

FPGA Integrated Co-Design

Richard E. Haskell and Darrin M. Hanna
Computer Science and Engineering Department

Oakland University
Rochester, MI 48309
haskell@oakland.edu

Abstract

The main problem in hardware/software co-design is
how to design an embedded system that contains both
hardware in the form of FPGAs or ASICs and a
microprocessor for which software must be written. A
critical decision that has a profound effect on overall
system cost is how to partition the system into its
hardware and software components. A mistake made in
this decision, which must be corrected by reworking the
entire design, can add significant delay and cost to the
design process. The longer the irrevocable decision of
how to partition the hardware and software can be
delayed, the better is the chance to keep overall system
cost to a minimum. This paper describes an approach
that has been tested in a graduate course on FPGA design
that will allow the hardware/software partition decision
to be delayed to the very end of the design process.

1. Introduction

A typical embedded system contains a micro-
processor and possibly an FPGA. Microcontrollers such
as the Motorola 68HC12 contain integrated modules for
implementing parallel and serial I/O, A/D conversion,
and various timing functions [1]. While these functions
are convenient to have available, they may not provide
all the hardware functions needed for a particular design.
Such a microcontroller will certainly include some
functions that are not actually used in a particular design.

As the size of an FPGA (in terms of the number of
equivalent gates) has increased while its cost has
decreased, it is becoming feasible to consider putting all
functions, including a microprocessor core, into the same
FPGA forming a true System-on-a-Chip (SOC). The
software running on the microprocessor core would also
be stored in the form of instructions in the same FPGA.

VHDL is used to design all the hardware, including
the microprocessor core, that is synthesized to the FPGA.
The microprocessor core is a stack-based computer that
will efficiently execute Forth code. A program written in

Forth can be translated to a VHDL program that will
synthesize only the hardware necessary to implement the
particular Forth program. Because the Forth software
program ends up as just more VHDL code that can be
simulated and synthesized with the rest of the hardware
design, the boundary between hardware and software has
become almost entirely obliterated. This has the
advantage of delaying (or avoiding) the
hardware/software partition decision. This is possible
because the same person is designing both the hardware
and software as a unified whole. Changes can be made
at any point in the design process as simulations and
synthesis tests provide information about speed and area
tradeoffs.

2. An Elastic Microprocessor Core

Students in a junior-level course at Oakland

University have designed an 8-bit microcontroller, called
W8X, using VHDL and implemented it in a XILINX
FPGA [2]. This microcontroller contains a 4-element
register array data stack in which all Forth stack
manipulation words can be executed in a single clock
cycle. It also contains a 16-word return stack, an ALU, a
program counter, a program ROM, an instruction
register, and a controller. RAM and I/O registers can be
added to this basic design.

This microprocessor core has been enhanced in a
graduate course in FPGA design. The WnZ
microprocessor core can have an arbitrary bus width.
The ALU has been replaced with a Function Unit that
implements all Forth arithmetic, logical, relational, and
shifting operations. However, for a given Forth program
only those operations that are actually used will be
synthesized from the VHDL code. This will reduce the
size of both the Function Unit and the controller that
implements the instructions.

Table 1 shows the Forth words that are implemented
in the WnZ. Each of the instructions in this table, except
for UM* and UM/MOD are implemented in a single
clock cycle. For the W8Z the instruction UM* will

mailto:haskell@oakland.edu

multiply two 8-bit unsigned numbers and produce a 16-
bit result in 10 clock cycles using the single-clock-cycle
instruction mpp (multiply partial product). The
instruction UM/MOD will divide a 16-bit unsigned
number by an 8-bit unsigned number and produce an 8-
bit quotient and an 8-bit remainder in 10 clock cycles
using the single-clock-cycle instruction shldc (shift left
division conditional).

Table 1 Forth words implemented in the W8Z
 - 2* INVERT SWAP
+ 2/ LIT TRUE
< 2DROP LSHIFT TUCK
<= AGAIN NEXT U<
<> AND NIP U<=
= C! OR U>
> C@ OVER U>=
>= DROP R@ U2/
>R DUP R> UM*
0< ELSE R>DROP UM/MOD
0= FALSE REPEAT WHILE
1- FOR ROT XOR
1+ IF RSHIFT

Special purpose I/O registers can be implemented to

meet specific needs. For example, the top of the data
stack has been implemented as an SPI register that
allows the microcontroller to communicate with devices
with a SPI serial interface [2].

3. FPGA Co-Design Example

As a simple co-design example consider the problem

of making the eight LEDs on the Digilent Digilab XL
board [4] cycle through the 16 states shown in Figure 1
with about a half-second delay between states. With the
elastic microprocessor core in place the Forth program
shown in Figure 2 will produce this pattern. The
synthesized design used 212 CLBs, about 53% of the
CLBs in a Xilinx 4010E FPGA.

∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
 ∗ ∗ ∗ ∗ ∗ ∗ ∗
 ∗ ∗ ∗ ∗ ∗ ∗
 ∗ ∗ ∗ ∗ ∗
 ∗ ∗ ∗ ∗
 ∗ ∗ ∗
 ∗ ∗
 ∗

Figure 1 LED Display Sequence

HEX
: MAIN (--)
 BEGIN
 80
 8 FOR
 DUP LD! DELAY 2/
 NEXT
 8 FOR
 U2/ DUP LD! DELAY
 NEXT
 DROP
 AGAIN ;

: DELAY (--)
 F0 FOR NEXT ;

Figure 2 Forth program for LED display

After writing and testing the program in Figure 2 a

pure hardware solution to the problem was implemented
using a single Johnson counter. This solution took only
6 CLBs or 1% of the CLBs in the XC4010E FPGA.

The point of this simple example is that the same
person implemented both solutions in a matter of
minutes, not hours or days, and the same VHDL
simulation tools were used to debug both the “software”
and “hardware” solutions.

4. Conclusions

Students in a graduate course on FPGA design at
Oakland University have designed a microprocessor core
that will execute most Forth instructions in a single clock
cycle. Forth programs written for this microprocessor
core are translated to VHDL code that will synthesize
only those instructions required for a particular program.
Students are able to design specific hardware
components needed for a particular design and then
define new instructions to interface the microprocessor
core with the new hardware component. This flexibility
defines a new hardware/software co-design paradigm.

References
[1] Haskell, R. E., Design of Embedded Systems Using

68HC12/11 Microcontrollers, Prentice Hall, Upper Saddle
River, NJ, 2000.

[2] Haskell, R. E., and D. M. Hanna, “Implementing a Forth
Engine Microcontroller on a Xilinx FPGA,” Looking
Forward – The IEEE Computer Society’s Student
Newsletter (A Supplement to Computer), Vol. 8, No. 1,
Spring 2000.

[3] Clarke, Peter, “Xilinx Launches Support for Internet
Reconfigurable Logic,” EE Times, May 21, 1999.

[4] http://www.digilent.cc/, Visited 3/8/20001.

http://www.digilent.cc/

	Abstract
	1. Introduction
	Table 1 Forth words implemented in the W8Z

	References

