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The art of progress is to preserve order  
amid change and to preserve change amid order. 

 
Alfred North Whitehead 

 
 
 
 

 
CHAPTER 1:  INTRODUCTION 

 
1.1  A Technology Overview  

 
 The past three decades has introduced technology that has radically changed the 

way in which the world is analyzed and controlled.  In the early 1970s, developments in 

computer architecture and IC fabrication begot the first microprocessor, introduced by 

Intel Corporation, the 4-bit 4004.  A later by-product of the development of the 

microprocessor is the less well-known and abundantly used microcontroller.  These 

devices are responsible for smart VCRs, clock radios, washers and dryers, video games, 

telephones, microwaves, TVs, automobiles, toys, vending machines, copiers, elevators, 

irons, and other intelligent products that are "programmable." 1 

 Programmable Logic Devices (PLDs), like Field Programmable Gate Arrays 

(FPGAs) have a long-standing reputation for being slower, more expensive, less flexible 

and more time consuming to use for developing embedded systems.  In the past, 
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Application Specific Integrated Circuits (ASICs) have emerged as a cost-optimized, 

though still expensive, custom solution for bringing programmability and other benefits 

to a design.  In the past couple of years, cutting edge process technologies have 

significantly reduced die sizes.  As a result of these advancements, FPGA vendors are 

now able to provide a low-cost solution to ASIC designers. 

Microprocessors must be used with external resources including RAM, ROM, I/O 

ports and timers to make them functional.  A microcontroller has a CPU in addition to 

RAM, ROM, I/O ports, and timers all on a single chip.1  Microprocessors and 

microcontrollers are widely used in embedded systems.  Figure 1.1 shows a 

microprocessor system contrasted with a microcontroller system.   

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1:  A microprocessor contrasted with a microcontroller. [Source:  Dhir and Mousavi] 
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Customarily, an embedded system uses a microprocessor (or microcontroller) to 

perform a single task.  Critical considerations for using microprocessors or 

microcontrollers to produce a system include the amount of space occupied (number of 

logic cells), power consumption, price per unit, computing power and amount of 

development time required for integration.  

1.2  Hardware/Software Co-design 

 Traditionally, an embedded system requires the cooperative design of hardware 

and software.  One of the goals of co-design is to shorten the time-to-market while 

reducing the design effort and costs of the designed products. Therefore, the designer has 

to take advantage of the target architecture using both software and hardware.  Many 

consider using processors an advantage because software executed by the processor is 

more flexible and cheaper than a design made completely of hardware.  The flexibility of 

designing parts of the system in software allows late design changes and simplifies 

debugging.  Furthermore, the software may be reused by porting it to other processors.  

This may reduce the time-to-market and design effort.  In the past, it was much cheaper 

to use microprocessors compared to developing ASICs, because of their high-volume 

production.2   

Although software components introduce a degree of simplification with available 

compilers and code that can potentially be reused, speed is sacrificed.  Replacing 

software with hardware increases the speed of the input-to-output transfer, however, 

hardware solutions require logic gates; more chip space, and therefore, additional costs.  

In the past three years, aforementioned advancements in technology and processes have 
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created affordable FPGAs with large densities that are increasing every 6 months.  

Designs that would be extremely expensive to implement in hardware and realize the 

tremendous speed advantage are becoming significantly cheaper.  Figure 1.2 shows the 

reduction in costs and increase in chip densities of a market leader in FPGA design and 

production, Xilinx Corporation. 

 

 

 

 

 

 

 

 

 

 
Figure 1.2:  A cost reduction and increase in chip density and the number of gates available on 
FPGA chips provided by Xilinx Corporation.  [Source:  Xilinx, Inc.] 
 

Notice that FPGAs with a capacity of approximately 36,000 gates cost the same in 1997 

as a chip that has 1,000,000+ gates available in 1999.  Ralf Niemann writes,  

Co-design is an interdisciplinary activity, bringing concepts and ideas from 
different disciplines together, e.g. system-level modeling, hardware design and 
software design.2 
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1.3  The Need for a Simplified Co-design Process 
 
 The hardware/software co-design process, shown in Figure 1.3, introduces a high-

risk step, determining which components will be designed in hardware and which will be 

designed in software.  Furthermore, the microprocessor selected to design the software 

components must support the formulated software requirements, minimize hardware 

costs and be sufficiently flexible for anticipated design changes that may be introduced 

during development.  In general, these critical factors introduce enough potential risks 

that many co-designed systems have resulted in over-budget, lengthy and unsuccessful 

projects due to the lack of ability for the hardware to support unforeseen software 

requirements and vice versa.   

Figure 1.3:  The hardware/software co-design process with rapid prototyping.  [Source: RAASP 
model for hardware/software prototyping] 

 
The co-design process requires the use of heterogeneous design methodologies.  

Many design processes, for example, the Unified Software Development Process, aren't 

completely sufficient for hardware/software co-design.   
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The Unified Process is an iterative and incremental process that asserts designers 

to perform several iterations of Requirements, Analysis, Design, Implementation, and 

Testing.  It is also Architecture-Centric using the architecture to understand the system, 

organize development, foster software reuse, and evolve the system.  While developing 

software under the Unified Process, developers perform iterations concerning the use 

cases that introduce the highest element of risk that has not been specifically addressed 

and interface with the boundary actors throughout the process.  The system architecture is 

also developed iteratively.  If a change in a use-case or unforeseen requirement surfaces, 

developers identify the required classes that the change affects and make necessary 

design changes to accommodate the use-case changes.  For hardware/software co-design, 

a change in a use-case or nonfunctional requirement, such as a timing constraint, may be 

beyond the capability of the selected microprocessor.  This may require the selection of a 

new microprocessor with the added capability, within cost constraints, to perform the 

necessary operations at the required speed to realize the change and possibly require 

software programmers to retrace all of their code and port it to the new microprocessor.  

In some cases, significant changes to the original architectural plan are required.3  For 

software development, this process minimizes risk and has proven to be successful in 

many large, requirement intensive projects. 

 The step in the co-design process introducing the most risk is the 

hardware/software-partitioning step.  In this phase, developers decide which components 

of the overall system architecture will be implemented using software and which will be 

hardware.  It is this step that results in the specifications for the microprocessor that will 
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be used which, in turn, begins the platform specifications for the software developers.  

Incidentally, it is also the step that frequently is revisited as timing constraints and 

requirements present changes that the system needs to accommodate.  Changes at this 

juncture can lead to significant re-development of software and/or hardware. 

1.4  A Proposed Solution 

 What is a fundamental difference between hardware/software co-design and 

software development?  Architecture.  In most software development environments, code 

written in high-level languages are compiled to a fixed instruction set that remains 

compatible with each new release of a faster, more recent release of the architecture.  For 

hardware/software co-design, the entire system could be developed with components in 

software and components in hardware.  The developers must design the architecture 

before the development of the system can begin.  Generally, for software programs, 

particularly on a PC or mainframe, more functionality requires more disk space, possibly 

more RAM and more programming time that typically is linearly related to the 

programming time of the system. 

In theory, the best time to actually decide which components can bear to be 

designed in the less-optimized, slower software environment and which components 

require the speed of the hardware is after the software has been written and the number of 

clock cycles required for each function can be computed.  The software, however, can be 

written only after a determination has been made regarding the type of microprocessor on 

which the software will run.  The microprocessor, on the other hand can be selected only 
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after considering the minimization of implementation cost by selecting a minimal 

function set required for the microprocessor by the software. 

An effective solution to this paradox would be to eliminate packaged 

microprocessors.  In 1994, Andŕe DeHon from the Artificial Intelligence Laboratory at 

the Massachusetts Institute of Technology included in his paper given at an IEEE 

workshop on FPGAs for Custom Computing Machines that "for broader application, 

future microprocessors should dedicate a portion of their silicon real-estate to 

reconfigurable logic… A single reconfigurable microprocessor design can serve as the 

principal building block for a wide range of applications including personal computers, 

embedded systems, application-specific computers, and general- and special-purpose 

multiprocessors." 4  DeHon's idea for the future of FPGAs and microprocessors was for a 

microprocessor to contain reconfigurable gates on its chip.  Several groups have explored 

developing unified hardware development processes and tools including formal 

specification languages such as LUSTRE, KRONOS, POLIS, SIGNAL, REACTIVE C, 

Synchronous Language (SL), LOTOS, and SDL.  If the co-design problem were reduced 

to a microprocessorless, common platform, co-design would resemble software 

development and software engineering processes such as the Unified Software 

Development Process alone could be used to guide the development of a 

hardware/software system. 
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The important thing in science is not 
so much to obtain new facts as to discover 

new ways of thinking about them. 
 

Sir William Bragg 
 
 
 
 
 

 
CHAPTER 2: A SIMPLIFIED RECONFIGURABLE MICROPROCESSOR CORE 

 
2.1  The Microcontroller 
 

Most traditional microprocessors can be categorized as having either a Complex 

Instruction Set Computer (CISC) architecture or a Reduced Instruction Set Computer 

(RISC) architecture.1  Both of these architectures involve a set of registers and multiple 

addressing modes.  A simpler architecture that is easier to implement in an FPGA is a 

stack-based processor in which all arithmetic and logical operations are performed on the 

top elements of a data stack. 

Forth is a programming language invented by Chuck Moore in the late 1960s 

while programming minicomputers in assembly language.  His idea was to create a 

simple system that would allow him to write many more useful programs than he could 

by writing his programs in assembly language.  The essence of Forth is simplicity -- 

always try to do things in the simplest possible way.  Forth is a way of thinking about 
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problems in a modular way.  It is modular in the extreme.  Everything in Forth is a word 

and every word is a module that does something useful.  There is an action associated 

with Forth words.  The words execute themselves.  In this sense they are very object-

oriented.  Words are sent parameters on the data stack and told to execute themselves.  In 

return, the answers are placed on the data stack; a black box approach. 

Forth has been implemented in a number of different ways.  Chuck Moore's 

original Forth had what is called an indirect-threaded inner interpreter.  Other Forths 

have used what is called a direct-threaded inner interpreter.  These inner interpreters get 

executed every time you go from one Forth word to the next; i.e. all the time.  A unique 

version of Forth called WHYP (pronounced whip) has recently been described in a new 

book on using the Motorola 68HC12 microcontroller in embedded systems.2  WHYP 

stands for Words to Help You Program.  WHYP is what is called a subroutine-threaded 

Forth.  This means that the subroutine calling mechanism that is built into the 68HC12 is 

what is used to go from one WHYP word to the next.  In other words, WHYP words are 

just regular 68HC12 subroutines.   

Inasmuch as Forth (and WHYP) programs consist of a sequence of words, the 

most often executed instruction is a call to the next word.  This means executing the inner 

interpreter (NEXT) in traditional Forths, or calling a subroutine in WHYP.  Up to 25% of 

the execution time of a typical Forth program is used up in calling the next word.  To 

overcome this problem, Chuck Moore designed a computer chip, called NOVIX, in the 

mid-eighties which could call the next word (equivalent to a subroutine call) in a single 

clock cycle.3  Many of the Forth primitive instructions would also execute in a single 
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clock cycle.  The design of the NOVIX chip was eventually sold to Harris Semiconductor 

where it was redesigned as the RTX 2000.4  Similar 32-bit Forth engines were also 

developed.  In the late eighties Chuck Moore designed a 32-bit microprocessor called 

ShBoom that had 64 8-bit instructions and was designed to interface to DRAM.8  Later 

Chuck Moore and C. H. Ting designed the MuP21 that has been described by Ting.9  The 

WnX microcontroller described in this section is a simplified reconfigurable 

microprocessor based on ideas developed in these early Forth engines.  It is designed 

using VHDL.  Different versions, both simplified and extended have been implemented 

in a Xilinx FPGA at Oakland University. 

2.2  The Simplified WnX Microcontroller 

Return Stack

R

P  reg

I Reg

Controller

Program
ROM

P mux
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mux4g

Reg_Array

ALU

T mux
creg

A Reg

minus1

Figure 2.1:  A block diagram of the simplified WnX microcontroller. 
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The WnX is a high-performance microcontroller that can be implemented to perform 

useful functions on an FPGA.  The overall structure of the WnX is shown in Figure 2.1.  The 

data busses in this figure are 8 bits wide and each instruction contains 8 bits.  All busses in 

the microcontroller are defined as generic sizes allowing the WnX to be reconfigured to an n-

bit microcontroller.  In addition to the simplified microcontroller, the WnX has extended 

components such as a multiplier, divider, fuzzy-inference component and interrupt vector 

tables with an interrupt handler.   In successive chapters, the WnX will be reconfigured for a 

specific co-design application.  The WnX instruction set is given in Table 2.1. 

Table 2.1:  The Simplified WnX Instruction Set 
 

Opcode Name Function 
00 DUP Duplicate T and push data stack. 
01 DROP Drop T and pop data stack. 
02 SWAP Exchange T and N1. 
03 NIP Drop N1 and pop rest of data stack.   
04 ROT Rotate top 3 elements on stack clockwise. 
05 MROT Rotate top 3 elements on stack counter-clockwise. 
06 OVER Duplicate N1 into T and push data stack. 
07 TUCK Duplicate T into N2 and push rest of data stack. 
08 NOP No operation 
09 TOR “To-R”  Pop T and push it on return stack. 
0A RFROM “R-from”  Pop return stack R and push it into T. 
0B RFETCH “R-fetch”  Copy R to T and push register stack 
10 LSL Logic shift left T 
11 ASR Arithmetic shift right T 
12 LSR Logic shift right T 
13 ROTR Rotate right T (carry unchanged) 
14 ROTL Rotate left T (carry unchanged) 
20 ZEROS Clear all bits in T to ‘0’. 
21 PLUS Pop N1 and add it to T. 
22 MINUS Pop T and subtract it from N1. 
23 ANDD Pop N1 and AND it to T. 
24 ORR Pop N1 and AND it to T. 
25 XORR Pop N1 and AND it to T. 
26 INVERT Complement all bits of T. 
27 ONES Set all bits in T to ‘1’. 
28 ZEQUAL TRUE if all bits in T are ‘0’. 
29 ZLESS TRUE if sign bit of T is ‘1’. 
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Table 2.1 Continued 
 

2A CTOT Push carry bit to top of register stack 
2B 1PLUS Add 1 to T 
2C 1MINUS Subtract 1 from T 
2D MPP Multiply partial product 
2E SHLD Shift left T and N1 for division 
2F SUBC If T > N1, subtract N1 from T and set N1(0) to '1' 
40 LIT Load inline literal to T and push data stack. 
31 C@ Fetch the byte at addr T in RAM and load it into T 
32 C! Store the byte in N1 at the address T 
41 JMP Jump to inline address 
42 JZ Jump if all bits in T are ‘0’ 
43 JNC Jump if carry is cleared 
44 DRJNE Decrement R and jump if R is not zero 
45 CALL Call subroutine 
46 RET Subroutine return 
47 PUSHD Load external value to T and push data stack 
48 JNZ Jump if all bits in T are not '0' 

 
The data stack in the WnX is a register array designed with four multiplexers combined 

with four registers.  The multiplexer for a stack register switches the output from any of 

the other three registers to its input as shown in Figure 2.2. 
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Figure 2.2: A register-array data stack. 
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The multiplexed-register stack provides flexibility to implement the stack 

instructions in one clock cycle.  Although each of the stack registers have the capability, 

by design, to be loaded, the WnX only uses the load provided to the register designated as 

the top of the stack.  This design provides an n x 4 register array data stack and an n x 16 

return stack.  The return stack is not an array-based stack since the flexibility to 

manipulate individual return stack data is not necessary to obtain single clock-cycle 

instructions.  The input to the data stack is multiplexed from two sources, the ALU and a 

4-input multiplexer.  The ALU of the simplified microcontroller performs the operations 

shown in Table 2.2. 

Table 2.2:  WnX ALU Operations 
 

ALU Select Operation 
"000" 
"001" 
"010" 
"011" 
"100" 
"101" 
"110" 
"111" 

all zeros 
a + b 
b - a 
a and b 
a  or b 
a xor b 
not a 

all ones 
 

The n-bit inputs into the ALU are T and N, the top and second elements in the 

stack, respectively.  The 4-input multiplexer provides an external signal, the carry out 

from the ALU, the top of the return stack, and the current value in the program memory 

addressed by the program counter.  The program for the WnX is stored in a program 

ROM.  The ROM is addressed by the program counter that can be loaded with a value 

from the return stack or from memory for return-from-subroutine instructions or 

instructions that may jump to an inline address.  The return stack can be loaded with 

values from the top of the data stack and the program counter plus one.  A control unit 
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and instruction register controls the WnX microcontroller.  The microcontroller is the 

mealy state machine shown below in Figure 2.3. 
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Figure 2.3:  The WnX state machine. 
 

This state machine has three states:  Fetch, Execute, and Execute-Fetch.  A 

portion of its VHDL implementation is shown in Figure 2.4.  The controller begins in the  

 

 

 

 

 

 

 end case

 

C1: process(current_state, M)
begin

case current_state is
when fetch =>
if M(6) = ‘1’ then

        next_state <= exec;
else

        next_state <= exec_fetch;
end if;

when exec_fetch =>
if M(6) = ‘1’ then

        next_state <= exec;
else

        next_state <= exec_fetch;
end if;

when exec =>
       next_state <= fetch;

;
end process C1;

fetch

exec
exec_
fetch

M(6)=‘1’M(6)=‘0’

M(6)=‘0’ M(6)=‘1’

Figure 2.4:  A three-state VHDL implementation. 



17

fetch state to 'fetch' the next instruction from the program ROM.  If the instruction 

requires only a single clock cycle to execute, the current instruction is executed and the 

next instruction is read from the program ROM in the Execute-Fetch state.  The 

instructions continue to be executed and fetched at the same time until it is presented with 

an instruction that requires more than one clock cycle.   

These multi-cycle instructions have been assigned opcodes with a '1' in the 6th bit 

position, the second most significant bit of the opcode.  For instructions requiring two 

clock cycles, the controller executes the current instruction without 'fetching' the next 

word from the program ROM.  On the second clock cycle, the microcontroller returns to 

the fetch state to 'fetch' the next instruction. 

The top of stack register in the Register Array of the extended microcontroller is 

an SPI (Serial Peripheral Interface).  The SPI top-of-stack register is shown below in 

Figure 2.5. 

LBF 

SPI Register 

CLR 

CPOL 

CPHA 

MISO 

T_IN  

LEFT  RIGHT 
SPI_EN 

 
MOSI 

 

 SPI_CLK CLK T 

Figure 2.5:  The WnX top-of-stack SPI register. 
 

An instruction, SPI, is included in the extended instruction set.  Obviously, this 

instruction requires more than one or two clock cycles.  The microcontroller remains in 

the execute state for the correct number of clock cycles to complete the SPI transmission.  
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The SPI runs in all four standard SPI modes:  active high and low with CPHA = 1 and 

active high and low with CPHA = 0.  Using the SPI interface, the WnX will now accept 

data directly into and transfer data directly from the top of the stack.  This design was 

synthesized on a Xilinx 4010 FPGA and simulated using the Aldec Active VHDL 

simulator.  A simulation is shown below in Figure 2.6. 

 

 

 

 

 

 

 

 

Figure 2.6:  The WnX SPI simulation with CPHA=0 CPOL=0. 
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The shortest answer is doing. 
 

Lord Herbert 1583-1648 
 
 
 
 
 

 
CHAPTER 3:  A MICROPROCESSOR/FPGA DESIGN COMPARISON: 

TO FPGA OR NOT TO FPGA 
 

3.1  A Basic Implementation Example – An Ultrasonic Tape Measure 
 
 Interfacing a pre-packaged or pre-designed component to build an embedded 

solution typically requires the use of a microprocessor.  If the interface to the 

microprocessor were eliminated and the design could be implemented using software that 

optimized the system to hardware and embedded software, the hardware and software 

would be optimally split after the design has been completed.  To this extent, committing 

to a specific limited microprocessor or an expensive functional-rich microprocessor is not 

necessary.  Furthermore, design changes will be accommodated in software and 

necessary supporting hardware to manage timing and other constraints along with 

necessary embedded software would be generated for the system, thus eliminating the 
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possibility of having to apply backward compatible patches to existing software due to a 

change in hardware. 

 As a basic example of a small embedded system implemented using a 

microprocessor verses implementing the same system using the automatically 

reconfigurable WnX microcontroller by designing the system in software is an ultrasonic 

tape measure.  An ultrasonic ranging system is available from Polaroid Corporation.  It 

consists of an acoustical transducer and a ranging circuit board.  The transducer transmits 

an ultrasonic pulse when the INIT input is asserted and remains high.  This ultrasonic 

pulse reflects off of the target object and returns to the transducer, which asserts the 

ECHO output high until the INIT signal is returned to ground.  Figure 3.1 shows a block 

diagram of the Ultrasonic Ranging System.1 

 

 

 

 

 

 

 

 

 

 

Figure 3.1:  Block diagram of the Ultrasonic Ranging System. [Source:  Haskell] 
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The transducer can measure up to nearly 36 feet.  Since the speed of sound is 

approximately 1.125 ft/ms or 13.5 in/ms (at 20° C), the sound will travel a distance of 36 

feet in about 32 ms.  Since the sound waves reflect off of the target object, they must 

travel a round trip that will take about 64 ms.1 

In the Design of Embedded Systems using 68HC12/11 Microcontrollers, Haskell 

interfaces the ranging board to the 68HC12 by connecting the INIT pin to an output 

compare pin on the 68HC12 and using an input capture pin to design an ultrasonic tape 

measure.   

In this chapter, the same Ultrasonic Tape Measure will be designed using the 

reconfigurable WnX microcontroller and supporting internal hardware/software.  Both 

implementations will be compared with respect to complexity and extensibility.  Other 

microcontrollers may be used to implement the ultrasonic tape measure less expensive 

and slightly easier than the Motorola 68HC12, however, traditional co-design processes 

and high-risk decisions are still apparent. 

3.2  The Ultrasonic Tape Measure using the Motorola 68HC12 
 
  

  

 

 

 

 
 

Figure 3.2:  Waveforms of the Ultrasonic Ranging System. [Source:  Haskell] 
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To expedite the implementation, a particular member of the team, Chuck, uses 

WHYP words described in Chapter 2 to write the software for the 68HC12.  Since the 

maximum time for the sound wave to make a round trip is about 64 ms, if the timer 

prescalar on the 68HC12 is set to 8, the timer will overflow every 65.536 ms.  Chuck 

realizes that he must set up an output compare to enable the Ultrasonic Transducer and an 

input capture that is asserted high when the sound wave returns. The INIT signal shown 

in Figure 3.2 is produced.  Chuck continues, after reading up on the necessary assembly 

language for the Motorola 68HC12, to design the program shown below in listing 3.1. 

Listing 3.1:  Ultrasonic Tape Measure in WHYP [Source:  Haskell] 

\ Ultrasonic tape measure File: SONAR.WHP 
LOAD SPILED.WHP \ for .leds and SPI words (Fig. 7.11) 
HEX 
 
0080    CONSTANT  TIOS          \ Timer Input Cap.\Output Comp. Select  
0084    CONSTANT  TCNT          \ Timer Counter Register  
0086    CONSTANT  TSCR          \ Timer System Control Register  
0088    CONSTANT  TCTL1         \ Timer Control Register 1  
008B    CONSTANT  TCTL4         \ Timer Control Register 4  
008C    CONSTANT  TMSK1         \ Timer Interrupt Mask Register 1  
008D    CONSTANT  TMSK2         \ Timer Interrupt Mask Register 2  
008E    CONSTANT  TFLG1         \ Timer Interrupt Flag Register 1  
0092    CONSTANT  TC1           \ Timer Input Capture Register 1 
009C    CONSTANT  TC6           \ Timer Output Compare Register 6 
0B22    CONSTANT  TC6.IVEC      \ Timer Channel 6 interrupt vector 
 
VARIABLE DISTANCE 
VARIABLE ECHO 
 
: init.sonar ( -- ) 
  F0 TIOS C!  \ PT6 output, PT1 input 
  80 TSCR C!  \ enable timer 
  03 TMSK2 C!  \ 1 MHz timer clock 
  5 TCTL1 LO  \ toggle PT6 (TC6) 
  4 TCTL1 HI 
  0 TC6 !  \ sync to TCNT 
  6 TMSK1 HI   \ enable TC6 int 
  3 TCTL4 LO  \ rising edge of PT1 
  2 TCTL4 HI ;    
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Listing 3.1 continued 
 
INT: TC6.INTSER  ( -- )  \ int on both edges 
  6 PORTT ?HI  \ if rising edge 
  IF 
      02 TFLG1 C! \  clear C1F flag 
  ELSE   \ if falling edge 
     1 TFLG1 ?HI \  if echo 
     IF 
        TC1 @  \   get distance 
        DISTANCE ! \   & save it 
        TRUE ECHO ! \   echo=true 
     ELSE  \  else 
        FALSE ECHO ! \   echo=false 
     THEN 
  THEN 
             40 TFLG1 C!  \ clear OC2F flag 
RTI;  
   
: SET.TC6.INTVEC        ( -- ) 
                [ ' TC6.INTSER ] LITERAL 
                TC6.IVEC ! ; 
 
: ?distance ( -- n tf | ff ) 
  ECHO @ 
  IF 
     DISTANCE @ 
     TRUE 
  ELSE 
     FALSE 
  THEN ; 
 
  
: sonar.tape ( -- ) 
  init.sonar 
  SPI.INIT 
  BEGIN 
     ?distance 
     IF   \ if echo 
        135 20000 */ \ convert to inches 
        .4leds  \ display distance 
     ELSE 
        SS.LO   \ else 
        EE SEND.SPI \ display dashes 
        EE SEND.SPI 
        SS.HI 
     THEN 
  AGAIN ; 
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As detailed in the Design of Embedded Systems Using 68HC12/11 Microcontroller1: 

Output compare 6 is set up to toggle PT6 and produce an interrupt on each timer match.  
The value of TC6 is set to zero so that the match will always occur when TCNT rolls over 
from $FFFF to $0000.  Inasmuch as PT6 is connected to the INIT signal on the ranging 
circuit board, then a new ultrasonic pulse will be transmitted on each rising edge of PT6 
when the value of TCNT will be zero.  This means that if there is an echo and a rising 
edge of PT1 stores the value of TCNT in TC1, this value will be the total elapsed time 
since the pulse was transmitted.  
 
The interrupt service routine will be executed on both the rising and falling edge of PT6.  
The routine first checks to see if it was a rising edge.  If it was, then this means that an 
ultrasonic pulse is being sent.  The C1F flag of input capture 1 is cleared so that we can 
determine if an echo occurs before the next falling edge of PT6.  When a falling edge of 
PT6 occurs, the ELSE part of the interrupt service routing, TC6.INTSER is executed.  
This will check the C1F flag in TFLG1 to see if an echo occurred.  If it did, then the 
distance value is read from TC1 and stored in the variable DISTANCE and a TRUE flag is 
stored in the variable ECHO.  If an echo did not occur, then a FALSE flag is stored in the 
variable ECHO. 
 
The word ?distance (-- n tf | ff) checks the values in the variables ECHO and DISTANCE 
and will return a false flag if an echo has not occurred within the 65.536-ms time-out 
time.  Otherwise, it will return a true flag over the echo time, n, corresponding to the total 
elapsed time from INIT going high to ECHO going high.  Since each tick corresponds to 
1.0 µs, then n/1000 would be the total elapsed time in milliseconds. 
 
The word sonar.tape ( -- ) will continually read the distance from the transducer to the 
target using the word ?distance ( -- n tf | ff) and display this value on the three-digit 
seven-segment display. 
 

  

 

 

 

 

 

 

 
Figure 3.3:  Connecting the MC14499 to three common-cathode seven-segment displays.  
[Source:  Haskell] 



26

In addition to writing the WHYP code shown in Listing 3.1, Chuck also needed to 

write the WHYP code to interface with three external common-cathode seven-segment 

displays.  Chuck selected a standard IC, the MC14499 to interface to these displays.  The 

displays and interface are shown in Figure 3.3. 

 Listing 3.2, below, shows the WHYP code written to interface with the MC14499 

and the Motorola 68HC12. 

Listing 3.2:  Displaying up to Four Seven-Segment LEDs Using the MC14499 [Source: Haskell] 
 
\     4 LEDs Using the MC14499 Decoder/Driver with Serial Interface 
\ File: SPILED.WHP 
 
LOAD SPI.WHP 
LOAD STRING.WHP 
DECIMAL 
 
: pack2         ( addr -- c ) 
                DUP C@ 
                4 LSHIFT                \ addr c1 
                SWAP 1+ C@              \ c1 c2 
                15 AND OR ; 
 
: .4leds         ( n -- ) 
                SS.LO 
                10 BASE ! 
                (U.) 4 SWAP -           \ addr #blanks 
      FOR            \ addr 
   1- 15 OVER C!     \ store F for blank 
      NEXT 
                DUP pack2 SEND.SPI     \ 1st digit 
                2+ pack2 SEND.SPI     \ 2nd and 3rd digit 
                SS.HI ; 
 

In addition to the LED functions that are designed to use the Motorola 68HC12's 

SPI port, Chuck pulled the two files loaded before the WHYP code written in Listing 3.2 

from his previous WHYP library.  Remember that Chuck used his collection of existing 

WHYP source to expedite the project.  Listing 3.3 shows the code used from the library 

to use the 68HC12's SPI port. 
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Listing 3.3:  Basic WHYP SPI Words [Source:  Haskell] 
 
\ Serial Peripheral Interface  
HEX 
00D0 CONSTANT   SP0CR1       \ SPI Control Register  
00D2 CONSTANT   SP0BR        \ SPI Baud Rate Register  
00D3 CONSTANT   SP0SR        \ SPI Status Register  
00D5 CONSTANT   SP0DR        \ SPI Data Register 
 
: SPI.INIT  ( -- )           \ Initialize SPI port 
  40 PORTS C!      \ SS lo, sclk lo, MOSI hi 
  E2 DDRS C!       \ SS lo when DDRS7 set 
  04 SP0BR C!      \ 250 KHz (/32) 
  54 SPCR C! ;     \ CPHA = 1, CPO; = 0 
 
: ?SPI.DONE  ( -- f )         \ Is SPI data sent? 
  7 SP0SR ?HI ; 
 
: SEND.SPI   ( c -- )        
  SP0DR C!         \ send char 
  BEGIN 
     ?SPI.DONE     \ wait till sent 
  UNTIL ; 
 
: SS.HI     ( -- )           \ set SS high 
  7 PORTS HI ; 
 
: SS.LO     ( -- )           \ set SS low 
  7 PORTS LO ; 
 
Additionally, Chuck used a single word from his extensive "string" library.  This WHYP 

word is shown below in Listing 3.4. 

Listing 3.4:  A Single WHYP Word from the String Library [Source:  Haskell] 
 
… 
: (U.)          ( u -- addr len ) 
                0 <# #S #> ; 
… 

 
Without Chuck's library, the words used would have had to be written in 68HC12 

assembly language.  The original assembly language source for select WHYP words is 

shown in Listing 3.5. 
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Listing 3.5:  68HC12 Assembly Source for Select WHYP Words [Source:  Haskell] 

 
;       @     ( a -- w ) 
AT       
 LDY     0,X             ;Y = a 
 MOVW    0,Y,0,X         ;w = @Y 
 
;       C!    ( c b -- )       
CSTOR    
 LDY     2,X+            ;Y=b  
 LDD     2,X+            ;D = c  
 STAB    0,Y             ;store c at b 
 RTS 
 
;       TRUE = -1 = $FFFF 
TRUE 
 LDD     #-1 
 STD     2,-X 
 RTS 
 
; SWAP ( w1 w2 -- w2 w1 ) 
; Exchange top two stack items. 
SWAP     
 LDD 0,X          
 MOVW 2,X,0,X          
 STD 2,X          
 RTS 
 
;       + ( X Y -- X+Y ) 
PLUS     
 LDD     2,X+ 
 ADDD    0,X 
 STD     0,X 
 RTS 
 
;       (CREATE)        ( +++ )      Run time for CREATE 
PCREATE 
 LDAA    #15              ;code 15 
 JSR     OUTPUT 

PC1     JSR     INWDY           ;read word 
 CPY     #6              ;if 6, exit 
 BEQ     PC2 
 JSR     0,Y             ;else, execute sub 
 LDAA    #6 
 JSR     OUTPUT          ;send ACK 
 BRA     PC1 

PC2     RTS 
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It is obvious that all of the WHYP words that Chuck had in his library for the 

Motorola 68HC12 provided a tremendous asset to the project. 

3.3  The Ultrasonic Tape Measure using the Reconfigurable WnX Microcontroller 

 A block diagram of an implementation using an FPGA and the reconfigurable 

WnX described in Chapter 2 is shown in Figure 3.4.  As outlined in section 3.2, the 

transducer can measure distances up to about 36 feet and the sound wave emitted by the 

transducer requires a maximum of 64 ms to reflect off of the target object and return to 

the transducer.  If a nominal clock frequency of 3.90625 kHz (125 kHz with a clock 

divider of a factor of 25 or 32) for all synchronous components in the design is used, an  
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Figure 3.4:  A block diagram for the ultrasonic tape measure using an FPGA without an external 
microcontroller. 
 

8-bit counter will overflow every 65.536 milliseconds.  In this case, an 8-bit WnX could 

be generated, therefore, this example will use a W8X.  If precision or speed were crucial 
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constraints, a 16-bit W16X could be generated and a 16-bit counter value with a much 

faster clock could be used to directly latch the 16-bit counter value into a single top-of-

stack register instead of manipulating 16-bits in two registers.  Upon the assertion of the 

ECHO pin, the value of the counter will latch into the top-of-stack register and cause an 

interrupt in the reconfigurable W16X.  This interrupt runs a subroutine to transfer the 

counter value from the register to the top-of-stack and perform the appropriate 

instructions required for the calculations to convert the counter value to the distance in 

inches. 

The counter overflows at 256, therefore an 8-bit counter is used. Since each clock 

period is 256 µs and n is the value of the counter from the time the INIT signal went high 

to the time the ECHO signal went high, the total elapsed time in milliseconds can be 

obtained by the expression 256n/1000.  The total distance in inches corresponding to the 

total time elapsed can be calculated by multiplying n by 256 (256 µs per clock period) 

and 135 (13.5 inches/ms) and dividing by 10,000 (to convert to milliseconds and 

compensate for the factor of 10 in the numerator).  Since the sound wave reflected off of 

the target object and returned to the transducer, the distance from the transducer to the 

object is 1/2 of the total distance.  Therefore, Equation 3.1 shows the distance between 

the transducer and the target object. 

      Equation 3.1 **n
000,20

325256

 

An optimal microcontroller is generated; in this case an 8-bit microcontroller, 

along with necessary components.  Among the necessary components is a 16-bit x 8-bit 
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divider that will yield an 8-bit result and an 8-bit remainder.  A simplified expression 

shown in Equation 3.2 can be obtained by factoring the numerator and denominator of 

Equation 3.1. 

       Equation 3.2 *n
25
104

 

The simplified expression in Equation 3.2 requires a 15-bit (for simplicity let's use 

16-bit) numerator and a 5-bit (for simplicity let's use 8-bit) denominator.  Therefore, 

necessary hardware or software will be generated to support an optimal divider.  If timing 

was a crucial constraint, combinational ALU operations could be generated.  Each 

calculation including complete transmission of the value to the seven-segment displays 

has 255 clock cycles to complete.  Since this is more than enough clock cycles, such a 

stringent timing constraint is not necessary for this application. 

The interrupt routine generated for the reconfigurable W8X is given in Listing 

3.6.  Notice that using a reconfigurable microprocessor reduces the code required to 

perform a specifically designated task.  In this case, the W8X performs one task; it acts as 

an interrupt handler for the ultrasonic tape measure.  The W8X is used more as a math 

co-processor with no microprocessor! 

In addition to the application-specific code for the interrupt service routine shown 

in Listing 3.6, the following support subroutines, shown in Listing 3.7, are also generated 

automatically.  Only required support subroutines are generated and program ROM sizes 

are minimized after the required code has been generated.  This optimizes the overall 

system design. 
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Listing 3.6:  The Entire Interrupt Routine for the Ultrasonic Tape Measure 

--APPLICATION SPECIFIC SOURCE  
 
00 DINT   --Wait for interrupt 
01 JNI, X"00",  --Jump zero to DINT and keep waiting 
03 LIT, X"68",  --Load a decimal 104 as the multiplier 
05 PUSHD,  --Obtain the counter value as the multiplicand 
06 CALL, X"0014", --Call the built-in multiplication routine 
08 LIT, X"19",  --Load a decimal 25 as the divisor 
0A ROT,   --Rotate the top 3 elements clockwise – divisor  

--on bottom 
0B CALL, X"0021",  --Call the built-in division routine 
0D NIP,   --Not interested in the remainder, drop N1 and  

--pop rest of stack 
0E WSPI0,  --Call the Write SPI instruction to transfer  

            --the 8-bit data out to the Binary to BCD  
            --converter to the Seven-Segment Displays 

0F CLI   --Clear/Reset the Interrupt 
10 JMP, X"00"  --Return from interrupt 

 

External RAM can be easily used when larger amounts of memory are required, 

however, the lower the number of interfaces, the more like software development 

embedded system co-design becomes. 

Listing 3.7:  Built-in Support W8X Subroutines 
 
--MULTIPLICATION SUBROUTINE (12 clock cycles) Built-in 
12 LIT, X"00", --Load a 0 to the top of stack and push data stack 
13 MPP, MPP, MPP, MPP, MPP, MPP, MPP, MPP, 
   --Multiply partial product eight times 
1B 2NIP  --Clean up the data stack (=ROT, DROP) 
1C RET, 
 
--DIVISION SUBROUTINE (11 clock cycles) Built-in 
1D MROT,  --Rotate the top 3 elements counter-clockwise –  

--Divisor on top 
1E SHLD, SHLD, SHLD, SHLD, SHLD, SHLD, SHLD, SHLD, 
   --Shift left for division 8 times 
26 S2NIP  --Clean up the data stack (=ROT, DROP, SWAP) 
27 RET, 

 
Once the 8-bit distance is on the top of the stack (after interrupt service routine 

address 0D), the WSPI instruction is called to transfer serially the data to the built-in 
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binary-to-BCD converter.  The FPGA architecture lends itself very well to serial code 

conversion, such as binary-to-BCD conversion.  Data is entered serially into a register in 

one format and retrieved from the same register in a different format as a parallel output.2 

For those who are interested, binary-to-BCD conversion is performed in a 

modified shift register that successively doubles its BCD contents.  The binary data are 

shifted into the converter serially, most significant bit first.  Subsequent bits are shifted 

serially into the converter.  The conversion is complete when all of the binary input has 

been shifted into the register, at which time the BCD result is available.  The available 

output, as shown below in Figure 3.5, does not require serial transfer, instead, it is 

immediately available in parallel.  To remain a valid BCD number when doubled, a BCD 

digit of 5 or greater must not be shifted, but must be converted into a proper BCD 

representation, along with a 1 being shifted into the next higher digit.2  This provides a 

component-based solution for the generator to produce a binary-to-BCD converter for an 

m-bit binary input requiring m clock cycles to convert the number into a BCD 

representation.  This BCD representation is mapped directly to an on-chip built-in Seven-

Segment Decoder.  A detailed example is given in Appendix C. 
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Figure 3.5:  The binary-to-BCD converter. [Source:  Alfke] 
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The FPGA implementation of the ultrasonic tape measure requires minimal code 

and little, if any, waste of chip resources.  Once the design has been generated, an 

appropriately sized FPGA can be selected.  In addition to offering a minimal solution, the 

FPGA implementation does not require any additional hardware except for the Polaroid 

Ultrasonic Transducer and the native Seven-Segment Displays.  All timing 

measurements, computations, conversions, and decoding takes place in the Field 

Programmable Gate Array.  

3.4 Scalability – A Field of Dreams 

 Clearly, a reconfigurable solution offers many advantages and simplifies the 

design verses using a packaged microprocessor.  There are, however, more benefits than 

meet the eye.  Consider the scalability in the case of the simple example of the ultrasonic 

tape measure.  In section 3.2 and 3.3, this tape measure was designed using a Motorola 

68HC12 and a reconfigurable WnX on an FPGA, respectively.  Suppose that after 

designing the measuring system, a larger system was desired, for example, a simple 

system comprised of four (4) Ultrasonic Tape Measures that would have a wider range 

than a single transducer.  This system is shown in Figure 3.6. 

 Both implementations could be extended relatively easily to implement this 

system.  The Motorola 68HC12 has 8 input captures and 8 output compares.  If Chuck 

were to implement a system of four transducers, he could reuse the same code that he 

used to design the first single-transducer system and make minor changes to the 

referenced input capture and output compare ports.  Likewise, the reconfigurable WnX 

FPGA system could easily reuse its design by simply downloading four identical designs  
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Figure 3.6:  Four ultrasonic tape measures to form a span of measured area. 

to the chip that operate in parallel.  In this case, both implementations are relatively 

similar in code/time costs.  The FPGA implementation still optimizes the design for space 

and an FPGA could be purchased to hold all four designs, in high volume, for less than 

$2.49.  Furthermore, each successive system requires an additional MC14499 driver IC 

for the seven-segment display while the FPGA system generates internal decoders for the 

additional displays. 

 Suppose that only one value was desired, a non-zero distance given by whichever 

transducer had such data or zero if all values are zero (theoretically, if an object fell in the 

range of more than one transducer, both transducers would generate the same distance 
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value and therefore, either could be displayed).  For the FPGA implementation, the BCD 

outputs (12 bits, 3 digits each having 4 bits) could easily be multiplexed to the internal, 

built-in Seven-Segment Decoder with the VHDL code listed in Listing 3.8. For a similar 

result using the Motorola 68HC12, a more complicated approach is required.  The 

68HC12 shifts its data out the SPI port directly to an MC14499 and the seven-segment 

display.  Externally, special circuitry would have to be created to shift the data in and 

determine which data were non-zero and hence, which data to shift to the MC14499 and 

display.  Internally, similarly extensive code considerations could be made to determine 

which value to send out a single SPI with no extra external requirements. 

Listing 3.8:  A Multiplexed Output in the FPGA Implementation 

library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_unsigned.all; 
 
entity Value_Select is 
    port ( 
        trans1: in STD_LOGIC_VECTOR (11 downto 0); 
        trans2: in STD_LOGIC_VECTOR (11 downto 0); 
        trans3: in STD_LOGIC_VECTOR (11 downto 0); 
        trans4: in STD_LOGIC_VECTOR (11 downto 0); 
        out_sig: out STD_LOGIC_VECTOR (11 downto 0) 
    ); 
end Value_Select; 
 
architecture Value_Select_arch of Value_Select is 
begin 
 if trans1 > 0 then 
  out_sig <= trans1; 
 elsif trans2 > 0 then 
  out_sig <= trans2; 
 elsif trans3 > 0 then 
  out_sig <= trans3; 
 elsif trans4 > 0 then 
  out_sig <= trans4; 
 else 
  out_sig <= "000000000000"; 
 end if; 
end Value_Select_arch; 
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 Although both implementations offer similar scalability for the expanded system 

proposed above, the FPGA implementation offers a significant cost and resource 

reduction.  It may, in fact, seem as though the primary difference in scalability between 

the FPGA implementation and the implementation using the 68HC12 is in production 

cost.  However, consider further expanding the system by requiring 3-dimensions to be 

covered.  In other words, four ultrasonic tape measures for each dimension, X, Y and Z.  

This expansion is shown in Figure 3.7. 
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Figure 3.7:  Three dimensions of ultrasonic tape measures. 

We have clearly exceeded the capabilities of the 68HC12.  The Motorola 68HC12 

only has 8 input captures and 8 output compares.  For this expansion, we would require 

an additional microcontroller, perhaps another 68HC12.  Or at this point, it may be better 
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to seek a microcontroller that has 12 input captures, output compares, and SPI ports (if 

necessary) and port all of the existing software and libraries to the new microcontroller's 

assembly language.  

The FPGA implementation simply could reproduce 12 of the subsystems that 

successfully implemented the single tape measure.  If a single output were desired, the 

VHDL code in Listing 3.8 could easily be expanded by adding more cases to the 'IF' 

statement.  However, more gates cost more money, in particular, millions of gates in a 

single chip can become very expensive.  Even the FPGA implementation seems to have 

limits.  Recall that a primary difference between hardware and software introduced at the 

end of Chapter 1 is Architecture.  A software system can grow fundamentally larger 

because its raw architectural requirements are disk space and memory.  Using traditional 

co-design tactics, the architecture requires a restructuring or reconsideration of 

interactivity if a system is to grow larger, before software changes can be considered.   

3.5 What this Means for the Future – A Big Impact 

It is true of the FPGA implementation as well, after a reasonably priced chip will 

no longer accommodate the design, larger chips can cost several thousand dollars.  This 

limitation is however, in a sense, a matter of point-of-view.  Consider connecting many 

chips together to form a field of gates bearing a larger array of gates for synthesizing a 

design.  An example of connecting four Xilinx 40xxXL Series FPGAs is shown in Figure 

3.8. 

Using a high-level language to design a hardware/software system, which 

generates necessary components such as a reconfigurable microprocessor, may yield a  
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Figure 3.8:  A field composed of Xilinx FPGAs connected to form a larger synthesis target. 

design that is too big to fit in an affordable single chip.  Connecting FPGAs together to 

form a larger synthesis target can be an effective solution.  In addition to generating an 

optimal set of components, an optimal implementation plan for synthesizing over several 

chips complete with pin-connection requirements could be generated.  According to 

Xilinx, “there is no limit to the number of devices in the daisy chain and XC2000, 

XC3000, XC4000, and XC5200 devices can be mixed freely with only one constraint:  

the lead device must be a member of the highest family in the chain.”4   Using a field of 

FPGAs as a larger synthesis target provides a base-line architecture for a high-level 

compiler to synthesize to where most design changes result in a need for more gates, 

something that can be easily and inexpensively provided by the designer.  Inexpensive, 

that is, relative to the costs of handling the potential hazard of having to select different 

hardware and redesign the software to accommodate the change.  A hypothetical example 

of a multi-chip implementation is shown in Figure 3.9. 
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Figure 3.9:  Three 16-bit reconfigurable microcontrollers implemented over multiple Xilinx 4010 
series FPGAs. 

 
In the mid-1950’s, 5 Megabytes (MB) of hard drive space became available for 

$50,000.00.  In the mid-1980’s, 10 MB of disk space cost approximately $800.00.  In the 

mid-1990’s, 1,000 MB (known as a gigabyte; GB) cost $850.00.  By 1999, 27 GB 

(27,000 MB) of space was offered to the general public at $400.00.  Last month, October 

2000, Maxtor released an 82 GB hard drive for $518.00.5  Software designers for large 

systems in the mid-1980’s targeted to a 30 MB hard drive (baseline architecture).  If a 

software system required more than the maximum affordable hard disk space available at 

that time, often disk raid systems would be used.  This methodology paid off in the long 
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run since only 3 years later, a disk drive bigger than the raid system used for the original 

design was available at a cost less than the raid system.  Furthermore, in the early 1990’s, 

a mere 6 years after the software in this hypothetical example was designed, hard disk 

space was available in abundance and at increasingly low prices. 

Similarly, in the early to mid-1990’s, Field Programmable Gate Arrays were 

available with a limited number of gates and at a high cost.  This small number of gates 

with such a high price tag disinterested most ASIC designers whose requirements 

compared with the available FPGAs resembled the R.M.S. Titanic compared to a door 

opening.  Today, FPGAs are available with 1 or more million gates with costs ranging in 

the low to mid thousands of dollars.  On the other hand, an FPGA like a Spartan XL with 

5,000 gates, for example, is available in high volume for $2.49 each.6  Similarly, a field 

of FPGAs, similar to the one shown in Figure 3.8, made of 20 Spartan XLs totaling 

100,000 available gates would cost approximately $60.00 to construct.  FPGAs are 

expected to be available within the next year with more than 20,000 at the cost of a single 

Spartan XL.  Systems designed using the 20-FPGA field could be implemented using 5 

of the new 20,000 gate chips for ¼ of the cost of the original FPGA configuration.  

Future releases of technology, as in the case of the hard drive, would provide a means for 

designs implemented on an array of FPGAs to be implemented in an inexpensive single 

chip. 

Current hardwired ASICs and Microprocessors, such as the Motorola 68HC12, 

are not updateable.  If a new version of a microprocessor or ASIC is released to introduce 

fixes to known problems with the device and/or new features, an entirely new chip needs 
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to be manufactured.  The new chip needs to physically replace the old chip; in every 

deployed embedded system, the chip would need to be replaced.  This replacement could 

cost millions of dollars. 

Last year, in 1999, Xilinx released a technology that started what is now called 

Xilinx Online.  To support the development of such downloadable designs Xilinx 

released JBits API, a Java-based tool set based on an applications programming interface 

(API) that allows designers to write information directly to Xilinx FPGAs.  JBits API 

makes it possible to create Java logic applets that can be used to send hardware updates 

via the Internet.6  With this technology, FPGAs can be reprogrammed over the Internet. 

Updates and/or new features can be implemented online – for free. 
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Any sufficiently advanced technology 
is indistinguishable from magic 

 
Arthur C. Clarke 

 
 
 
 
 
 
 

 
CHAPTER 4: RECONFIGURABLE HIGH-SPEED 

APPLICATIONS – BEYOND THE MICROCONTROLLER 
 
4.1  Artificial Intelligence on a Chip 
 
 Thousands of successful approaches for processing data to provide predictive 

outputs, classify data and solve NP-Hard problems have been employed over the last 

half-century.  Most of these techniques have been implemented using various different 

programming languages that have evolved over time to develop software that runs on a 

standard CISC microprocessor.  The most critical benchmarks for many of these 

algorithms that provide solutions to complex data problems are accuracy, precision and 

speed.  In some cases, there are several speed benchmarks, for example, the amount of 

time it takes to train a neural network and how fast a predication can be generated using 

test data.  In the case of the neural network training times typically far exceed testing 

times by several multiples.   



44

Another important contribution to data processing used to locate global 

maximums and minimums or to maximize the accuracy of a decision system by 

optimizing the systems parameters, is the genetic algorithm. Genetic algorithms are 

parallel-search procedures that are applicable to both continuous and discrete 

optimization problems.4  Genetic algorithms are stochastic and less likely to get trapped 

in local minima and facilitate both structure and parameter identification in complex 

inference systems.  The genetic algorithm operates by generating somewhat random 

solutions called chromosomes to form a set of possible solutions called a population.  In 

each generation, or iteration of the algorithm, the genetic algorithm constructs a new 

population using genetic operators such as mutation and crossover.  Each generation 

yields a solution that is the same or better solution than the previous generation.4  In 

terms of speed, the faster a genetic algorithm can crossover and mutate chromosomes to 

produce the next generation, the better the result will be after time, t. 

Many different types of genetic algorithms have been developed with different 

schemas for crossover and mutation and varying fitness functions.  Many use innovative 

twists that, for data of a particular domain, enhance the outcome.  All of which depend on 

the speed of execution of the algorithm. 

In 1995, Scott, Samal, and Seth implemented a hardware based genetic algorithm.  

According to Scott, et al, "because a general-purpose genetic algorithm engine requires 

certain parts of its design to be easily changed (e.g. the function to be optimized), a 

hardware-based genetic algorithm was not feasible until field-programmable gate arrays 

were developed."  This work builds upon other research in reconfigurable hardware 
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systems which improved system performance by mapping some or all software 

components to hardware using reprogrammable hardware.8  Figure 4.1 shows the HGA 

(hardware genetic algorithm) system. 
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Figure 4.1:  Box-level schematic of the overall HGA system.  Some lines have been omitted for 
clarity. [Source:  Scott, Samal and Seth] 

 
The HGA system significantly improved the performance of the genetic 

algorithm.  On average, the HGA prototype used 6.802% as many clock cycles as the 

software genetic algorithm.  Table 4.1 details this performance boost.  The first eight 

HGA tests were run on the prototype synthesized to three interconnected Xilinx XC4005 

FPGAs and the last six tests were run on a VHDL simulator.  All input/output times were 

removed from the comparisons.8 
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Table 4.1:  Performance of the Software GA and the Hardware GA. [Source:  Scott, Samal and Seth] 

Fitness 
Function 

f(x) 

Number of 
Generations 

SGA Clock 
Cycles 

HGA Clock 
Cycles 

x 10 97064 5636 
x 20 168034 10622 

x + 5 10 99825 5585 
x + 5 20 170279 10945 

2x (add) 10 101019 5390 
2x (add) 20 170241 10659 
2x (mult) 10 101555 5390 
2x (mult) 20 170668 10659 

x2 10 334210 22892 
x2 20 574046 45019 

2x3 – 45x2 + 300x 10 342806 22586 
2x3 – 45x2 + 300x 20 589863 44503 
x3 – 15x2 + 500 10 333701 21362 
x3 – 15x2 + 500 20 579176 44317 

 

 Other artificial intelligence and data processing techniques would benefit 

significantly by a high-speed hardware implementation as well. 

4.2  A High-Speed Digital Image Processing Example 
 
 An example of a commonplace application in digital image processing is edge 

detection.  Edge-detection operators examine each pixel neighborhood and use the slope 

and often the direction of the gray-level transition as metrics.  There are several methods 

available for this examination, most of which are based upon convolution with a set of 

directional derivative masks.1  The Roberts Edge Operator, Sobel Edge Operator, Prewitt 

Edge Operator, and Kirsch Edge Operator are all common differential or convolution 

operators for finding edges.   
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In addition to the edge-detection operators, image edges may also be detected 

using an artificial intelligence pattern recognition approach.  One such approach was 

explored using a neuro-fuzzy classification tree.3  In a binary tree classifier a decision is 

made at each non-terminal node of the tree based upon the value of one of many possible 

attributes or features.  If the feature value is less than some threshold then the left branch 

of the tree is taken, otherwise the right branch is taken.  The leaves, or terminal nodes, of 

the tree represent the various classes to be recognized.  Since the classes that we are 

interested in for edge-detection are distinct (an edge pixel or a non-edge pixel), we will 

refer to the tree as a classification tree.   

Fuzzy classification trees used in this paper have the following basic 

characteristics.  A K-S distance associated with a fuzzy cumulative distribution function 

is used to select the optimum feature and threshold at each node in the tree.  Each training 

sample can belong to more than one class with different degrees of membership.  The test 

at each non-terminal node in the tree is considered to be a fuzzy set allowing a test 

sample to follow multiple paths through the tree, terminal nodes are evaluated using a 

defuzzification process to determine the best classification of the test data.5  Each fuzzy 

membership function is characterized by two regions, a linear fuzzy region, a-∆a ≤ x ≤ 

a+∆a, where f(a) = 0.5, that ranges over the real interval (0,1) and a crisp region, x< a-

∆a or x > a+∆a, that maps to either 0 or 1.  Determining which ∆a will produce the best 

results at each node is an obstacle introduced by using fuzzy classification trees.  In the 
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case of edge detection, ∆a is a parameter that can be increased or decreased depending on 

the types of edges that are to be detected.   

For this experiment, the black and white image shown in Figure 4.2 was used.  

The objective was to train a neuro-fuzzy classification tree to intelligently differentiate 

between an edge and a non-edge pixel. 

 

 

 

 

 

 

Figure 4.2:  A grayscale photograph selected at random for edge-detection using a neuro-fuzzy 
classification tree (GIF format). 
 
First, the edges of the face were traced in orange for training the neuro-fuzzy 

classification tree.  These traces were used as the training data.  The traced image is 

shown below in Figure 4.3. 

 

 

 

 

 

 
 
Figure 4.3:  Orange edge trace used as training data for the neuro-fuzzy classification tree. 
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Note that few pixels were used to represent an ‘edge’ pixel.  The metric that was 

used for edge-detection was the difference between the numerical pixel value and the 

numerical pixel value of each pixel in its neighborhood.  These differences were used as 

features for each pixel.  The boundary pixels, those that are missing neighboring pixels 

on one or more sides, were not used.  Listing 4.1 below is the Java Application used to 

convert the picture file from the Graphical Interchange Format (GIF) to the feature 

vectors and corresponding class (0 for non-edge pixel and 1 for edge pixel). 

Listing 4.1:  Java Application for Calculating Metrics from GIF Picture File 

import java.awt.*; 
import java.awt.image.PixelGrabber; 
import java.io.*; 
 
public class ImageTest { 
 
 public static final int OUTLINE_PIXEL = -22; 
 
        public static void processImage(String infile, String outfile,  
                                        String aifile) { 
 
          Image image = Toolkit.getDefaultToolkit().getImage(infile); 
          PrintWriter fout = null; 
     PrintWriter aiout = null; 
          try { 
            fout = new PrintWriter(new FileOutputStream(outfile)); 
       aiout = new PrintWriter(new FileOutputStream(aifile)); 
          } 
          catch(IOException f) { 
            System.out.println("Error opening output file."); 
            System.exit(0); 
          } 
          try { 
            PixelGrabber grabber = new PixelGrabber(image, 0, 0, 
                         -1, -1, false); 
            if (grabber.grabPixels()) { 
              int width = grabber.getWidth(); 
              int height = grabber.getHeight(); 
              if (bytesAvailable(grabber)) { 
                byte[] data = (byte[]) grabber.getPixels(); 
                // process grayscale image... 
                System.out.println("Processing b&w image...\n"); 
                int i = 0; 
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Listing 4.1 continued 
 
                fout.println(data.length); 
                fout.println("Width: " + width); 
                fout.println("Height: " + height); 
                for (i = 0; i < data.length; i++) 
                  { 
                    if (((i % width) == 0) && (i != 0)) 
                      fout.println(""); 
                    fout.print(data[i] + " "); 
                  } 
 
  int[][] metrix = new int[data.length][8]; 
  int recordClass = 0; 
 
  //We want to fill a two-d array with metrics 
  //for each pixel (not on a boundary) we want to compute 
  //the difference between it and its neighbor. 
 
 
  aiout.println("8\t" + ((height * width) - (2 * width) –  
                         (2 * height - 4))); 
 
  for (i = width; i < ((height - 1) * width) - 1; i++) 
       //   looks like 0      ...   width - 1 
    //  width  ...   2 * width - 1 
  //         ... 
  //(height - 1) * width ...   height * width - 1 
  {  //begin processing at the width + 1 pixel 
     //we need to skip the top and bottom rows and the  
               //leftmost pixel in each row and the rightmost pixel 
               //in each row 
     if ( ((i % width) != 0) && (((i+1) % width) != 0) ) 
   //this is not a leftmost or rightmost pixel 
     { 
   metrix[i][0] = data[i] - data[i - 1]; //left 
   metrix[i][1] = data[i] - data[i + 1]; //right 
   metrix[i][2] = data[i] - data[i + width - 1];  
                                                    //lower left diag 
   metrix[i][3] = data[i] - data[i + width]; //below 
   metrix[i][4] = data[i] - data[i + width + 1]; 
                                                    //lower right diag 
   metrix[i][5] = data[i] - data[i - width - 1];  
                                                    //upper left diag 
   metrix[i][6] = data[i] - data[i - width]; //above 
   metrix[i][7] = data[i] - data[i - width + 1];  
                                                    //upper right diag 
   
   if (data[i] == OUTLINE_PIXEL) 
    recordClass = 1; 
   else 
    recordClass = 0; 
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Listing 4.1 continued 
 
   aiout.println(metrix[i][0] + "\t" + metrix[i][1] +  
                               "\t" + metrix[i][2] + "\t" +              
                                      metrix[i][3] +  
                               "\t" + metrix[i][4] + "\t" +  
                                      metrix[i][5] +  
                               "\t" + metrix[i][6] + "\t" +  
                                      metrix[i][7] +  
                               "\t" + recordClass); 
     } 
  }  //all metrics have been created for all interior pixels 
 
              } 
              else { 
                int[] data = (int[]) grabber.getPixels(); 
                // process color image 
                System.out.println("Processing color image...\n"); 
              } 
            } 
         } 
         catch (InterruptedException e) { 
           e.printStackTrace(); 
         } 
         fout.close(); 
  aiout.close(); 
        } 
 
        public static final boolean bytesAvailable(PixelGrabber pg) { 
          return pg.getPixels() instanceof byte[]; 
        } 
 
        public static void main(String[] argv) { 
          if (argv.length > 2) { 
            processImage(argv[0], argv[1], argv[2]); 
            System.exit(0); 
          } 
          else { 
            System.err.println("usage:  java ImageTest <infile>  
                <outfile> <aifile>"); 
            System.exit(1); 
          } 
        } 
} 

 
 After using the data to train the neuro-fuzzy classifier, the image data for the 

image shown in Figure 4.2 was used as the test picture.  Figure 4.4 shows the result of the 
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edge detection using the neuro-fuzzy binary tree with a fuzzy percent (∆a) of 0.10. 

Different fuzzy percents were used yielding more edge pixels and less edge pixels. 

 

 

 

 

 

 

 
 Figure 4.4:  Classified edges with ∆a = 0.10. 

The primary interest was to use this technique to perform real-time edge detection 

in hardware.  Using a microprocessorless implementation, a real-time edge detector was 

synthesized to a Xilinx Spartan XCS10 FPGA.  Figure 4.5 shows a block diagram of the 

FPGA system. 
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Figure 4.5:  A microprocessorless implementation of the real-time edge detector using a neuro-
fuzzy binary tree classifier. 
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 For the camera, the OV5017 Camera shown in Figure 4.6 was connected to a 

Digilab prototyping board made by Digilent.7   

 

 

 

 

 

 Figure 4.6:  A mounted OV5017 CMOS camera with a 7.4 mm lens. 

The camera was a 384 x 288 pixel camera.  The pixel data was an 8-bit integer. The first 

pixel that the metric could be computed for was pixel number 386 after pixel number 771 

has been transmitted, therefore a 771 x 8 Dual Port RAM was required.   A 5-volt 

asynchronous dual port RAM from Cypress was used.  The camera and the Dual Port 

RAM were the only components that were not implemented in the FPGA.  The 

METRICS component computed the difference between the pixel and its eight 

neighboring pixels.   
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 Figure 4.7:  Component for calculating the metrics for edge detection 
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Since the camera array size is 384 x 288 pixels at 50 frames per second (default), 

the camera clock frequency output in pin PCLK, is 5.5296 MHz.  The boundary pixels 

that are missing one or more of the eight nearest neighbors are not considered.  

Therefore, the first pixel that has all eight neighbors is pixel 386 (assuming the first pixel 

is pixel 1).  The metrics, however, cannot be calculated until all eight of the neighbors for 

pixel 386 have been scanned.  The eight neighbors from the upper-left diagonal to the 

lower-right diagonal for pixel 386 are pixels 1, 2, 3, 385, 387, 769, 770, and 771.  In 

general, the metrics for pixel, pi of an m x n-pixel image are given by: 

   M1 = pi – pi –  m – 1 
   M2 = pi – pi –  m 
   M3 = pi – pi –  m + 1 
   M4 = pi – pi – 1 
   M5 = pi – pi + 1 
   M6 = pi – pi +  m – 1 
   M7 = pi – pi +  m  
   M8 = pi – pi +  m + 1 
 

These metrics, therefore, can only be computed for pixel 386 after pixel 771 has 

been scanned.  After pixel 771 has been scanned, the METRIC component calculates the 

metric for pixel 386 by accessing the eight neighboring pixels from the asynchronous 

dual port RAM.  The clock driving the METRIC component must be eight times PCLK 

to continuously access the eight neighbors for every pixel scanned.  For this experiment, 

the METRIC clock shown in Figure 4.7 is approximately 50 MHz (greater than the 

calculated 44.2368 MHz).  Each time a pixel is scanned after and including pixel 386, the 

METRIC component is enabled and the metrics for a pixel are calculated at 50 MHz.  

Shortly after the metrics have been calculated combinationally, another pixel has been 
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scanned by the camera and is written to the dual port RAM.  Once again, the METRIC 

counter that tracks the current pixel number is incremented and the metrics are read and 

presented to the TREE CLASSIFIER component shown in Figure 4.5.  After the metrics 

for pixel 386 have been computed, pixel 1 is obsolete and may be replaced by the next 

pixel scanned from the camera.  Since the edge detector operates in real-time, that is, 

pixels are classified as fast as the camera scans the image pixels, no more than 771 pixel 

data need to be maintained in the dual port RAM.  The tree classifier is combinational 

with a registered output controlled by PCLK.  Each time a pixel is read, a pixel has been 

classified as an edge pixel or a non-edge pixel.  Non-edge pixels are displayed as one 

color and edge pixels are displayed as another color.  The neuro-fuzzy classification tree 

algorithm3 was altered to produce a VHDL file representing the decision built from the 

training data.  The VHDL component is shown below in Listing 4.2. 

Listing 4.2:  VHDL Decision Tree Component 

library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_unsigned.all; 
 
entity decision_tree is 
    port ( 
        x1: in STD_LOGIC_VECTOR(6 downto 0); 
        x2: in STD_LOGIC_VECTOR(6 downto 0); 
        x3: in STD_LOGIC_VECTOR(6 downto 0); 
        x4: in STD_LOGIC_VECTOR(6 downto 0); 
        x5: in STD_LOGIC_VECTOR(6 downto 0); 
        x6: in STD_LOGIC_VECTOR(6 downto 0); 
        x7: in STD_LOGIC_VECTOR(6 downto 0); 
        x8: in STD_LOGIC_VECTOR(6 downto 0); 
        z: out STD_LOGIC 
    ); 
end decision_tree; 
 
architecture behav of decision_tree is 
begin 
  dt_1: process(x1, x2, x3, x4, x5, x6, x7, x8) 
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Listing 4.2 continued 
 
   begin 
      if ((x4 < 0 and x5 < -6 and x8 < -45) 
         or (x4 < 0 and x5 >= -6 and x8 < -45) 
         or (x4 >= 0 and x8 < -45) 
         or (x2 < -40 and x4 >= -1 and (x8 >= -45 and x8 < -4)) 
         or (x1 < -54 and x2 >= -14 and (x8 >= -45 and x8 < -4)) 
         or (x1 >= -54 and x2 >= -14 and x5 < 0 and x7 < 0  
                and (x8 >= -45 and x8 < -4)) 
         or (x1 >= -54 and x2 >= -14 and x5 < 0 and x7 >= 0  
                and (x8 >= -45 and x8 < -4)) 
         or (x1 < -77 and x8 >= -4) 
         or ((x1 >= -77 and x1 < -47) and x8 >= -4) 
         or ((x1 >= -47 and x1 < 8) and x3 < 8 and x6 < 3  
                and x7 >= 18 and x8 >= -4) 
         or ((x1 >= -47 and x1 < 8) and x3 >= 8 and x8 >= -4) 
         or (x1 >= 8 and x5 < -10 and x8 >= -4) 
         or (x1 >= 8 and (x5 >= -10 and x5 < 1) and x8 >= -4) 
         or (x1 >= 8 and x4 < 3 and x5 >= 1 and x7 < 1  
                and x8 >= -4)) then 
         z <= '1'; 
      else 
         z <= '0'; 
      end if; 
   end process dt_1; 
end behav; 

 
Each pixel is classified as an edge or non-edge pixel determined by the value of z, 

the output bit of the tree classifier shown in Listing 4.2.  If z is high, the pixel is 

considered to be an edge, if z is low, the pixel is a non-edge. 

The last component in the system is the OUTPUT component.  This component is 

responsible for maintaining the proper timing for outputting the pixel data (color1 or 

color2) to the monitor.  For this experiment, the monitor output required three basic 

signals, a vertical-sync signal, a horizontal-sync signal and a single color signal.  For this 

experiment, we used yellow and black as our edge and non-edge pixels, respectively.  

The horizontal-sync signal is used to signify the beginning of a row of pixel data when 

asserted high.  This signal must be brought low again within 25.17µs and must remain 
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low a minimum of 0.94µs after the last pixel and stay low for 3.77µs.  A new line of 

pixels can begin a minimum of 1.89µs after the horizontal-sync pulse ends.  A single line 

occupies 25.17µs of a 31.77µs window.  The remaining 6.6µs of each line is the 

horizontal blanking interval.  Similarly, negative pulses on the vertical-sync mark the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.8:  VGA signal timing [Source:  Van den Bout] 
 

start and end of a frame of lines to ensure that the monitor displays the lines between the 

bottom and top edges of the visible monitor area.  The lines are sent to the monitor within 

a 15.25ms window.  The vertical-sync drops low a minimum of 0.45ms after the last line 
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and stays low for 64µs.  The first line of the next frame can begin a minimum of 1.02ms 

after the vertical-sync pulse ends.  A single frame occupies 15.25ms of a 16.784ms 

interval.  The other 1.534ms of the frame interval is the vertical blanking interval.  Figure 

4.8 illustrates this timing.6 

 To maintain the same signal frequency as the camera, we can use the camera's 

output horizontal- and vertical-sync signals.  Since the first pixel to be classified is pixel 

386, after the camera has scanned pixel 771, compensation must be made in the 

horizontal and vertical synchronization signals.  The horizontal-sync signal has dropped 

low (active low) for the beginning of the 3rd line with the first pixel, 769.  The 

classification for pixel number 386 is latched into the OUTPUT component as the camera 

is inputting pixel 772 in the first memory location in the dual port RAM.  Therefore, the 

first pixel of the line to be displayed on the monitor is actually three pixels after the 

horizontal-sync signal has dropped.   

The timing for the vertical-sync signal is also off.  The vertical signal dropped 

when the camera began scanning the first line.  The first line that we will output to the 

screen is the second line (since the border is ignored).  The vertical-sync signal, when the 

output begins, is currently timed for the third line (beginning with pixel 769).  This 

means that the vertical signal is timed for the beginning of the third line while we are 

outputting the pixels on the second line, one line behind.  The compensation for these 

timing issues is made in the OUTPUT component.  Two counters, one for the horizontal 

signal and another for the vertical signal with a synthesized 1-bit RAM array 
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accommodate the time lags.  The timing diagram for the OV5017 CMOS camera is 

shown in Appendix B. 
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The most incomprehensible thing 
about the world is that it is comprehensible 

 
Albert Einstein 

 
 
 
 
 
 
 

 
CHAPTER 5: SUMMARIZING A SOFTWARE DESIGN APPROACH 

WITH A RECONFIGURABLE SOLUTION 
 
5.1 Conclusion 
 

Traditionally, hardware/software co-design introduces the high-risk step of 

hardware/software splitting shown in Figure 1.3.  If a change in specification or 

unexpected condition or situation occurs a revision in the hardware/software splitting step 

is often required.  This change may require part or all of the software to be rewritten or 

ported to the newly selected hardware, an expensive and time-consuming process that, in 

some cases, leads to complete failure of the co-design project.   

For software development, different software engineering and management 

techniques and tools, such as the Unified Development Process and Rational Rose, are 

available for a software project.  These methods and tools offer a great deal of benefit to 
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software development that is necessary but not sufficient for equivalent 

hardware/software co-design projects.   

A microprocessorless solution or an embedded system design in software that 

generates a reconfigurable microcontroller for the specific application was demonstrated.  

This method of hardware/software co-design leaves the “splitting” to the end, after the 

entire application has been designed.  Additionally, the compiler is responsible for 

presenting optimal splitting decisions.  Many years ago, ASICs were designed at the 

diffusion layer/p-n junction level of abstraction.  After several years of collaboration and 

hundreds of millions of dollars of invested capital, compilers, such as VHDL, Verilog, 

and ABEL, compile, optimize, and place high-level hardware designs on a variety of 

FPGAs.  This advancement dramatically increased the speed at which an embedded 

system could be developed and opened new doors for solving larger problems at a higher 

level with an ASIC.  Similarly, a compiler that optimizes a high-level embedded system 

design and generates optimally configured microcontrollers when necessary offers a 

similarly dramatic advancement in the design of embedded systems. 

Rapid advancements in transistor density have made smaller chips available with 

more gates at decreasing costs.  Xilinx and other FPGA designers/manufacturers project 

significant increases each quarter following the current exponential trend.  FPGAs can be 

connected together to form a daisy chain or field of chips for larger designs.  Designs 

requiring multiple FPGAs will soon fit into fewer chips until finally a single chip, similar 

to the trend of hard disk space over the last 15 years. 
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Such a compiler introduces the opportunity to easily implement software 

algorithms in hardware.  An example of a real-time edge detector designed using neuro-

fuzzy decision trees was presented as a software algorithm and as a system implemented 

in hardware that was designed using a high-level software language and external 

memory, without a microcontroller.  In this example, an inexpensive microprocessorless 

solution successfully employed a novel software technique to detect edges in real-time. 

The reconfigurable solution offers other important advantages in addition to cost 

and time savings, among these are the use of software development disciplines in co-

design projects and the prospect of compiling software implementations to a hardware 

solution.  One such advantage is remote updatability.  Field Programmable Gate Arrays 

can be updated via the Internet.  Design changes can be made easily and inexpensively 

for bug-fixes and upgrades with enhancements.  This expedites the introduction of new 

technology into the marketplace and adds to the already significant cost and time savings. 

5.2  Future Research 

This thesis provided examples and a proof-of-concept using a reconfigurable 

extended WnX microcontroller.  A compiler and environment to determine optimal 

controller requirements and optimize place and routing over many chips for a general 

design would require a team of engineers and a significant investment. 

In the beginning, software was implemented over arrays of expensive storage 

devices.  Later, storage devices decreased in price and increased storage space in small 

increments.  Over time, storage space has become abundant and inexpensive and is 

virtually transparent to a software designer.  In the beginning, hardware was designed at 
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the p-n junction level.  Later, microprocessors and microcontrollers were introduced, 

both extended and reduced with an assembly language and expensive FPGAs with few 

gates were produced.   

Over time, high-level languages such as VHDL, Verilog, and ABEL were 

introduced to design, simulate, and synthesize hardware designs on the increasingly 

useful FPGA.  Now, since FPGAs are being produced with rapidly increasing numbers of 

gates at low costs, the hardware/software split can be rejoined in a software 

environment.



64

APPENDIX A 

STATISTICAL INFORMATION FOR HARD DRIVES FROM 1956 – PRESENT 
SOURCE: NOVA SCOTIA’S ELECTRONIC ATTIC, ET AL. 
URL: http://www.alts.net/ns1625/winchest.html (ACCESSED NOVEMBER 2000)  
MAINTAINED BY: IVAN SMITH 
 

 
Prediction:  

The cost for 128 kilobytes of memory 
will fall below US $100 in the near future. 

 
Creative Computing magazine 

December 1981, page 6 
 
 
The column headed "W" shows the warranty duration in years. The "Price of Drive" is the retail price, sales 
taxes extra. The "Cost per megabyte" is the retail price, all taxes included. Prices are in Canadian currency, 
except prices marked "U$" which are in United States currency. These examples have been selected from 
hard drives advertised for sale, to show the lowest available per-megabyte cost.  
 
 

Source Manufacturer 
W
 

y 
Capacity Price of  

Drive 
Cost per 

MB 

1956    
Note 0 IBM  5 megabytes U$50,000 U$10,000 

1980 January    
 Morrow Designs  26 megabytes U$5000 U$193 

1980 July    
Note 34 North Star  18 megabytes U$4199 U$233 

1981 September    
 Apple  5 megabytes U$3500 U$700 

1981 November    
 Seagate  5 megabytes U$1700 U$340 

1981 December    
Note 31 VR Data Corp.  6.3 megabytes U$2895 U$460 
Note 32 Morrow Designs  10 megabytes U$2999 U$300 
Note 33 Morrow Designs  10 megabytes U$2949 U$295 
Note 31 VR Data Corp.  19 megabytes U$5495 U$289 
Note 33 Morrow Designs  20 megabytes U$3829 U$191 
Note 33 Morrow Designs  26 megabytes U$3949 U$152 
Note 32 Morrow Designs  26 megabytes U$3599 U$138 

1982 March    
 Xebec    U$260 

1983 December    
Note 35 Corvus  6 megabytes U$1895 U$316 
Note 35 Corvus  10 megabytes U$2695 U$270 

http://www.alts.net/ns1625/winchest.html
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Note 35 Xcomp  10 megabytes U$1895 U$190 
Note 35 Corvus  20 megabytes U$3495 U$175 
Note 35 Davong  10 megabytes U$1650 U$165 
Note 35 Xcomp  16 megabytes U$2095 U$131 
Note 35 Davong  21 megabytes U$2495 U$119 

1984 March    
Note 37 Percom/Tandon  5 megabytes U$1399 U$280 
Note 38 not known  5 megabytes U$1349 U$270 
Note 37 Percom/Tandon  10 megabytes U$1699 U$170 
Note 38 not known  10 megabytes U$1599 U$160 
Note 37 Percom/Tandon  15 megabytes U$2095 U$140 
Note 38 not known  15 megabytes U$1999 U$133 
Note 37 Percom/Tandon  20 megabytes U$2399 U$120 
Note 38 not known  20 megabytes U$2359 U$118 

1984 May    
Note 36 Tecmar  5 megabytes U$1495 U$299 
Note 36 Corvus  6 megabytes U$1695 U$283 
Note 36 Corvus  11 megabytes U$2350 U$214 
Note 36 Comrex  10 megabytes U$1995 U$200 
Note 36 CTI  11 megabytes U$1995 U$181 
Note 36 Davong  10 megabytes U$1645 U$165 
Note 36 Corvus  20 megabytes U$3150 U$158 
Note 36 Davong  15 megabytes U$2095 U$140 
Note 36 Davong  21 megabytes U$2495 U$119 
Note 36 Pegasus (Great Lakes)  10 megabytes U$1075 U$108 
Note 36 Pegasus (Great Lakes)  23 megabytes U$1845 U$80 

1985 July    
Note 30 First Class Peripherals 1 10 megabytes U$710.00 U$71 

1987 October    
Note 39 Iomega  10 megabytes U$899 U$90 
Note 39 Iomega  20 megabytes U$1199 U$60 
Note 39 Iomega  40 megabytes U$1799 U$45 

1988 May    
Note 1   20 megabytes U$799 U$40 
Note 1   30 megabytes U$995 U$33 
Note 1   45 megabytes U$1195 U$27 
Note 1   60 megabytes U$1795 U$30 
Note 1   250 megabytes U$3995 U$16 

1989 March    
Note 56 Western Digital  20 megabytes $899.00 $53 
Note 56 Western Digital  40 megabytes $1199.00 $36 

1989 September    
Note 11     $12 

1990 September    
Note 11     $9 

1991 September    
Note 11     $7 

1992 September    
Note 11     $4 

1993 September    
Note 11     $2 
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1994 September    
Note 11     95¢ 

1995 January    
Note 2 Seagate 5 1.0 gigabyte $849 85¢ 
Note 2 Seagate 5 1.7 gigabytes $1499 88¢ 
Note 2 Seagate 5 2.1 gigabytes $1699 81¢ 
Note 2 Seagate 5 2.9 gigabytes $2899 99¢ 

1995 April    
Note 24   240 megabytes $250.00 $1.26 
Note 24   420 megabytes $320.00 92.2¢ 
Note 24   520 megabytes $380.00 88.4¢ 
Note 24   850 megabytes $470.00 66.9¢ 
Note 24   1.0 gigabyte $625.00 75.6¢ 
Note 24   1.2 gigabytes $680.00 68.6¢ 

1996 June 10    
Note 3 Western Digital 3 1.6 gigabytes $399.99 29.5¢ 

1996 August 14    
Note 4 IBM 3 1.76 gigabytes $379.99 26.3¢ 
Note 4 Maxtor  2.0 gigabytes $439.99 25.9¢ 

1996 September    
Note 5 Quantum  2.5 gigabytes $440.00 20.7¢ 
Note 5 Quantum  3.2 gigabytes $469.00 17.3¢ 

 
 
 

Source 
Manufacturer 

W
 

y 
Capacity Price of  

Drive 
Cost per 

MB 

1997 August 13    
Note 6 Western Digital  2.1 gigabytes $329.99 18.1¢ 
Note 6 Western Digital  3.1 gigabytes $399.99 14.8¢ 
Note 6 Western Digital  4.0 gigabytes $490.99 14.1¢ 

1997 August 24    
Note 7 Western Digital 3 2.1 gigabytes $279.99 15.3¢ 
Note 7 Western Digital 3 3.1 gigabytes $329.99 12.2¢ 
Note 7 Maxtor 3 3.5 gigabytes $359.99 11.8¢ 
Note 7 Maxtor 3 4.3 gigabytes $439.99 11.8¢ 
Note 7 Western Digital 3 5.1 gigabytes $459.99 10.4¢ 

1997 September 5    
Note 8 Maxtor 3 7.0 gigabytes $669.99 11.0¢ 

1997 November 29    
Note 9 Western Digital  3.2 gigabytes $289.00 10.4¢ 
Note 9 Quantum  3.2 gigabytes $285.00 10.2¢ 
Note 9 Quantum  4.3 gigabytes $379.00 10.1¢ 
Note 9 Western Digital  4.3 gigabytes $365.00 9.76¢ 
Note 9 Quantum  6.4 gigabytes $475.00 8.54¢ 
Note 9 Western Digital  6.4 gigabytes $445.00 8.00¢ 

1997 December 3    
Note 10 Western Digital 3 5.1 gigabytes $449.99 10.1¢ 
Note 10 Quantum 3 6.4 gigabytes $549.99 9.88¢ 
Note 10 Maxtor 3 5.2 gigabytes $438.99 9.71¢ 
Note 10 Maxtor 3 7.0 gigabytes $579.99 9.53¢ 
Note 10 Maxtor 3 8.4 gigabytes $679.99 9.31¢ 
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1998 January 16    
Note 12 Western Digital 3 6.4 gigabytes $529.99 9.52¢ 
Note 12 Quantum 3 4.3 gigabytes $349.99 9.36¢ 
Note 12 Quantum 3 6.4 gigabytes $479.99 8.63¢ 
Note 12 Maxtor 3 8.4 gigabytes note 12 8.39¢ 

1998 February 3    
Note 13 not known 3 5.2 gigabytes $355.00 7.85¢ 
Note 13 not known 3 6.4 gigabytes $435.00 7.82¢ 

1998 April 2    
Note 14 Maxtor 3 5.1 gigabytes $379.99 8.57¢ 
Note 14 Maxtor 3 4.3 gigabytes $319.99 8.56¢ 
Note 14 Western Digital 3 6.4 gigabytes note 14 7.43¢ 
Note 14 Quantum 3 6.4 gigabytes $339.99 6.11¢ 

1998 April 4    
Note 17 not known  5.2 gigabytes $349.00 7.72¢ 
Note 15 Maxtor 3 4.3 gigabytes note 15 7.63¢ 
Note 16 not known 3 6.4 gigabytes $370.00 6.65¢ 
Note 16 not known 3 5.2 gigabytes $300.00 6.63¢ 
Note 17 not known  9.0 gigabytes $499.00 6.38¢ 

1998 April 17    
Note 18 Fujitsu  4.3 gigabytes $282.00 7.54¢ 
Note 18 Fujitsu  5.2 gigabytes $331.00 7.32¢ 
Note 18 Fujitsu  6.4 gigabytes $368.00 6.61¢ 

1998 May 2    
Note 19 Seagate 1 6.4 gigabytes $349.99 6.29¢ 

1998 May 9    
Note 20 Seagate  6.4 gigabytes $329.99 5.93¢ 

1998 May 11    
Note 21 Fujitsu  3.2 gigabytes $227.00 8.16¢ 
Note 21 Fujitsu  4.3 gigabytes $257.00 6.87¢ 
Note 21 Fujitsu  5.2 gigabytes $299.00 6.61¢ 
Note 21 Fujitsu  6.4 gigabytes $328.00 5.89¢ 

1998 June 6    
Note 22 Maxtor 3 5.7 gigabytes $299.99 6.05¢ 

1998 June 12    
Note 23 Quantum  4.3 gigabytes $228.00 6.10¢ 
Note 23 Quantum  6.4 gigabytes $298.00 5.35¢ 

1998 July 15    
Note 25   5.2 gigabytes $249.00 5.51¢ 

1998 July 31    
Note 26 Western Digital IDE  5.1 gigabytes $262.00 5.91¢ 
Note 26 Fujitsu IDE  5.2 gigabytes $252.00 5.57¢ 
Note 26 Western Digital IDE  6.4 gigabytes $294.00 5.28¢ 
Note 26 Western Digital IDE  8.4 gigabytes $382.00 5.23¢ 
Note 26 Fujitsu IDE  6.4 gigabytes $291.00 5.23¢ 

1998 August 1    
Note 27 Western Digital EIDE  4.0 gigabytes note 27 5.46¢ 

1998 August 6    
Note 28 Western Digital EIDE 3 5.1 gigabytes note 28 4.64¢ 

1998 August 14    
Note 29 Fujitsu  6.4 gigabytes $289.00 5.19¢ 
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1998 August 26    
Note 40 Seagate 1 6.4 gigabytes $279.99 5.03¢ 

1998 September 1    
Note 41 Maxtor UDMA 3 8.4 gigabytes $379.99 5.20¢ 
Note 41 Maxtor UDMA  6.8 gigabytes $279.99 4.74¢ 

1998 September 10    
Note 42 Western Digital EIDE 3 5.1 gigabytes note 42 4.79¢ 

1998 October 1    
Note 43 Quantum  6.4 gigabytes note 43 4.26¢ 

1999 February 12    
Note 44 Quantum  8.0 gigabytes $299.99 4.31¢ 

1999 February 26    

Note 45 Maxtor  8.4 gigabytes see note 
45 3.77¢ 

Note 46 Quantum  8.0 gigabytes see note 
46 3.65¢ 

1999 February 27    
Note 47 Quantum  19.2 gigabytes $512.46 3.07¢ 

1999 March 1    
Note 48 Fujitsu Ultra DMA 3 8.4 gigabytes $253.00 3.46¢ 
Note 48 Fujitsu Ultra DMA 3 10.2 gigabytes $299.00 3.37¢ 

1999 March 3    
Note 49 Fujitsu Ultra DMA 3 8.4 gigabytes $235.00 3.22¢ 
Note 49 Fujitsu Ultra DMA 3 10.2 gigabytes $285.00 3.21¢ 

1999 April 1    
Note 50 Fujitsu UDMA  10.2 gigabytes $279.00 3.15¢ 
Note 50 Fujitsu UDMA  8.4 gigabytes $229.00 3.14¢ 

1999 May 21    
Note 51 Fujitsu UDMA  6.4 gigabytes $179.99 3.23¢ 

1999 May 27    
Note 52 Fujitsu UDMA  10.2 gigabytes $245.00 2.76¢ 
Note 52 Fujitsu UDMA  8.4 gigabytes $198.00 2.71¢ 
Note 52 Fujitsu UDMA  17.3 gigabytes $369.00 2.45¢ 

1999 May 28    
Note 53 Maxtor UDMA 3 10.0 gigabytes $249.99 2.88¢ 

1999 July 21    
Note 54 Maxtor Ultra DMA 3 8.4 gigabytes $199.99 2.74¢ 

1999 July 30    
Note 55 Fujitsu UDMA  6.4 gigabytes $139.99 2.63¢ 

1999 September 25    
Note 57 Not known  10.2 gigabytes note 57 1.85¢ 

1999 October 1    
Note 58 Quantum CX UTA 66  10.2 gigabytes $199.00 2.24¢ 

Note 58 Quantum KA 
7200 rpm  13.6 gigabytes $249.00 2.11¢ 

Note 58 Western Digital  20.0 gigabytes $359.00 2.06¢ 

Note 58 Western Digital 
7200 rpm  27.3 gigabytes $489.00 2.06¢ 

Note 58 Quantum CX UTA 66  13.6 gigabytes $219.00 1.85¢ 
1999 December 1    

Note 59 Western Digital IDE  20.5 gigabytes $398.00 2.23¢ 
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Note 59 Quantum IDE  18.2 gigabytes $348.00 2.20¢ 
Note 60 Mfgr? UDMA  10.2 gigabytes $189.00 2.13¢ 
Note 59 Fujitsu IDE  10.2 gigabytes $189.00 2.13¢ 
Note 59 Fujitsu IDE  13.0 gigabytes $208.00 1.84¢ 
Note 60 Mfgr? UDMA  13.0 gigabytes $195.00 1.73¢ 
Note 59 Fujitsu IDE  20.4 gigabytes $299.00 1.69¢ 
Note 59 Fujitsu IDE  17.3 gigabytes $248.00 1.65¢ 
Note 59 Fujitsu IDE  27.3 gigabytes $388.00 1.63¢ 
Note 60 Mfgr? UDMA  17.3 gigabytes $225.00 1.50¢ 

 
 

From here on, the cost of hard drives will be stated 
per gigabyte (below) 

instead of per megabyte (above)  
 
 

Source Manufacturer 
W
 
y 

Capacity 
Price 

of  
Drive 

Cost 
per 
GB 

Cost per 
MB 

2000 February 1     
Note 61 Mfgr? UDMA  10.2 gigabytes $175.00 $19.73 1.97¢ 
Note 62 Fujitsu  20.4 gigabytes $299.00 $16.86 1.69¢ 
Note 62 Fujitsu  13.6 gigabytes $199.00 $16.83 1.68¢ 
Note 64 Mfgr?  12.9 gigabytes $187.99 $16.76 1.68¢ 
Note 63 Fujitsu  13.6 gigabytes $197.80 $16.73 1.67¢ 
Note 61 Mfgr? UDMA  13.0 gigabytes $186.00 $16.45 1.65¢ 
Note 62 Fujitsu  17.3 gigabytes $238.00 $15.82 1.58¢ 
Note 62 Fujitsu  27.3 gigabytes $375.00 $15.80 1.58¢ 
Note 63 Fujitsu  17.3 gigabytes $232.30 $15.44 1.54¢ 
Note 61 Mfgr? UDMA  17.3 gigabytes $215.00 $14.29 1.43¢ 
Note 64 Mfgr?  20.4 gigabytes $211.99 $11.95 1.20¢ 

2000 April 1     
Note 69 IBM  20.5 gigabytes $279.00 $15.65 1.57¢ 
Note 69 Maxtor  15.2 gigabytes $199.00 $15.06 1.51¢ 
Note 70 Maxtor 7200 rpm  20.0 gigabytes $259.00 $14.89 1.49¢ 
Note 70 Maxtor UDMA  15.0 gigabytes $192.00 $14.72 1.47¢ 
Note 70 Seagate UDMA  17.2 gigabytes $218.00 $14.58 1.46¢ 
Note 70 Seagate UDMA  28.0 gigabytes $349.00 $14.33 1.43¢ 
Note 68   17.3 gigabytes $215.00 $14.29 1.43¢ 
Note 70 IBM UDMA 5400 rpm  20.3 gigabytes $245.00 $13.88 1.39¢ 
Note 70 Maxtor UDMA  17.0 gigabytes $204.00 $13.80 1.38¢ 
Note 70 Maxtor 7200 rpm  27.0 gigabytes $320.00 $13.63 1.36¢ 
Note 68   20.4 gigabytes $239.00 $13.47 1.35¢ 
Note 70 Maxtor UDMA  36.5 gigabytes $411.00 $12.95 1.30¢ 
Note 70 Maxtor UDMA  27.0 gigabytes $299.00 $12.74 1.27¢ 
Note 70 Western Digital UDMA  20.0 gigabytes $218.00 $12.54 1.25¢ 
Note 70 Maxtor UDMA  20.0 gigabytes $217.00 $12.48 1.25¢ 
Note 70 Maxtor UDMA  30.0 gigabytes $308.00 $11.81 1.18¢ 

 
 

2000 May 12 
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Note 65 Western Digital 
Ultra ATA/66 5400 rpm  13.6 gigabytes $179.99 $15.22 1.52¢ 

Note 65 Maxtor 
UDMA/66 7200 rpm  30.0 gigabytes $319.99 $12.27 1.23¢ 

Note 66 Maxtor 
UDMA/66 7200 rpm 3 40.0 gigabytes $399.99 $11.50 1.15¢ 

2000 June 2     

Note 67 Maxtor 
UDMA/66 5400 rpm 3 15.0 gigabytes $189.99 $14.57 1.46¢ 

2000 August 1     
Note 73 Samsung  15.0 gigabytes $162.00 $12.42 1.24¢ 
Note 74 Maxtor IDE 7200rpm  30.5 gigabytes $298.00 $11.24 1.12¢ 
Note 73 Samsung  20.0 gigabytes $175.00 $10.06 1.01¢ 

2000 August 19-20     
Note 72 Maxtor 7200rpm 9ms  40.9 gigabytes $388.00 $10.91 1.09¢ 
Note 71 Maxtor 5400rpm  15.3 gigabytes $144.00 $10.82 1.08¢ 
Note 72 Maxtor 7200rpm 9ms  30.7 gigabytes $278.00 $10.41 1.04¢ 
Note 71 Maxtor 5400rpm  20.4 gigabytes $164.00 $9.25 0.925¢ 
Note 71 Maxtor 5400rpm  30.7 gigabytes $214.00 $8.02 0.802¢ 

2000 August 25     
Note 75 Maxtor 5400rpm  15.0 gigabytes $149.99 $11.50 1.15¢ 
Note 75 Maxtor 7200rpm  40.0 gigabytes $349.99 $10.06 1.01¢ 

Note 75 Maxtor 7200rpm 
UDMA/66  30.0 gigabytes $249.99 $9.58 0.958¢ 

 
The right-hand column (below), states 

the storage capacity, in megabytes, 
available at a retail cost of one cent. 

 
"Price of drive" is the store price, excluding sales tax. 
"Cost per gigabyte" and "Megabytes for one cent" are 
stated with 15% sales tax included (purchaser's cost).  

 
 

Source Manufacturer 
W
 
y 

Capacity Price of  
Drive 

Cost per 
GB 

MB 
for 
1¢ 

2000 October 27     
Note 76 Maxtor 7200rpm  30.7 gigabytes $244.00 $9.14 1.09 
Note 76 Maxtor 7200rpm  40.9 gigabytes $318.00 $8.94 1.12 
Note 76 Maxtor 5400rpm  61.4 gigabytes $398.00 $7.45 1.34 
Note 76 Maxtor 5400rpm  81.9 gigabytes $518.00 $7.27 1.37 
Note 76 Maxtor 5400rpm  30.7 gigabytes $194.00 $7.27 1.38 
Note 76 Maxtor 5400rpm  40.9 gigabytes $254.00 $7.14 1.40 

2000 November 1     
Note 77 Maxtor 7200rpm UDMA/66  30.0 gigabytes note 77 $7.88 1.27 
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APPENDIX B 
TIMING DIAGRAM FOR OV5017 CMOS CAMERA 
SOURCE: CONFIDENTIAL PRELIMINARY PRODUCT SPECIFICATION OCTOBER 1997 V1.6 
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APPENDIX C 
SERIAL CODE CONVERSION FROM BINARY TO BCD 
SOURCE: PETER ALFKE AND BERNIE NEW, XILINX APPLICATION NOTE XAPP 029, 
OCTOBER 29, 1997 (VERSION 1.1) 
 
Binary-to-BCD conversion is performed in a modified shift register that successively 
doubles its BCD contents.  The binary data is shifted into the converter serially, MSB 
first.  Subsequent bits are entered into the shift register to fill the LSB vacated by the 
doubling.  The conversion is complete when all bits of the binary input have been 
entered, at which time the BCD result is available in parallel form.  Each input bit will 
have been doubled and redoubled to regain its original binary weight, but in BCD format.  
 
To remain a valid BCD number when doubled, a BCD digit of 5 or greater must not just 
be shifted, but must be converted into the proper BCD representation of its doubled 
value; along with a 1 being shifted into the next higher digit, a 5 is converted into a 0, a 6 
into a 2, a 7 into a 4, an 8 into a 6, and a 9 into an 8. 
 
The binary-to-BCD converter requires three CLBs for each BCD digit in the output.  To 
start a new conversion, all bits must be cleared. 
 
An Example 
 
1011 0110 (B 6 Hex, 182 Decimal) 
Requires 3 Decimal Digits to Represent 0xB6 
 
0000 0000 0000 0000 0000 0001 0000 0000 0010 
0000 0000 0101 0000 0001 0001 0000 0010 0010 
0000 0100 0101 0000 1001 0001 0001 1000 0010 
         1       8       2 
 
 
 
Component Diagram follows on the Next Page 
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