furthermore, design changes will be accommodated in software and

necessary supporting hardware to manage timing and other constraints along with

necessary embedded software would be generated for the system, thus eliminating the

21

possibility of having to apply backward compatible patches to existing software due to a

change in hardware.

 As a basic example of a small embedded system implemented using a

microprocessor verses implementing the same system using the automatically

reconfigurable WnX microcontroller by designing the system in software is an ultrasonic

tape measure. An ultrasonic ranging system is available from Polaroid Corporation. It

consists of an acoustical transducer and a ranging circuit board. The transducer transmits

an ultrasonic pulse when the INIT input is asserted and remains high. This ultrasonic

pulse reflects off of the target object and returns to the transducer, which asserts the

ECHO output high until the INIT signal is returned to ground. Figure 3.1 shows a block

diagram of the Ultrasonic Ranging System.1

Figure 3.1: Block diagram of the Ultrasonic Ranging System. [Source: Haskell]

22

The transducer can measure up to nearly 36 feet. Since the speed of sound is

approximately 1.125 ft/ms or 13.5 in/ms (at 20° C), the sound will travel a distance of 36

feet in about 32 ms. Since the sound waves reflect off of the target object, they must

travel a round trip that will take about 64 ms.1

In the Design of Embedded Systems using 68HC12/11 Microcontrollers, Haskell

interfaces the ranging board to the 68HC12 by connecting the INIT pin to an output

compare pin on the 68HC12 and using an input capture pin to design an ultrasonic tape

measure.

In this chapter, the same Ultrasonic Tape Measure will be designed using the

reconfigurable WnX microcontroller and supporting internal hardware/software. Both

implementations will be compared with respect to complexity and extensibility. Other

microcontrollers may be used to implement the ultrasonic tape measure less expensive

and slightly easier than the Motorola 68HC12, however, traditional co-design processes

and high-risk decisions are still apparent.

3.2 The Ultrasonic Tape Measure using the Motorola 68HC12

Figure 3.2: Waveforms of the Ultrasonic Ranging System. [Source: Haskell]

23

To expedite the implementation, a particular member of the team, Chuck, uses

WHYP words described in Chapter 2 to write the software for the 68HC12. Since the

maximum time for the sound wave to make a round trip is about 64 ms, if the timer

prescalar on the 68HC12 is set to 8, the timer will overflow every 65.536 ms. Chuck

realizes that he must set up an output compare to enable the Ultrasonic Transducer and an

input capture that is asserted high when the sound wave returns. The INIT signal shown

in Figure 3.2 is produced. Chuck continues, after reading up on the necessary assembly

language for the Motorola 68HC12, to design the program shown below in listing 3.1.

Listing 3.1: Ultrasonic Tape Measure in WHYP [Source: Haskell]

\ Ultrasonic tape measure File: SONAR.WHP
LOAD SPILED.WHP \ for .leds and SPI words (Fig. 7.11)
HEX

0080 CONSTANT TIOS \ Timer Input Cap.\Output Comp. Select
0084 CONSTANT TCNT \ Timer Counter Register
0086 CONSTANT TSCR \ Timer System Control Register
0088 CONSTANT TCTL1 \ Timer Control Register 1
008B CONSTANT TCTL4 \ Timer Control Register 4
008C CONSTANT TMSK1 \ Timer Interrupt Mask Register 1
008D CONSTANT TMSK2 \ Timer Interrupt Mask Register 2
008E CONSTANT TFLG1 \ Timer Interrupt Flag Register 1
0092 CONSTANT TC1 \ Timer Input Capture Register 1
009C CONSTANT TC6 \ Timer Output Compare Register 6
0B22 CONSTANT TC6.IVEC \ Timer Channel 6 interrupt vector

VARIABLE DISTANCE
VARIABLE ECHO

: init.sonar (--)
 F0 TIOS C! \ PT6 output, PT1 input
 80 TSCR C! \ enable timer
 03 TMSK2 C! \ 1 MHz timer clock
 5 TCTL1 LO \ toggle PT6 (TC6)
 4 TCTL1 HI
 0 TC6 ! \ sync to TCNT
 6 TMSK1 HI \ enable TC6 int
 3 TCTL4 LO \ rising edge of PT1
 2 TCTL4 HI ;

24

Listing 3.1 continued

INT: TC6.INTSER (--) \ int on both edges
 6 PORTT ?HI \ if rising edge
 IF
 02 TFLG1 C! \ clear C1F flag
 ELSE \ if falling edge
 1 TFLG1 ?HI \ if echo
 IF
 TC1 @ \ get distance
 DISTANCE ! \ & save it
 TRUE ECHO ! \ echo=true
 ELSE \ else
 FALSE ECHO ! \ echo=false
 THEN
 THEN
 40 TFLG1 C! \ clear OC2F flag
RTI;

: SET.TC6.INTVEC (--)
 [' TC6.INTSER] LITERAL
 TC6.IVEC ! ;

: ?distance (-- n tf | ff)
 ECHO @
 IF
 DISTANCE @
 TRUE
 ELSE
 FALSE
 THEN ;

: sonar.tape (--)
 init.sonar
 SPI.INIT
 BEGIN
 ?distance
 IF \ if echo
 135 20000 */ \ convert to inches
 .4leds \ display distance
 ELSE
 SS.LO \ else
 EE SEND.SPI \ display dashes
 EE SEND.SPI
 SS.HI
 THEN
 AGAIN ;

25

As detailed in the Design of Embedded Systems Using 68HC12/11 Microcontroller1:

Output compare 6 is set up to toggle PT6 and produce an interrupt on each timer match.
The value of TC6 is set to zero so that the match will always occur when TCNT rolls over
from $FFFF to $0000. Inasmuch as PT6 is connected to the INIT signal on the ranging
circuit board, then a new ultrasonic pulse will be transmitted on each rising edge of PT6
when the value of TCNT will be zero. This means that if there is an echo and a rising
edge of PT1 stores the value of TCNT in TC1, this value will be the total elapsed time
since the pulse was transmitted.

The interrupt service routine will be executed on both the rising and falling edge of PT6.
The routine first checks to see if it was a rising edge. If it was, then this means that an
ultrasonic pulse is being sent. The C1F flag of input capture 1 is cleared so that we can
determine if an echo occurs before the next falling edge of PT6. When a falling edge of
PT6 occurs, the ELSE part of the interrupt service routing, TC6.INTSER is executed.
This will check the C1F flag in TFLG1 to see if an echo occurred. If it did, then the
distance value is read from TC1 and stored in the variable DISTANCE and a TRUE flag is
stored in the variable ECHO. If an echo did not occur, then a FALSE flag is stored in the
variable ECHO.

The word ?distance (-- n tf | ff) checks the values in the variables ECHO and DISTANCE
and will return a false flag if an echo has not occurred within the 65.536-ms time-out
time. Otherwise, it will return a true flag over the echo time, n, corresponding to the total
elapsed time from INIT going high to ECHO going high. Since each tick corresponds to
1.0 µs, then n/1000 would be the total elapsed time in milliseconds.

The word sonar.tape (--) will continually read the distance from the transducer to the
target using the word ?distance (-- n tf | ff) and display this value on the three-digit
seven-segment display.

Figure 3.3: Connecting the MC14499 to three common-cathode seven-segment displays.
[Source: Haskell]

26

In addition to writing the WHYP code shown in Listing 3.1, Chuck also needed to

write the WHYP code to interface with three external common-cathode seven-segment

displays. Chuck selected a standard IC, the MC14499 to interface to these displays. The

displays and interface are shown in Figure 3.3.

 Listing 3.2, below, shows the WHYP code written to interface with the MC14499

and the Motorola 68HC12.

Listing 3.2: Displaying up to Four Seven-Segment LEDs Using the MC14499 [Source: Haskell]

\ 4 LEDs Using the MC14499 Decoder/Driver with Serial Interface
\ File: SPILED.WHP

LOAD SPI.WHP
LOAD STRING.WHP
DECIMAL

: pack2 (addr -- c)
 DUP C@
 4 LSHIFT \ addr c1
 SWAP 1+ C@ \ c1 c2
 15 AND OR ;

: .4leds (n --)
 SS.LO
 10 BASE !
 (U.) 4 SWAP - \ addr #blanks
 FOR \ addr
 1- 15 OVER C! \ store F for blank
 NEXT
 DUP pack2 SEND.SPI \ 1st digit
 2+ pack2 SEND.SPI \ 2nd and 3rd digit
 SS.HI ;

In addition to the LED functions that are designed to use the Motorola 68HC12's

SPI port, Chuck pulled the two files loaded before the WHYP code written in Listing 3.2

from his previous WHYP library. Remember that Chuck used his collection of existing

WHYP source to expedite the project. Listing 3.3 shows the code used from the library

to use the 68HC12's SPI port.

27

Listing 3.3: Basic WHYP SPI Words [Source: Haskell]

\ Serial Peripheral Interface
HEX
00D0 CONSTANT SP0CR1 \ SPI Control Register
00D2 CONSTANT SP0BR \ SPI Baud Rate Register
00D3 CONSTANT SP0SR \ SPI Status Register
00D5 CONSTANT SP0DR \ SPI Data Register

: SPI.INIT (--) \ Initialize SPI port
 40 PORTS C! \ SS lo, sclk lo, MOSI hi
 E2 DDRS C! \ SS lo when DDRS7 set
 04 SP0BR C! \ 250 KHz (/32)
 54 SPCR C! ; \ CPHA = 1, CPO; = 0

: ?SPI.DONE (-- f) \ Is SPI data sent?
 7 SP0SR ?HI ;

: SEND.SPI (c --)
 SP0DR C! \ send char
 BEGIN
 ?SPI.DONE \ wait till sent
 UNTIL ;

: SS.HI (--) \ set SS high
 7 PORTS HI ;

: SS.LO (--) \ set SS low
 7 PORTS LO ;

Additionally, Chuck used a single word from his extensive "string" library. This WHYP

word is shown below in Listing 3.4.

Listing 3.4: A Single WHYP Word from the String Library [Source: Haskell]

…
: (U.) (u -- addr len)
 0 <# #S #> ;
…

Without Chuck's library, the words used would have had to be written in 68HC12

assembly language. The original assembly language source for select WHYP words is

shown in Listing 3.5.

28

Listing 3.5: 68HC12 Assembly Source for Select WHYP Words [Source: Haskell]

; @ (a -- w)
AT
 LDY 0,X ;Y = a
 MOVW 0,Y,0,X ;w = @Y

; C! (c b --)
CSTOR
 LDY 2,X+ ;Y=b
 LDD 2,X+ ;D = c
 STAB 0,Y ;store c at b
 RTS

; TRUE = -1 = $FFFF
TRUE
 LDD #-1
 STD 2,-X
 RTS

; SWAP (w1 w2 -- w2 w1)
; Exchange top two stack items.
SWAP
 LDD 0,X
 MOVW 2,X,0,X
 STD 2,X
 RTS

; + (X Y -- X+Y)
PLUS
 LDD 2,X+
 ADDD 0,X
 STD 0,X
 RTS

; (CREATE) (+++) Run time for CREATE
PCREATE
 LDAA #15 ;code 15
 JSR OUTPUT

PC1 JSR INWDY ;read word
 CPY #6 ;if 6, exit
 BEQ PC2
 JSR 0,Y ;else, execute sub
 LDAA #6
 JSR OUTPUT ;send ACK
 BRA PC1

PC2 RTS

29

It is obvious that all of the WHYP words that Chuck had in his library for the

Motorola 68HC12 provided a tremendous asset to the project.

3.3 The Ultrasonic Tape Measure using the Reconfigurable WnX Microcontroller

 A block diagram of an implementation using an FPGA and the reconfigurable

WnX described in Chapter 2 is shown in Figure 3.4. As outlined in section 3.2, the

transducer can measure distances up to about 36 feet and the sound wave emitted by the

transducer requires a maximum of 64 ms to reflect off of the target object and return to

the transducer. If a nominal clock frequency of 3.90625 kHz (125 kHz with a clock

divider of a factor of 25 or 32) for all synchronous components in the design is used, an

Counter

 WnX Reconfigurable
Components

Ultrasonic
Transducer

÷

Native
7-Segment
Displays

Figure 3.4: A block diagram for the ultrasonic tape measure using an FPGA without an external
microcontroller.

8-bit counter will overflow every 65.536 milliseconds. In this case, an 8-bit WnX could

be generated, therefore, this example will use a W8X. If precision or speed were crucial

30

constraints, a 16-bit W16X could be generated and a 16-bit counter value with a much

faster clock could be used to directly latch the 16-bit counter value into a single top-of-

stack register instead of manipulating 16-bits in two registers. Upon the assertion of the

ECHO pin, the value of the counter will latch into the top-of-stack register and cause an

interrupt in the reconfigurable W16X. This interrupt runs a subroutine to transfer the

counter value from the register to the top-of-stack and perform the appropriate

instructions required for the calculations to convert the counter value to the distance in

inches.

The counter overflows at 256, therefore an 8-bit counter is used. Since each clock

period is 256 µs and n is the value of the counter from the time the INIT signal went high

to the time the ECHO signal went high, the total elapsed time in milliseconds can be

obtained by the expression 256n/1000. The total distance in inches corresponding to the

total time elapsed can be calculated by multiplying n by 256 (256 µs per clock period)

and 135 (13.5 inches/ms) and dividing by 10,000 (to convert to milliseconds and

compensate for the factor of 10 in the numerator). Since the sound wave reflected off of

the target object and returned to the transducer, the distance from the transducer to the

object is 1/2 of the total distance. Therefore, Equation 3.1 shows the distance between

the transducer and the target object.

 Equation 3.1 **n
000,20

325256

An optimal microcontroller is generated; in this case an 8-bit microcontroller,

along with necessary components. Among the necessary components is a 16-bit x 8-bit

31

divider that will yield an 8-bit result and an 8-bit remainder. A simplified expression

shown in Equation 3.2 can be obtained by factoring the numerator and denominator of

Equation 3.1.

 Equation 3.2 *n
25
104

The simplified expression in Equation 3.2 requires a 15-bit (for simplicity let's use

16-bit) numerator and a 5-bit (for simplicity let's use 8-bit) denominator. Therefore,

necessary hardware or software will be generated to support an optimal divider. If timing

was a crucial constraint, combinational ALU operations could be generated. Each

calculation including complete transmission of the value to the seven-segment displays

has 255 clock cycles to complete. Since this is more than enough clock cycles, such a

stringent timing constraint is not necessary for this application.

The interrupt routine generated for the reconfigurable W8X is given in Listing

3.6. Notice that using a reconfigurable microprocessor reduces the code required to

perform a specifically designated task. In this case, the W8X performs one task; it acts as

an interrupt handler for the ultrasonic tape measure. The W8X is used more as a math

co-processor with no microprocessor!

In addition to the application-specific code for the interrupt service routine shown

in Listing 3.6, the following support subroutines, shown in Listing 3.7, are also generated

automatically. Only required support subroutines are generated and program ROM sizes

are minimized after the required code has been generated. This optimizes the overall

system design.

32

Listing 3.6: The Entire Interrupt Routine for the Ultrasonic Tape Measure

--APPLICATION SPECIFIC SOURCE

00 DINT --Wait for interrupt
01 JNI, X"00", --Jump zero to DINT and keep waiting
03 LIT, X"68", --Load a decimal 104 as the multiplier
05 PUSHD, --Obtain the counter value as the multiplicand
06 CALL, X"0014", --Call the built-in multiplication routine
08 LIT, X"19", --Load a decimal 25 as the divisor
0A ROT, --Rotate the top 3 elements clockwise – divisor

--on bottom
0B CALL, X"0021", --Call the built-in division routine
0D NIP, --Not interested in the remainder, drop N1 and

--pop rest of stack
0E WSPI0, --Call the Write SPI instruction to transfer

 --the 8-bit data out to the Binary to BCD
 --converter to the Seven-Segment Displays

0F CLI --Clear/Reset the Interrupt
10 JMP, X"00" --Return from interrupt

External RAM can be easily used when larger amounts of memory are required,

however, the lower the number of interfaces, the more like software development

embedded system co-design becomes.

Listing 3.7: Built-in Support W8X Subroutines

--MULTIPLICATION SUBROUTINE (12 clock cycles) Built-in
12 LIT, X"00", --Load a 0 to the top of stack and push data stack
13 MPP, MPP, MPP, MPP, MPP, MPP, MPP, MPP,
 --Multiply partial product eight times
1B 2NIP --Clean up the data stack (=ROT, DROP)
1C RET,

--DIVISION SUBROUTINE (11 clock cycles) Built-in
1D MROT, --Rotate the top 3 elements counter-clockwise –

--Divisor on top
1E SHLD, SHLD, SHLD, SHLD, SHLD, SHLD, SHLD, SHLD,
 --Shift left for division 8 times
26 S2NIP --Clean up the data stack (=ROT, DROP, SWAP)
27 RET,

Once the 8-bit distance is on the top of the stack (after interrupt service routine

address 0D), the WSPI instruction is called to transfer serially the data to the built-in

33

binary-to-BCD converter. The FPGA architecture lends itself very well to serial code

conversion, such as binary-to-BCD conversion. Data is entered serially into a register in

one format and retrieved from the same register in a different format as a parallel output.2

For those who are interested, binary-to-BCD conversion is performed in a

modified shift register that successively doubles its BCD contents. The binary data are

shifted into the converter serially, most significant bit first. Subsequent bits are shifted

serially into the converter. The conversion is complete when all of the binary input has

been shifted into the register, at which time the BCD result is available. The available

output, as shown below in Figure 3.5, does not require serial transfer, instead, it is

immediately available in parallel. To remain a valid BCD number when doubled, a BCD

digit of 5 or greater must not be shifted, but must be converted into a proper BCD

representation, along with a 1 being shifted into the next higher digit.2 This provides a

component-based solution for the generator to produce a binary-to-BCD converter for an

m-bit binary input requiring m clock cycles to convert the number into a BCD

representation. This BCD representation is mapped directly to an on-chip built-in Seven-

Segment Decoder. A detailed example is given in Appendix C.

Binary
Data

MODIN MODOUT
Q0 Q1 Q2 Q3

 MODOUT MODIN

Q0 Q1 Q2 Q3

From
Higher
Digits

 BCD
Digit 1

BCD
Digit 0

Figure 3.5: The binary-to-BCD converter. [Source: Alfke]

34

The FPGA implementation of the ultrasonic tape measure requires minimal code

and little, if any, waste of chip resources. Once the design has been generated, an

appropriately sized FPGA can be selected. In addition to offering a minimal solution, the

FPGA implementation does not require any additional hardware except for the Polaroid

Ultrasonic Transducer and the native Seven-Segment Displays. All timing

measurements, computations, conversions, and decoding takes place in the Field

Programmable Gate Array.

3.4 Scalability – A Field of Dreams

 Clearly, a reconfigurable solution offers many advantages and simplifies the

design verses using a packaged microprocessor. There are, however, more benefits than

meet the eye. Consider the scalability in the case of the simple example of the ultrasonic

tape measure. In section 3.2 and 3.3, this tape measure was designed using a Motorola

68HC12 and a reconfigurable WnX on an FPGA, respectively. Suppose that after

designing the measuring system, a larger system was desired, for example, a simple

system comprised of four (4) Ultrasonic Tape Measures that would have a wider range

than a single transducer. This system is shown in Figure 3.6.

 Both implementations could be extended relatively easily to implement this

system. The Motorola 68HC12 has 8 input captures and 8 output compares. If Chuck

were to implement a system of four transducers, he could reuse the same code that he

used to design the first single-transducer system and make minor changes to the

referenced input capture and output compare ports. Likewise, the reconfigurable WnX

FPGA system could easily reuse its design by simply downloading four identical designs

35

Completely Traceable
Some Dead
Zones

T4

T3

T2

T1

Figure 3.6: Four ultrasonic tape measures to form a span of measured area.

to the chip that operate in parallel. In this case, both implementations are relatively

similar in code/time costs. The FPGA implementation still optimizes the design for space

and an FPGA could be purchased to hold all four designs, in high volume, for less than

$2.49. Furthermore, each successive system requires an additional MC14499 driver IC

for the seven-segment display while the FPGA system generates internal decoders for the

additional displays.

 Suppose that only one value was desired, a non-zero distance given by whichever

transducer had such data or zero if all values are zero (theoretically, if an object fell in the

range of more than one transducer, both transducers would generate the same distance

36

value and therefore, either could be displayed). For the FPGA implementation, the BCD

outputs (12 bits, 3 digits each having 4 bits) could easily be multiplexed to the internal,

built-in Seven-Segment Decoder with the VHDL code listed in Listing 3.8. For a similar

result using the Motorola 68HC12, a more complicated approach is required. The

68HC12 shifts its data out the SPI port directly to an MC14499 and the seven-segment

display. Externally, special circuitry would have to be created to shift the data in and

determine which data were non-zero and hence, which data to shift to the MC14499 and

display. Internally, similarly extensive code considerations could be made to determine

which value to send out a single SPI with no extra external requirements.

Listing 3.8: A Multiplexed Output in the FPGA Implementation

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity Value_Select is
 port (
 trans1: in STD_LOGIC_VECTOR (11 downto 0);
 trans2: in STD_LOGIC_VECTOR (11 downto 0);
 trans3: in STD_LOGIC_VECTOR (11 downto 0);
 trans4: in STD_LOGIC_VECTOR (11 downto 0);
 out_sig: out STD_LOGIC_VECTOR (11 downto 0)
);
end Value_Select;

architecture Value_Select_arch of Value_Select is
begin
 if trans1 > 0 then
 out_sig <= trans1;
 elsif trans2 > 0 then
 out_sig <= trans2;
 elsif trans3 > 0 then
 out_sig <= trans3;
 elsif trans4 > 0 then
 out_sig <= trans4;
 else
 out_sig <= "000000000000";
 end if;
end Value_Select_arch;

37

 Although both implementations offer similar scalability for the expanded system

proposed above, the FPGA implementation offers a significant cost and resource

reduction. It may, in fact, seem as though the primary difference in scalability between

the FPGA implementation and the implementation using the 68HC12 is in production

cost. However, consider further expanding the system by requiring 3-dimensions to be

covered. In other words, four ultrasonic tape measures for each dimension, X, Y and Z.

This expansion is shown in Figure 3.7.

Z

T12

T11

T10

T9

T8 T7T6T5

T4

T3

T2

T1

X

Y

Figure 3.7: Three dimensions of ultrasonic tape measures.

We have clearly exceeded the capabilities of the 68HC12. The Motorola 68HC12

only has 8 input captures and 8 output compares. For this expansion, we would require

an additional microcontroller, perhaps another 68HC12. Or at this point, it may be better

38

to seek a microcontroller that has 12 input captures, output compares, and SPI ports (if

necessary) and port all of the existing software and libraries to the new microcontroller's

assembly language.

The FPGA implementation simply could reproduce 12 of the subsystems that

successfully implemented the single tape measure. If a single output were desired, the

VHDL code in Listing 3.8 could easily be expanded by adding more cases to the 'IF'

statement. However, more gates cost more money, in particular, millions of gates in a

single chip can become very expensive. Even the FPGA implementation seems to have

limits. Recall that a primary difference between hardware and software introduced at the

end of Chapter 1 is Architecture. A software system can grow fundamentally larger

because its raw architectural requirements are disk space and memory. Using traditional

co-design tactics, the architecture requires a restructuring or reconsideration of

interactivity if a system is to grow larger, before software changes can be considered.

3.5 What this Means for the Future – A Big Impact

It is true of the FPGA implementation as well, after a reasonably priced chip will

no longer accommodate the design, larger chips can cost several thousand dollars. This

limitation is however, in a sense, a matter of point-of-view. Consider connecting many

chips together to form a field of gates bearing a larger array of gates for synthesizing a

design. An example of connecting four Xilinx 40xxXL Series FPGAs is shown in Figure

3.8.

Using a high-level language to design a hardware/software system, which

generates necessary components such as a reconfigurable microprocessor, may yield a

39

Xilinx
XC40xx

Xilinx
XC40xx

Xilinx
XC40xx

Xilinx
XC40xx

Figure 3.8: A field composed of Xilinx FPGAs connected to form a larger synthesis target.

design that is too big to fit in an affordable single chip. Connecting FPGAs together to

form a larger synthesis target can be an effective solution. In addition to generating an

optimal set of components, an optimal implementation plan for synthesizing over several

chips complete with pin-connection requirements could be generated. According to

Xilinx, “there is no limit to the number of devices in the daisy chain and XC2000,

XC3000, XC4000, and XC5200 devices can be mixed freely with only one constraint:

the lead device must be a member of the highest family in the chain.”4 Using a field of

FPGAs as a larger synthesis target provides a base-line architecture for a high-level

compiler to synthesize to where most design changes result in a need for more gates,

something that can be easily and inexpensively provided by the designer. Inexpensive,

that is, relative to the costs of handling the potential hazard of having to select different

hardware and redesign the software to accommodate the change. A hypothetical example

of a multi-chip implementation is shown in Figure 3.9.

40

Return Stack

R

P reg

I Reg

Controller

Program
ROM

P mux

R mux

plus1

mux4g

Reg_Array

ALU

T mux
creg

A Reg

minus1

Return Stack

R

P reg

I Reg

Controller

Program
ROM

P mux

R mux

plus1

mux4g

Reg_Array

ALU

T mux
creg

A Reg

minus1

Return Stack

R

P reg

I Reg

Controller

Program
ROM

P mux

R mux

plus1

mux4g

Reg_Array

ALU

T mux
creg

A Reg

minus1

Return Stack

R

P reg

I Reg

Controller

Program
ROM

P mux

R mux

plus1

mux4g

Reg_Array

ALU

T mux
creg

A Reg

minus1

Chip #3

Chip # 2

Chip #1

Figure 3.9: Three 16-bit reconfigurable microcontrollers implemented over multiple Xilinx 4010
series FPGAs.

In the mid-1950’s, 5 Megabytes (MB) of hard drive space became available for

$50,000.00. In the mid-1980’s, 10 MB of disk space cost approximately $800.00. In the

mid-1990’s, 1,000 MB (known as a gigabyte; GB) cost $850.00. By 1999, 27 GB

(27,000 MB) of space was offered to the general public at $400.00. Last month, October

2000, Maxtor released an 82 GB hard drive for $518.00.5 Software designers for large

systems in the mid-1980’s targeted to a 30 MB hard drive (baseline architecture). If a

software system required more than the maximum affordable hard disk space available at

that time, often disk raid systems would be used. This methodology paid off in the long

41

run since only 3 years later, a disk drive bigger than the raid system used for the original

design was available at a cost less than the raid system. Furthermore, in the early 1990’s,

a mere 6 years after the software in this hypothetical example was designed, hard disk

space was available in abundance and at increasingly low prices.

Similarly, in the early to mid-1990’s, Field Programmable Gate Arrays were

available with a limited number of gates and at a high cost. This small number of gates

with such a high price tag disinterested most ASIC designers whose requirements

compared with the available FPGAs resembled the R.M.S. Titanic compared to a door

opening. Today, FPGAs are available with 1 or more million gates with costs ranging in

the low to mid thousands of dollars. On the other hand, an FPGA like a Spartan XL with

5,000 gates, for example, is available in high volume for $2.49 each.6 Similarly, a field

of FPGAs, similar to the one shown in Figure 3.8, made of 20 Spartan XLs totaling

100,000 available gates would cost approximately $60.00 to construct. FPGAs are

expected to be available within the next year with more than 20,000 at the cost of a single

Spartan XL. Systems designed using the 20-FPGA field could be implemented using 5

of the new 20,000 gate chips for ¼ of the cost of the original FPGA configuration.

Future releases of technology, as in the case of the hard drive, would provide a means for

designs implemented on an array of FPGAs to be implemented in an inexpensive single

chip.

Current hardwired ASICs and Microprocessors, such as the Motorola 68HC12,

are not updateable. If a new version of a microprocessor or ASIC is released to introduce

fixes to known problems with the device and/or new features, an entirely new chip needs

42

to be manufactured. The new chip needs to physically replace the old chip; in every

deployed embedded system, the chip would need to be replaced. This replacement could

cost millions of dollars.

Last year, in 1999, Xilinx released a technology that started what is now called

Xilinx Online. To support the development of such downloadable designs Xilinx

released JBits API, a Java-based tool set based on an applications programming interface

(API) that allows designers to write information directly to Xilinx FPGAs. JBits API

makes it possible to create Java logic applets that can be used to send hardware updates

via the Internet.6 With this technology, FPGAs can be reprogrammed over the Internet.

Updates and/or new features can be implemented online – for free.

References

1. Haskell, Richard E., Design of Embedded Systems Using 68HC12/11 Microcontrollers. Prentice Hall,
Upper Saddle River, NJ, copyright 2000.

2. Alfke, Peter, and New, Bernie, “Serial Code Conversion between BCD and Binary,” Xilinx Application
Note number 029, October 27, 1997. Version 1.1.

3. Hayes, John P., Computer Architecture and Organization, McGraw-Hill Series in Computer Science,
Boston, copyright 1998, third edition.

4. Alfke, Peter, “Configuring Mixed FPGA Daisy Chains,” Xilinx Application Note number 091,
November 24, 1997. Version 1.0.

5. Smith, Ivan, A statistical review of hard drives is offered at Nova Scotia’s Electronic Attic, et al. URL:
http://www.alts.net/ns1625/winchest.html (Accessed November 2000), elaborated in Appendix A.

6. Xilinx Production Information, “The Spartan XL: Rome wasn’t Built in a Day,” Xilinx Corporation,
available online at http://www.xilinx.com/xlnx/xil_prodcat_landingpage.jsp?title=Spartan, Last Accessed
November 2000.

7. Clarke, Peter, “Xilinx Launches Support for Internet Reconfigurable Logic,” EE Times, May 21, 1999.

8. “Xilinx Online Field Upgradable Capability Powers New Remote Server Management System
From Apex: Spartan FPGAs reconfigured for digital signal processing functions,” Press Release from
Xilinx, Inc., August 2, 1999.

http://www.alts.net/ns1625/winchest.html
http://www.xilinx.com/xlnx/xil_prodcat_landingpage.jsp?title=Spartan

43

Any sufficiently advanced technology
is indistinguishable from magic

Arthur C. Clarke

CHAPTER 4: RECONFIGURABLE HIGH-SPEED

APPLICATIONS – BEYOND THE MICROCONTROLLER

4.1 Artificial Intelligence on a Chip

 Thousands of successful approaches for processing data to provide predictive

outputs, classify data and solve NP-Hard problems have been employed over the last

half-century. Most of these techniques have been implemented using various different

programming languages that have evolved over time to develop software that runs on a

standard CISC microprocessor. The most critical benchmarks for many of these

algorithms that provide solutions to complex data problems are accuracy, precision and

speed. In some cases, there are several speed benchmarks, for example, the amount of

time it takes to train a neural network and how fast a predication can be generated using

test data. In the case of the neural network training times typically far exceed testing

times by several multiples.

44

Another important contribution to data processing used to locate global

maximums and minimums or to maximize the accuracy of a decision system by

optimizing the systems parameters, is the genetic algorithm. Genetic algorithms are

parallel-search procedures that are applicable to both continuous and discrete

optimization problems.4 Genetic algorithms are stochastic and less likely to get trapped

in local minima and facilitate both structure and parameter identification in complex

inference systems. The genetic algorithm operates by generating somewhat random

solutions called chromosomes to form a set of possible solutions called a population. In

each generation, or iteration of the algorithm, the genetic algorithm constructs a new

population using genetic operators such as mutation and crossover. Each generation

yields a solution that is the same or better solution than the previous generation.4 In

terms of speed, the faster a genetic algorithm can crossover and mutate chromosomes to

produce the next generation, the better the result will be after time, t.

Many different types of genetic algorithms have been developed with different

schemas for crossover and mutation and varying fitness functions. Many use innovative

twists that, for data of a particular domain, enhance the outcome. All of which depend on

the speed of execution of the algorithm.

In 1995, Scott, Samal, and Seth implemented a hardware based genetic algorithm.

According to Scott, et al, "because a general-purpose genetic algorithm engine requires

certain parts of its design to be easily changed (e.g. the function to be optimized), a

hardware-based genetic algorithm was not feasible until field-programmable gate arrays

were developed." This work builds upon other research in reconfigurable hardware

45

systems which improved system performance by mapping some or all software

components to hardware using reprogrammable hardware.8 Figure 4.1 shows the HGA

(hardware genetic algorithm) system.

S

Fitness (FM)

Crossover/mut. (CMM)

Selection (SM)
Rand. No. gen. (RNG)

Memory Interface (MIM)

Population sequencer (PS)

Shared
Memory

Selection (SM)

um of fitnesses
to selection module

Random numbers

Random Numbers

Random Numbers Member/fitness

Member/fitness

Member’s
address

Member and
fitness

New members/fitnesses
to write and their addresses

Selected Members

Figure 4.1: Box-level schematic of the overall HGA system. Some lines have been omitted for
clarity. [Source: Scott, Samal and Seth]

The HGA system significantly improved the performance of the genetic

algorithm. On average, the HGA prototype used 6.802% as many clock cycles as the

software genetic algorithm. Table 4.1 details this performance boost. The first eight

HGA tests were run on the prototype synthesized to three interconnected Xilinx XC4005

FPGAs and the last six tests were run on a VHDL simulator. All input/output times were

removed from the comparisons.8

46

Table 4.1: Performance of the Software GA and the Hardware GA. [Source: Scott, Samal and Seth]

Fitness
Function

f(x)

Number of
Generations

SGA Clock
Cycles

HGA Clock
Cycles

x 10 97064 5636
x 20 168034 10622

x + 5 10 99825 5585
x + 5 20 170279 10945

2x (add) 10 101019 5390
2x (add) 20 170241 10659
2x (mult) 10 101555 5390
2x (mult) 20 170668 10659

x2 10 334210 22892
x2 20 574046 45019

2x3 – 45x2 + 300x 10 342806 22586
2x3 – 45x2 + 300x 20 589863 44503
x3 – 15x2 + 500 10 333701 21362
x3 – 15x2 + 500 20 579176 44317

 Other artificial intelligence and data processing techniques would benefit

significantly by a high-speed hardware implementation as well.

4.2 A High-Speed Digital Image Processing Example

 An example of a commonplace application in digital image processing is edge

detection. Edge-detection operators examine each pixel neighborhood and use the slope

and often the direction of the gray-level transition as metrics. There are several methods

available for this examination, most of which are based upon convolution with a set of

directional derivative masks.1 The Roberts Edge Operator, Sobel Edge Operator, Prewitt

Edge Operator, and Kirsch Edge Operator are all common differential or convolution

operators for finding edges.

47

In addition to the edge-detection operators, image edges may also be detected

using an artificial intelligence pattern recognition approach. One such approach was

explored using a neuro-fuzzy classification tree.3 In a binary tree classifier a decision is

made at each non-terminal node of the tree based upon the value of one of many possible

attributes or features. If the feature value is less than some threshold then the left branch

of the tree is taken, otherwise the right branch is taken. The leaves, or terminal nodes, of

the tree represent the various classes to be recognized. Since the classes that we are

interested in for edge-detection are distinct (an edge pixel or a non-edge pixel), we will

refer to the tree as a classification tree.

Fuzzy classification trees used in this paper have the following basic

characteristics. A K-S distance associated with a fuzzy cumulative distribution function

is used to select the optimum feature and threshold at each node in the tree. Each training

sample can belong to more than one class with different degrees of membership. The test

at each non-terminal node in the tree is considered to be a fuzzy set allowing a test

sample to follow multiple paths through the tree, terminal nodes are evaluated using a

defuzzification process to determine the best classification of the test data.5 Each fuzzy

membership function is characterized by two regions, a linear fuzzy region, a-∆a ≤ x ≤

a+∆a, where f(a) = 0.5, that ranges over the real interval (0,1) and a crisp region, x< a-

∆a or x > a+∆a, that maps to either 0 or 1. Determining which ∆a will produce the best

results at each node is an obstacle introduced by using fuzzy classification trees. In the

48

case of edge detection, ∆a is a parameter that can be increased or decreased depending on

the types of edges that are to be detected.

For this experiment, the black and white image shown in Figure 4.2 was used.

The objective was to train a neuro-fuzzy classification tree to intelligently differentiate

between an edge and a non-edge pixel.

Figure 4.2: A grayscale photograph selected at random for edge-detection using a neuro-fuzzy
classification tree (GIF format).

First, the edges of the face were traced in orange for training the neuro-fuzzy

classification tree. These traces were used as the training data. The traced image is

shown below in Figure 4.3.

Figure 4.3: Orange edge trace used as training data for the neuro-fuzzy classification tree.

49

Note that few pixels were used to represent an ‘edge’ pixel. The metric that was

used for edge-detection was the difference between the numerical pixel value and the

numerical pixel value of each pixel in its neighborhood. These differences were used as

features for each pixel. The boundary pixels, those that are missing neighboring pixels

on one or more sides, were not used. Listing 4.1 below is the Java Application used to

convert the picture file from the Graphical Interchange Format (GIF) to the feature

vectors and corresponding class (0 for non-edge pixel and 1 for edge pixel).

Listing 4.1: Java Application for Calculating Metrics from GIF Picture File

import java.awt.*;
import java.awt.image.PixelGrabber;
import java.io.*;

public class ImageTest {

 public static final int OUTLINE_PIXEL = -22;

 public static void processImage(String infile, String outfile,
 String aifile) {

 Image image = Toolkit.getDefaultToolkit().getImage(infile);
 PrintWriter fout = null;
 PrintWriter aiout = null;
 try {
 fout = new PrintWriter(new FileOutputStream(outfile));
 aiout = new PrintWriter(new FileOutputStream(aifile));
 }
 catch(IOException f) {
 System.out.println("Error opening output file.");
 System.exit(0);
 }
 try {
 PixelGrabber grabber = new PixelGrabber(image, 0, 0,
 -1, -1, false);
 if (grabber.grabPixels()) {
 int width = grabber.getWidth();
 int height = grabber.getHeight();
 if (bytesAvailable(grabber)) {
 byte[] data = (byte[]) grabber.getPixels();
 // process grayscale image...
 System.out.println("Processing b&w image...\n");
 int i = 0;

50

Listing 4.1 continued

 fout.println(data.length);
 fout.println("Width: " + width);
 fout.println("Height: " + height);
 for (i = 0; i < data.length; i++)
 {
 if (((i % width) == 0) && (i != 0))
 fout.println("");
 fout.print(data[i] + " ");
 }

 int[][] metrix = new int[data.length][8];
 int recordClass = 0;

 //We want to fill a two-d array with metrics
 //for each pixel (not on a boundary) we want to compute
 //the difference between it and its neighbor.

 aiout.println("8\t" + ((height * width) - (2 * width) –
 (2 * height - 4)));

 for (i = width; i < ((height - 1) * width) - 1; i++)
 // looks like 0 ... width - 1
 // width ... 2 * width - 1
 // ...
 //(height - 1) * width ... height * width - 1
 { //begin processing at the width + 1 pixel
 //we need to skip the top and bottom rows and the
 //leftmost pixel in each row and the rightmost pixel
 //in each row
 if (((i % width) != 0) && (((i+1) % width) != 0))
 //this is not a leftmost or rightmost pixel
 {
 metrix[i][0] = data[i] - data[i - 1]; //left
 metrix[i][1] = data[i] - data[i + 1]; //right
 metrix[i][2] = data[i] - data[i + width - 1];
 //lower left diag
 metrix[i][3] = data[i] - data[i + width]; //below
 metrix[i][4] = data[i] - data[i + width + 1];
 //lower right diag
 metrix[i][5] = data[i] - data[i - width - 1];
 //upper left diag
 metrix[i][6] = data[i] - data[i - width]; //above
 metrix[i][7] = data[i] - data[i - width + 1];
 //upper right diag

 if (data[i] == OUTLINE_PIXEL)
 recordClass = 1;
 else
 recordClass = 0;

51

Listing 4.1 continued

 aiout.println(metrix[i][0] + "\t" + metrix[i][1] +
 "\t" + metrix[i][2] + "\t" +
 metrix[i][3] +
 "\t" + metrix[i][4] + "\t" +
 metrix[i][5] +
 "\t" + metrix[i][6] + "\t" +
 metrix[i][7] +
 "\t" + recordClass);
 }
 } //all metrics have been created for all interior pixels

 }
 else {
 int[] data = (int[]) grabber.getPixels();
 // process color image
 System.out.println("Processing color image...\n");
 }
 }
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 }
 fout.close();
 aiout.close();
 }

 public static final boolean bytesAvailable(PixelGrabber pg) {
 return pg.getPixels() instanceof byte[];
 }

 public static void main(String[] argv) {
 if (argv.length > 2) {
 processImage(argv[0], argv[1], argv[2]);
 System.exit(0);
 }
 else {
 System.err.println("usage: java ImageTest <infile>
 <outfile> <aifile>");
 System.exit(1);
 }
 }
}

 After using the data to train the neuro-fuzzy classifier, the image data for the

image shown in Figure 4.2 was used as the test picture. Figure 4.4 shows the result of the

52

edge detection using the neuro-fuzzy binary tree with a fuzzy percent (∆a) of 0.10.

Different fuzzy percents were used yielding more edge pixels and less edge pixels.

 Figure 4.4: Classified edges with ∆a = 0.10.

The primary interest was to use this technique to perform real-time edge detection

in hardware. Using a microprocessorless implementation, a real-time edge detector was

synthesized to a Xilinx Spartan XCS10 FPGA. Figure 4.5 shows a block diagram of the

FPGA system.

Camera

DP
RAM

Metrics
(Subtraction)

Tree
Classifier

Output
to

Monitor

Fits on One Spartan

Figure 4.5: A microprocessorless implementation of the real-time edge detector using a neuro-
fuzzy binary tree classifier.

53

 For the camera, the OV5017 Camera shown in Figure 4.6 was connected to a

Digilab prototyping board made by Digilent.7

 Figure 4.6: A mounted OV5017 CMOS camera with a 7.4 mm lens.

The camera was a 384 x 288 pixel camera. The pixel data was an 8-bit integer. The first

pixel that the metric could be computed for was pixel number 386 after pixel number 771

has been transmitted, therefore a 771 x 8 Dual Port RAM was required. A 5-volt

asynchronous dual port RAM from Cypress was used. The camera and the Dual Port

RAM were the only components that were not implemented in the FPGA. The

METRICS component computed the difference between the pixel and its eight

neighboring pixels.

Metric 4

Metric 2

Metric 3

Metric 1

Metric 5

Metric 6

Metric 7

Metric 8

Camera
Clk * 8

 Figure 4.7: Component for calculating the metrics for edge detection

54

Since the camera array size is 384 x 288 pixels at 50 frames per second (default),

the camera clock frequency output in pin PCLK, is 5.5296 MHz. The boundary pixels

that are missing one or more of the eight nearest neighbors are not considered.

Therefore, the first pixel that has all eight neighbors is pixel 386 (assuming the first pixel

is pixel 1). The metrics, however, cannot be calculated until all eight of the neighbors for

pixel 386 have been scanned. The eight neighbors from the upper-left diagonal to the

lower-right diagonal for pixel 386 are pixels 1, 2, 3, 385, 387, 769, 770, and 771. In

general, the metrics for pixel, pi of an m x n-pixel image are given by:

 M1 = pi – pi – m – 1
 M2 = pi – pi – m
 M3 = pi – pi – m + 1
 M4 = pi – pi – 1
 M5 = pi – pi + 1
 M6 = pi – pi + m – 1
 M7 = pi – pi + m
 M8 = pi – pi + m + 1

These metrics, therefore, can only be computed for pixel 386 after pixel 771 has

been scanned. After pixel 771 has been scanned, the METRIC component calculates the

metric for pixel 386 by accessing the eight neighboring pixels from the asynchronous

dual port RAM. The clock driving the METRIC component must be eight times PCLK

to continuously access the eight neighbors for every pixel scanned. For this experiment,

the METRIC clock shown in Figure 4.7 is approximately 50 MHz (greater than the

calculated 44.2368 MHz). Each time a pixel is scanned after and including pixel 386, the

METRIC component is enabled and the metrics for a pixel are calculated at 50 MHz.

Shortly after the metrics have been calculated combinationally, another pixel has been

55

scanned by the camera and is written to the dual port RAM. Once again, the METRIC

counter that tracks the current pixel number is incremented and the metrics are read and

presented to the TREE CLASSIFIER component shown in Figure 4.5. After the metrics

for pixel 386 have been computed, pixel 1 is obsolete and may be replaced by the next

pixel scanned from the camera. Since the edge detector operates in real-time, that is,

pixels are classified as fast as the camera scans the image pixels, no more than 771 pixel

data need to be maintained in the dual port RAM. The tree classifier is combinational

with a registered output controlled by PCLK. Each time a pixel is read, a pixel has been

classified as an edge pixel or a non-edge pixel. Non-edge pixels are displayed as one

color and edge pixels are displayed as another color. The neuro-fuzzy classification tree

algorithm3 was altered to produce a VHDL file representing the decision built from the

training data. The VHDL component is shown below in Listing 4.2.

Listing 4.2: VHDL Decision Tree Component

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity decision_tree is
 port (
 x1: in STD_LOGIC_VECTOR(6 downto 0);
 x2: in STD_LOGIC_VECTOR(6 downto 0);
 x3: in STD_LOGIC_VECTOR(6 downto 0);
 x4: in STD_LOGIC_VECTOR(6 downto 0);
 x5: in STD_LOGIC_VECTOR(6 downto 0);
 x6: in STD_LOGIC_VECTOR(6 downto 0);
 x7: in STD_LOGIC_VECTOR(6 downto 0);
 x8: in STD_LOGIC_VECTOR(6 downto 0);
 z: out STD_LOGIC
);
end decision_tree;

architecture behav of decision_tree is
begin
 dt_1: process(x1, x2, x3, x4, x5, x6, x7, x8)

56

Listing 4.2 continued

 begin
 if ((x4 < 0 and x5 < -6 and x8 < -45)
 or (x4 < 0 and x5 >= -6 and x8 < -45)
 or (x4 >= 0 and x8 < -45)
 or (x2 < -40 and x4 >= -1 and (x8 >= -45 and x8 < -4))
 or (x1 < -54 and x2 >= -14 and (x8 >= -45 and x8 < -4))
 or (x1 >= -54 and x2 >= -14 and x5 < 0 and x7 < 0
 and (x8 >= -45 and x8 < -4))
 or (x1 >= -54 and x2 >= -14 and x5 < 0 and x7 >= 0
 and (x8 >= -45 and x8 < -4))
 or (x1 < -77 and x8 >= -4)
 or ((x1 >= -77 and x1 < -47) and x8 >= -4)
 or ((x1 >= -47 and x1 < 8) and x3 < 8 and x6 < 3
 and x7 >= 18 and x8 >= -4)
 or ((x1 >= -47 and x1 < 8) and x3 >= 8 and x8 >= -4)
 or (x1 >= 8 and x5 < -10 and x8 >= -4)
 or (x1 >= 8 and (x5 >= -10 and x5 < 1) and x8 >= -4)
 or (x1 >= 8 and x4 < 3 and x5 >= 1 and x7 < 1
 and x8 >= -4)) then
 z <= '1';
 else
 z <= '0';
 end if;
 end process dt_1;
end behav;

Each pixel is classified as an edge or non-edge pixel determined by the value of z,

the output bit of the tree classifier shown in Listing 4.2. If z is high, the pixel is

considered to be an edge, if z is low, the pixel is a non-edge.

The last component in the system is the OUTPUT component. This component is

responsible for maintaining the proper timing for outputting the pixel data (color1 or

color2) to the monitor. For this experiment, the monitor output required three basic

signals, a vertical-sync signal, a horizontal-sync signal and a single color signal. For this

experiment, we used yellow and black as our edge and non-edge pixels, respectively.

The horizontal-sync signal is used to signify the beginning of a row of pixel data when

asserted high. This signal must be brought low again within 25.17µs and must remain

57

low a minimum of 0.94µs after the last pixel and stay low for 3.77µs. A new line of

pixels can begin a minimum of 1.89µs after the horizontal-sync pulse ends. A single line

occupies 25.17µs of a 31.77µs window. The remaining 6.6µs of each line is the

horizontal blanking interval. Similarly, negative pulses on the vertical-sync mark the

Figure 4.8: VGA signal timing [Source: Van den Bout]

start and end of a frame of lines to ensure that the monitor displays the lines between the

bottom and top edges of the visible monitor area. The lines are sent to the monitor within

a 15.25ms window. The vertical-sync drops low a minimum of 0.45ms after the last line

58

and stays low for 64µs. The first line of the next frame can begin a minimum of 1.02ms

after the vertical-sync pulse ends. A single frame occupies 15.25ms of a 16.784ms

interval. The other 1.534ms of the frame interval is the vertical blanking interval. Figure

4.8 illustrates this timing.6

 To maintain the same signal frequency as the camera, we can use the camera's

output horizontal- and vertical-sync signals. Since the first pixel to be classified is pixel

386, after the camera has scanned pixel 771, compensation must be made in the

horizontal and vertical synchronization signals. The horizontal-sync signal has dropped

low (active low) for the beginning of the 3rd line with the first pixel, 769. The

classification for pixel number 386 is latched into the OUTPUT component as the camera

is inputting pixel 772 in the first memory location in the dual port RAM. Therefore, the

first pixel of the line to be displayed on the monitor is actually three pixels after the

horizontal-sync signal has dropped.

The timing for the vertical-sync signal is also off. The vertical signal dropped

when the camera began scanning the first line. The first line that we will output to the

screen is the second line (since the border is ignored). The vertical-sync signal, when the

output begins, is currently timed for the third line (beginning with pixel 769). This

means that the vertical signal is timed for the beginning of the third line while we are

outputting the pixels on the second line, one line behind. The compensation for these

timing issues is made in the OUTPUT component. Two counters, one for the horizontal

signal and another for the vertical signal with a synthesized 1-bit RAM array

59

accommodate the time lags. The timing diagram for the OV5017 CMOS camera is

shown in Appendix B.

References

1. Castleman, Kenneth R., Digital Image Processing, Prentice Hall, New Jersey, 1996.

2. Bezdek, J. D., Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New
York, 1981.

3. Haskell, R. E., “Neuro-Fuzzy Classification and Regression Trees,” Proc. Third International
Conference on Applications of Fuzzy Systems and Soft Computing, Wiesbaden, Germany, October 5-7,
1998.

4. Jang, J.-S. R., Sun, C.-T., Mizutani, E., Neuro-Fuzzy and Soft Computing, Prentice-Hall, Inc., Upper
Saddle River, NJ, 1997.

5. Haskell, R. E., “Regression Tree Fuzzy Systems,” Proc. ICSC Symposium on Soft Computing, Fuzzy
Logic, Artificial Neural Networks and Genetic Algorithms, University of Reading, Whiteknights, Reading,
England, pp. B.1–B.6, March 26 - 28, 1996.

6. An overview of horizontal and vertical sync signals is given in Van den Bout, David, VGA Signal
Generation with the XS Board. Technical reference for the XS prototype board.

7. Cole, Clint, Digilab Circuit Board User’s Manual, Washington State University, Digilent, Inc., January
2000.

8. Scott, Stephen D., Samal, Ashok, and Seth, Sharad, “HGA: A Hardware-Based Genetic Algorithm,”
Proceedings of the 1995 ACM/SIGDA Third International Symposium on Field-Programmable Gate
Arrays, pp. 53-59.

9. Schmit, Herman and Thomas, Don, “Hidden Markov Modeling and Fuzzy Controllers in FPGAs,”
Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines, pp. 214-221, 1995.

10. OmniVision Technologies, Inc. “OmniVision Confidential Preliminary Product Specification for the
OV5017 CMOS Camera,” October 27, 1997, version 1.6.

60

The most incomprehensible thing
about the world is that it is comprehensible

Albert Einstein

CHAPTER 5: SUMMARIZING A SOFTWARE DESIGN APPROACH

WITH A RECONFIGURABLE SOLUTION

5.1 Conclusion

Traditionally, hardware/software co-design introduces the high-risk step of

hardware/software splitting shown in Figure 1.3. If a change in specification or

unexpected condition or situation occurs a revision in the hardware/software splitting step

is often required. This change may require part or all of the software to be rewritten or

ported to the newly selected hardware, an expensive and time-consuming process that, in

some cases, leads to complete failure of the co-design project.

For software development, different software engineering and management

techniques and tools, such as the Unified Development Process and Rational Rose, are

available for a software project. These methods and tools offer a great deal of benefit to

61

software development that is necessary but not sufficient for equivalent

hardware/software co-design projects.

A microprocessorless solution or an embedded system design in software that

generates a reconfigurable microcontroller for the specific application was demonstrated.

This method of hardware/software co-design leaves the “splitting” to the end, after the

entire application has been designed. Additionally, the compiler is responsible for

presenting optimal splitting decisions. Many years ago, ASICs were designed at the

diffusion layer/p-n junction level of abstraction. After several years of collaboration and

hundreds of millions of dollars of invested capital, compilers, such as VHDL, Verilog,

and ABEL, compile, optimize, and place high-level hardware designs on a variety of

FPGAs. This advancement dramatically increased the speed at which an embedded

system could be developed and opened new doors for solving larger problems at a higher

level with an ASIC. Similarly, a compiler that optimizes a high-level embedded system

design and generates optimally configured microcontrollers when necessary offers a

similarly dramatic advancement in the design of embedded systems.

Rapid advancements in transistor density have made smaller chips available with

more gates at decreasing costs. Xilinx and other FPGA designers/manufacturers project

significant increases each quarter following the current exponential trend. FPGAs can be

connected together to form a daisy chain or field of chips for larger designs. Designs

requiring multiple FPGAs will soon fit into fewer chips until finally a single chip, similar

to the trend of hard disk space over the last 15 years.

62

Such a compiler introduces the opportunity to easily implement software

algorithms in hardware. An example of a real-time edge detector designed using neuro-

fuzzy decision trees was presented as a software algorithm and as a system implemented

in hardware that was designed using a high-level software language and external

memory, without a microcontroller. In this example, an inexpensive microprocessorless

solution successfully employed a novel software technique to detect edges in real-time.

The reconfigurable solution offers other important advantages in addition to cost

and time savings, among these are the use of software development disciplines in co-

design projects and the prospect of compiling software implementations to a hardware

solution. One such advantage is remote updatability. Field Programmable Gate Arrays

can be updated via the Internet. Design changes can be made easily and inexpensively

for bug-fixes and upgrades with enhancements. This expedites the introduction of new

technology into the marketplace and adds to the already significant cost and time savings.

5.2 Future Research

This thesis provided examples and a proof-of-concept using a reconfigurable

extended WnX microcontroller. A compiler and environment to determine optimal

controller requirements and optimize place and routing over many chips for a general

design would require a team of engineers and a significant investment.

In the beginning, software was implemented over arrays of expensive storage

devices. Later, storage devices decreased in price and increased storage space in small

increments. Over time, storage space has become abundant and inexpensive and is

virtually transparent to a software designer. In the beginning, hardware was designed at

63

the p-n junction level. Later, microprocessors and microcontrollers were introduced,

both extended and reduced with an assembly language and expensive FPGAs with few

gates were produced.

Over time, high-level languages such as VHDL, Verilog, and ABEL were

introduced to design, simulate, and synthesize hardware designs on the increasingly

useful FPGA. Now, since FPGAs are being produced with rapidly increasing numbers of

gates at low costs, the hardware/software split can be rejoined in a software

environment.

64

APPENDIX A

STATISTICAL INFORMATION FOR HARD DRIVES FROM 1956 – PRESENT
SOURCE: NOVA SCOTIA’S ELECTRONIC ATTIC, ET AL.
URL: http://www.alts.net/ns1625/winchest.html (ACCESSED NOVEMBER 2000)
MAINTAINED BY: IVAN SMITH

Prediction:

The cost for 128 kilobytes of memory
will fall below US $100 in the near future.

Creative Computing magazine

December 1981, page 6

The column headed "W" shows the warranty duration in years. The "Price of Drive" is the retail price, sales
taxes extra. The "Cost per megabyte" is the retail price, all taxes included. Prices are in Canadian currency,
except prices marked "U$" which are in United States currency. These examples have been selected from
hard drives advertised for sale, to show the lowest available per-megabyte cost.

Source Manufacturer
W

y
Capacity Price of

Drive
Cost per

MB

1956
Note 0 IBM 5 megabytes U$50,000 U$10,000

1980 January
 Morrow Designs 26 megabytes U$5000 U$193

1980 July
Note 34 North Star 18 megabytes U$4199 U$233

1981 September
 Apple 5 megabytes U$3500 U$700

1981 November
 Seagate 5 megabytes U$1700 U$340

1981 December
Note 31 VR Data Corp. 6.3 megabytes U$2895 U$460
Note 32 Morrow Designs 10 megabytes U$2999 U$300
Note 33 Morrow Designs 10 megabytes U$2949 U$295
Note 31 VR Data Corp. 19 megabytes U$5495 U$289
Note 33 Morrow Designs 20 megabytes U$3829 U$191
Note 33 Morrow Designs 26 megabytes U$3949 U$152
Note 32 Morrow Designs 26 megabytes U$3599 U$138

1982 March
 Xebec U$260

1983 December
Note 35 Corvus 6 megabytes U$1895 U$316
Note 35 Corvus 10 megabytes U$2695 U$270

http://www.alts.net/ns1625/winchest.html

65

Note 35 Xcomp 10 megabytes U$1895 U$190
Note 35 Corvus 20 megabytes U$3495 U$175
Note 35 Davong 10 megabytes U$1650 U$165
Note 35 Xcomp 16 megabytes U$2095 U$131
Note 35 Davong 21 megabytes U$2495 U$119

1984 March
Note 37 Percom/Tandon 5 megabytes U$1399 U$280
Note 38 not known 5 megabytes U$1349 U$270
Note 37 Percom/Tandon 10 megabytes U$1699 U$170
Note 38 not known 10 megabytes U$1599 U$160
Note 37 Percom/Tandon 15 megabytes U$2095 U$140
Note 38 not known 15 megabytes U$1999 U$133
Note 37 Percom/Tandon 20 megabytes U$2399 U$120
Note 38 not known 20 megabytes U$2359 U$118

1984 May
Note 36 Tecmar 5 megabytes U$1495 U$299
Note 36 Corvus 6 megabytes U$1695 U$283
Note 36 Corvus 11 megabytes U$2350 U$214
Note 36 Comrex 10 megabytes U$1995 U$200
Note 36 CTI 11 megabytes U$1995 U$181
Note 36 Davong 10 megabytes U$1645 U$165
Note 36 Corvus 20 megabytes U$3150 U$158
Note 36 Davong 15 megabytes U$2095 U$140
Note 36 Davong 21 megabytes U$2495 U$119
Note 36 Pegasus (Great Lakes) 10 megabytes U$1075 U$108
Note 36 Pegasus (Great Lakes) 23 megabytes U$1845 U$80

1985 July
Note 30 First Class Peripherals 1 10 megabytes U$710.00 U$71

1987 October
Note 39 Iomega 10 megabytes U$899 U$90
Note 39 Iomega 20 megabytes U$1199 U$60
Note 39 Iomega 40 megabytes U$1799 U$45

1988 May
Note 1 20 megabytes U$799 U$40
Note 1 30 megabytes U$995 U$33
Note 1 45 megabytes U$1195 U$27
Note 1 60 megabytes U$1795 U$30
Note 1 250 megabytes U$3995 U$16

1989 March
Note 56 Western Digital 20 megabytes $899.00 $53
Note 56 Western Digital 40 megabytes $1199.00 $36

1989 September
Note 11 $12

1990 September
Note 11 $9

1991 September
Note 11 $7

1992 September
Note 11 $4

1993 September
Note 11 $2

66

1994 September
Note 11 95¢

1995 January
Note 2 Seagate 5 1.0 gigabyte $849 85¢
Note 2 Seagate 5 1.7 gigabytes $1499 88¢
Note 2 Seagate 5 2.1 gigabytes $1699 81¢
Note 2 Seagate 5 2.9 gigabytes $2899 99¢

1995 April
Note 24 240 megabytes $250.00 $1.26
Note 24 420 megabytes $320.00 92.2¢
Note 24 520 megabytes $380.00 88.4¢
Note 24 850 megabytes $470.00 66.9¢
Note 24 1.0 gigabyte $625.00 75.6¢
Note 24 1.2 gigabytes $680.00 68.6¢

1996 June 10
Note 3 Western Digital 3 1.6 gigabytes $399.99 29.5¢

1996 August 14
Note 4 IBM 3 1.76 gigabytes $379.99 26.3¢
Note 4 Maxtor 2.0 gigabytes $439.99 25.9¢

1996 September
Note 5 Quantum 2.5 gigabytes $440.00 20.7¢
Note 5 Quantum 3.2 gigabytes $469.00 17.3¢

Source
Manufacturer

W

y
Capacity Price of

Drive
Cost per

MB

1997 August 13
Note 6 Western Digital 2.1 gigabytes $329.99 18.1¢
Note 6 Western Digital 3.1 gigabytes $399.99 14.8¢
Note 6 Western Digital 4.0 gigabytes $490.99 14.1¢

1997 August 24
Note 7 Western Digital 3 2.1 gigabytes $279.99 15.3¢
Note 7 Western Digital 3 3.1 gigabytes $329.99 12.2¢
Note 7 Maxtor 3 3.5 gigabytes $359.99 11.8¢
Note 7 Maxtor 3 4.3 gigabytes $439.99 11.8¢
Note 7 Western Digital 3 5.1 gigabytes $459.99 10.4¢

1997 September 5
Note 8 Maxtor 3 7.0 gigabytes $669.99 11.0¢

1997 November 29
Note 9 Western Digital 3.2 gigabytes $289.00 10.4¢
Note 9 Quantum 3.2 gigabytes $285.00 10.2¢
Note 9 Quantum 4.3 gigabytes $379.00 10.1¢
Note 9 Western Digital 4.3 gigabytes $365.00 9.76¢
Note 9 Quantum 6.4 gigabytes $475.00 8.54¢
Note 9 Western Digital 6.4 gigabytes $445.00 8.00¢

1997 December 3
Note 10 Western Digital 3 5.1 gigabytes $449.99 10.1¢
Note 10 Quantum 3 6.4 gigabytes $549.99 9.88¢
Note 10 Maxtor 3 5.2 gigabytes $438.99 9.71¢
Note 10 Maxtor 3 7.0 gigabytes $579.99 9.53¢
Note 10 Maxtor 3 8.4 gigabytes $679.99 9.31¢

67

1998 January 16
Note 12 Western Digital 3 6.4 gigabytes $529.99 9.52¢
Note 12 Quantum 3 4.3 gigabytes $349.99 9.36¢
Note 12 Quantum 3 6.4 gigabytes $479.99 8.63¢
Note 12 Maxtor 3 8.4 gigabytes note 12 8.39¢

1998 February 3
Note 13 not known 3 5.2 gigabytes $355.00 7.85¢
Note 13 not known 3 6.4 gigabytes $435.00 7.82¢

1998 April 2
Note 14 Maxtor 3 5.1 gigabytes $379.99 8.57¢
Note 14 Maxtor 3 4.3 gigabytes $319.99 8.56¢
Note 14 Western Digital 3 6.4 gigabytes note 14 7.43¢
Note 14 Quantum 3 6.4 gigabytes $339.99 6.11¢

1998 April 4
Note 17 not known 5.2 gigabytes $349.00 7.72¢
Note 15 Maxtor 3 4.3 gigabytes note 15 7.63¢
Note 16 not known 3 6.4 gigabytes $370.00 6.65¢
Note 16 not known 3 5.2 gigabytes $300.00 6.63¢
Note 17 not known 9.0 gigabytes $499.00 6.38¢

1998 April 17
Note 18 Fujitsu 4.3 gigabytes $282.00 7.54¢
Note 18 Fujitsu 5.2 gigabytes $331.00 7.32¢
Note 18 Fujitsu 6.4 gigabytes $368.00 6.61¢

1998 May 2
Note 19 Seagate 1 6.4 gigabytes $349.99 6.29¢

1998 May 9
Note 20 Seagate 6.4 gigabytes $329.99 5.93¢

1998 May 11
Note 21 Fujitsu 3.2 gigabytes $227.00 8.16¢
Note 21 Fujitsu 4.3 gigabytes $257.00 6.87¢
Note 21 Fujitsu 5.2 gigabytes $299.00 6.61¢
Note 21 Fujitsu 6.4 gigabytes $328.00 5.89¢

1998 June 6
Note 22 Maxtor 3 5.7 gigabytes $299.99 6.05¢

1998 June 12
Note 23 Quantum 4.3 gigabytes $228.00 6.10¢
Note 23 Quantum 6.4 gigabytes $298.00 5.35¢

1998 July 15
Note 25 5.2 gigabytes $249.00 5.51¢

1998 July 31
Note 26 Western Digital IDE 5.1 gigabytes $262.00 5.91¢
Note 26 Fujitsu IDE 5.2 gigabytes $252.00 5.57¢
Note 26 Western Digital IDE 6.4 gigabytes $294.00 5.28¢
Note 26 Western Digital IDE 8.4 gigabytes $382.00 5.23¢
Note 26 Fujitsu IDE 6.4 gigabytes $291.00 5.23¢

1998 August 1
Note 27 Western Digital EIDE 4.0 gigabytes note 27 5.46¢

1998 August 6
Note 28 Western Digital EIDE 3 5.1 gigabytes note 28 4.64¢

1998 August 14
Note 29 Fujitsu 6.4 gigabytes $289.00 5.19¢

68

1998 August 26
Note 40 Seagate 1 6.4 gigabytes $279.99 5.03¢

1998 September 1
Note 41 Maxtor UDMA 3 8.4 gigabytes $379.99 5.20¢
Note 41 Maxtor UDMA 6.8 gigabytes $279.99 4.74¢

1998 September 10
Note 42 Western Digital EIDE 3 5.1 gigabytes note 42 4.79¢

1998 October 1
Note 43 Quantum 6.4 gigabytes note 43 4.26¢

1999 February 12
Note 44 Quantum 8.0 gigabytes $299.99 4.31¢

1999 February 26

Note 45 Maxtor 8.4 gigabytes see note
45 3.77¢

Note 46 Quantum 8.0 gigabytes see note
46 3.65¢

1999 February 27
Note 47 Quantum 19.2 gigabytes $512.46 3.07¢

1999 March 1
Note 48 Fujitsu Ultra DMA 3 8.4 gigabytes $253.00 3.46¢
Note 48 Fujitsu Ultra DMA 3 10.2 gigabytes $299.00 3.37¢

1999 March 3
Note 49 Fujitsu Ultra DMA 3 8.4 gigabytes $235.00 3.22¢
Note 49 Fujitsu Ultra DMA 3 10.2 gigabytes $285.00 3.21¢

1999 April 1
Note 50 Fujitsu UDMA 10.2 gigabytes $279.00 3.15¢
Note 50 Fujitsu UDMA 8.4 gigabytes $229.00 3.14¢

1999 May 21
Note 51 Fujitsu UDMA 6.4 gigabytes $179.99 3.23¢

1999 May 27
Note 52 Fujitsu UDMA 10.2 gigabytes $245.00 2.76¢
Note 52 Fujitsu UDMA 8.4 gigabytes $198.00 2.71¢
Note 52 Fujitsu UDMA 17.3 gigabytes $369.00 2.45¢

1999 May 28
Note 53 Maxtor UDMA 3 10.0 gigabytes $249.99 2.88¢

1999 July 21
Note 54 Maxtor Ultra DMA 3 8.4 gigabytes $199.99 2.74¢

1999 July 30
Note 55 Fujitsu UDMA 6.4 gigabytes $139.99 2.63¢

1999 September 25
Note 57 Not known 10.2 gigabytes note 57 1.85¢

1999 October 1
Note 58 Quantum CX UTA 66 10.2 gigabytes $199.00 2.24¢

Note 58 Quantum KA
7200 rpm 13.6 gigabytes $249.00 2.11¢

Note 58 Western Digital 20.0 gigabytes $359.00 2.06¢

Note 58 Western Digital
7200 rpm 27.3 gigabytes $489.00 2.06¢

Note 58 Quantum CX UTA 66 13.6 gigabytes $219.00 1.85¢
1999 December 1

Note 59 Western Digital IDE 20.5 gigabytes $398.00 2.23¢

69

Note 59 Quantum IDE 18.2 gigabytes $348.00 2.20¢
Note 60 Mfgr? UDMA 10.2 gigabytes $189.00 2.13¢
Note 59 Fujitsu IDE 10.2 gigabytes $189.00 2.13¢
Note 59 Fujitsu IDE 13.0 gigabytes $208.00 1.84¢
Note 60 Mfgr? UDMA 13.0 gigabytes $195.00 1.73¢
Note 59 Fujitsu IDE 20.4 gigabytes $299.00 1.69¢
Note 59 Fujitsu IDE 17.3 gigabytes $248.00 1.65¢
Note 59 Fujitsu IDE 27.3 gigabytes $388.00 1.63¢
Note 60 Mfgr? UDMA 17.3 gigabytes $225.00 1.50¢

From here on, the cost of hard drives will be stated
per gigabyte (below)

instead of per megabyte (above)

Source Manufacturer
W

y

Capacity
Price

of
Drive

Cost
per
GB

Cost per
MB

2000 February 1
Note 61 Mfgr? UDMA 10.2 gigabytes $175.00 $19.73 1.97¢
Note 62 Fujitsu 20.4 gigabytes $299.00 $16.86 1.69¢
Note 62 Fujitsu 13.6 gigabytes $199.00 $16.83 1.68¢
Note 64 Mfgr? 12.9 gigabytes $187.99 $16.76 1.68¢
Note 63 Fujitsu 13.6 gigabytes $197.80 $16.73 1.67¢
Note 61 Mfgr? UDMA 13.0 gigabytes $186.00 $16.45 1.65¢
Note 62 Fujitsu 17.3 gigabytes $238.00 $15.82 1.58¢
Note 62 Fujitsu 27.3 gigabytes $375.00 $15.80 1.58¢
Note 63 Fujitsu 17.3 gigabytes $232.30 $15.44 1.54¢
Note 61 Mfgr? UDMA 17.3 gigabytes $215.00 $14.29 1.43¢
Note 64 Mfgr? 20.4 gigabytes $211.99 $11.95 1.20¢

2000 April 1
Note 69 IBM 20.5 gigabytes $279.00 $15.65 1.57¢
Note 69 Maxtor 15.2 gigabytes $199.00 $15.06 1.51¢
Note 70 Maxtor 7200 rpm 20.0 gigabytes $259.00 $14.89 1.49¢
Note 70 Maxtor UDMA 15.0 gigabytes $192.00 $14.72 1.47¢
Note 70 Seagate UDMA 17.2 gigabytes $218.00 $14.58 1.46¢
Note 70 Seagate UDMA 28.0 gigabytes $349.00 $14.33 1.43¢
Note 68 17.3 gigabytes $215.00 $14.29 1.43¢
Note 70 IBM UDMA 5400 rpm 20.3 gigabytes $245.00 $13.88 1.39¢
Note 70 Maxtor UDMA 17.0 gigabytes $204.00 $13.80 1.38¢
Note 70 Maxtor 7200 rpm 27.0 gigabytes $320.00 $13.63 1.36¢
Note 68 20.4 gigabytes $239.00 $13.47 1.35¢
Note 70 Maxtor UDMA 36.5 gigabytes $411.00 $12.95 1.30¢
Note 70 Maxtor UDMA 27.0 gigabytes $299.00 $12.74 1.27¢
Note 70 Western Digital UDMA 20.0 gigabytes $218.00 $12.54 1.25¢
Note 70 Maxtor UDMA 20.0 gigabytes $217.00 $12.48 1.25¢
Note 70 Maxtor UDMA 30.0 gigabytes $308.00 $11.81 1.18¢

2000 May 12

70

Note 65 Western Digital
Ultra ATA/66 5400 rpm 13.6 gigabytes $179.99 $15.22 1.52¢

Note 65 Maxtor
UDMA/66 7200 rpm 30.0 gigabytes $319.99 $12.27 1.23¢

Note 66 Maxtor
UDMA/66 7200 rpm 3 40.0 gigabytes $399.99 $11.50 1.15¢

2000 June 2

Note 67 Maxtor
UDMA/66 5400 rpm 3 15.0 gigabytes $189.99 $14.57 1.46¢

2000 August 1
Note 73 Samsung 15.0 gigabytes $162.00 $12.42 1.24¢
Note 74 Maxtor IDE 7200rpm 30.5 gigabytes $298.00 $11.24 1.12¢
Note 73 Samsung 20.0 gigabytes $175.00 $10.06 1.01¢

2000 August 19-20
Note 72 Maxtor 7200rpm 9ms 40.9 gigabytes $388.00 $10.91 1.09¢
Note 71 Maxtor 5400rpm 15.3 gigabytes $144.00 $10.82 1.08¢
Note 72 Maxtor 7200rpm 9ms 30.7 gigabytes $278.00 $10.41 1.04¢
Note 71 Maxtor 5400rpm 20.4 gigabytes $164.00 $9.25 0.925¢
Note 71 Maxtor 5400rpm 30.7 gigabytes $214.00 $8.02 0.802¢

2000 August 25
Note 75 Maxtor 5400rpm 15.0 gigabytes $149.99 $11.50 1.15¢
Note 75 Maxtor 7200rpm 40.0 gigabytes $349.99 $10.06 1.01¢

Note 75 Maxtor 7200rpm
UDMA/66 30.0 gigabytes $249.99 $9.58 0.958¢

The right-hand column (below), states

the storage capacity, in megabytes,
available at a retail cost of one cent.

"Price of drive" is the store price, excluding sales tax.
"Cost per gigabyte" and "Megabytes for one cent" are
stated with 15% sales tax included (purchaser's cost).

Source Manufacturer
W

y

Capacity Price of
Drive

Cost per
GB

MB
for
1¢

2000 October 27
Note 76 Maxtor 7200rpm 30.7 gigabytes $244.00 $9.14 1.09
Note 76 Maxtor 7200rpm 40.9 gigabytes $318.00 $8.94 1.12
Note 76 Maxtor 5400rpm 61.4 gigabytes $398.00 $7.45 1.34
Note 76 Maxtor 5400rpm 81.9 gigabytes $518.00 $7.27 1.37
Note 76 Maxtor 5400rpm 30.7 gigabytes $194.00 $7.27 1.38
Note 76 Maxtor 5400rpm 40.9 gigabytes $254.00 $7.14 1.40

2000 November 1
Note 77 Maxtor 7200rpm UDMA/66 30.0 gigabytes note 77 $7.88 1.27

71

APPENDIX B
TIMING DIAGRAM FOR OV5017 CMOS CAMERA
SOURCE: CONFIDENTIAL PRELIMINARY PRODUCT SPECIFICATION OCTOBER 1997 V1.6

72

APPENDIX C
SERIAL CODE CONVERSION FROM BINARY TO BCD
SOURCE: PETER ALFKE AND BERNIE NEW, XILINX APPLICATION NOTE XAPP 029,
OCTOBER 29, 1997 (VERSION 1.1)

Binary-to-BCD conversion is performed in a modified shift register that successively
doubles its BCD contents. The binary data is shifted into the converter serially, MSB
first. Subsequent bits are entered into the shift register to fill the LSB vacated by the
doubling. The conversion is complete when all bits of the binary input have been
entered, at which time the BCD result is available in parallel form. Each input bit will
have been doubled and redoubled to regain its original binary weight, but in BCD format.

To remain a valid BCD number when doubled, a BCD digit of 5 or greater must not just
be shifted, but must be converted into the proper BCD representation of its doubled
value; along with a 1 being shifted into the next higher digit, a 5 is converted into a 0, a 6
into a 2, a 7 into a 4, an 8 into a 6, and a 9 into an 8.

The binary-to-BCD converter requires three CLBs for each BCD digit in the output. To
start a new conversion, all bits must be cleared.

An Example

1011 0110 (B 6 Hex, 182 Decimal)
Requires 3 Decimal Digits to Represent 0xB6

0000 0000 0000 0000 0000 0001 0000 0000 0010
0000 0000 0101 0000 0001 0001 0000 0010 0010
0000 0100 0101 0000 1001 0001 0001 1000 0010
 1 8 2

Component Diagram follows on the Next Page

73

	Chapter 1: Introduction
	1.3 The Need for a Simplified Co-design Process

	Figure 4.5: A microprocessorless implementation of the real-time edge detector using a neuro-fuzzy binary tree classifier.
	Albert Einstein

