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ABSTRACT 
A clustering technique based on a fuzzy equivalence relation is used to 
characterize temporal data.  Data collected during an initial time period are 
separated into clusters.  These clusters are characterized by their centroids.  
Clusters formed during subsequent time periods are either merged with an 
existing cluster or added to the cluster list.  The resulting list of cluster 
centroids, called a cluster group, characterizes the behavior of a particular set of 
temporal data.  The degree to which new clusters formed in a subsequent time 
period are similar to the cluster group is characterized by a similarity measure, 
q.  This technique has been applied to the problem of detecting driver behavior. 

INTRODUCTION 
     Many different clustering techniques have been used for analyzing 
multivariate data [1].  These methods have been applied to problems in 
knowledge discovery and data mining [2].  The standard clustering algorithms 
assign each data sample to one of many clusters in which all samples in a 
particular cluster are similar in some sense.  Fuzzy clustering algorithms do not 
insist that each sample must belong to only one cluster, but rather samples can 
belong to more than one cluster to varying degrees.  The most well known fuzzy 
clustering algorithm is the fuzzy c-means algorithm [3] that requires that the 
number of cluster centers, c, be given.  A different clustering approach that does 
not require the number of clusters to be known beforehand is based on the use of 
fuzzy equivalence relations [4, 5].  In this method a fuzzy compatibility relation 
matrix, Q, is formed in which each entry in the matrix represents the degree to 
which two different samples are close to each other.  A value of 1 (on the main 
diagonal) represents the degree to which a sample is close to itself, while a value 
of 0 represents samples separated by the largest possible distance in the data set.  
The transitive closure of Q will induce crisp partitions of the data (resulting in 
different numbers of clusters) by choosing different α-cuts of a fuzzy set [5].  
Clusters formed in this manner will be used in this paper to characterize pattern 
behavior in temporal data. 
     This research was motivated by the desire to characterize a driver’s behavior 
by monitoring signals that are already being measured by the car’s computer 
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system.  Many techniques have been suggested for monitoring the alertness of a 
driver [6].  Suppose that the computer in an automobile could tell who was 
driving the car from the way the car was being driven, or more generally, the 
type of driver (aggressive, cautious, inattentive, etc.).  With this type of 
information the car might be able to adjust its control algorithm to optimize fuel 
consumption, minimize wear, or adjust an active suspension system to improve 
safety.  Once recognizing a particular driving pattern, an unexpected deviation 
from this pattern might suggest a drowsy driver or some other type of abnormal 
behavior. 
     This paper will focus on the use of clusters formed from a fuzzy equivalence 
relation matrix in an attempt to characterize a driving pattern as a function of 
time.  A different approach was taken by Peltier and Lajon [7].  They describe a 
fuzzy pattern recognition algorithm in which they use a neural net based 
architecture together with a real-time algorithm for detecting abrupt changes in a 
driving pattern.   
     When a driver starts to drive a car, data are collected for an initial amount of 
time, ∆t1, (say less than a minute).  These data are clustered to form c1 clusters.  
During the next interval of time, ∆t2, new data are collected and clustered to 
form c2 clusters.  If the driving activity during ∆t2 is similar to the driving 
activity during ∆t1 then the c2 clusters (as specified by their centroids) will be 
similar to the c1 clusters.  On the other hand, if the driving activity has changed 
somewhat, some of the c2 clusters will be different from the c1 clusters.  Clusters 
in c2 that are close to clusters in c1 will be merged with the corresponding 
clusters in c1.  The remaining clusters in c2 will be added to the c1 clusters to 
form a new, larger c1 cluster set. This process is continued for each successive 
interval of time, ∆tn, with new clusters either being merged with an existing 
cluster or added to the cluster set.  After a while, the resulting group of clusters, 
called a cluster group, will characterize a particular driver.  This method will 
allow a large amount of data collected over a period of time to be clustered in a 
manner that uses a manageable amount of data at each clustering step.  The 
same process can be carried out for a different driver.  A different cluster group 
will characterize this second driver. 
     Once a cluster group is formed, new data that are collected during a 
subsequent interval of time, ∆tn, will form its own cluster set.  In this paper we 
will introduce a similarity measure, q, that will measure the degree to which this 
new cluster set “fits in” with the cluster group.  By using this similarity measure 
one can determine which of several cluster groups provides the best fit for a 
particular cluster set.  If different cluster groups represent different drivers, then 
by voting over several ∆tn intervals it should be possible to determine which 
driver is driving the car.  By the same token, once the cluster group has 
stabilized for a particular driver and a new cluster appears that is significantly 
different from what has been seen before, this may indicate some type of change 
such as a lack of alertness on the part of the driver. 
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CLUSTERING BASED ON A FUZZY EQUIVALENCE RELATION 
     This section will describe a clustering technique in which multivariate data 
are used to form a fuzzy equivalence relation matrix.  Different α-cuts of this 
fuzzy set will produce a different number of clusters of the original data.  Given 
a data set {(x11,...,x1p),...,(xn1,...,xnp)} with n samples over a p-dimensional feature 
space, P, a fuzzy compatibility relation matrix Q with dimension n x n is 
computed.  Define Mk and mk as the maximum and minimum data point xjk for 
each feature k in P as 
and 

  

Define the i,j-th entry in Q as 
 

to form the fuzzy compatibility relation matrix Q.  Each qij represents the degree 
to which data point xi is close to data point xj.  The distance measure in Eq. (1) 
will be the Hamming distance for s = 1 and the Euclidean distance for s = 2.  In 
our experiments we will use a value of s = 1. 
     The matrix Q is symmetric and reflexive.  However, the generalization of 
transitivity to fuzzy relations is not unique [5].  One common definition is to say 
that a fuzzy relation Q is transitive if and only if 
 

     The right-hand side of this inequality represents the composition of relation 
Q with itself, Q ° Q.  The transitive closure, T, of Q can be computed by the 
following algorithm. 
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From the transitive closure matrix T with elements tij, a collection of clusters, C, 
is formed for a specific membership degree α.  Set Ck∈C such that 

forms a fuzzy equivalence class.  Define a fuzzy equivalence cluster Wi by 
{(xw1,...,xwP) | w ∈ Ci}. 
 
Multiple Cluster Sets 
 
Define the centroid, ai, of cluster Wi by 
 
   ai = 
 
where |Ci| denotes the cardinality of cluster set Ci.  Let Aα = {a1, …, am} be the 
set of fuzzy cluster centroids resulting from data collected during a time interval, 
∆tk1 and Bα = {b1, …, bn} be a second set of fuzzy cluster centroids resulting 
from data collected during a time interval, ∆tk2 where k2 > k1 with accumulative 
maximums and minimums for each feature, maxAk, maxBk, minAk, and minBk, 
where, without loss of generality,  

 and 
 

and weight vectors Waα = {wa1, …, wam} and Wbα = {wb1, …, wbn} given, without 
loss of generality, by 

 
Define rk as the global range,  
 

 
Form the fuzzy relation matrix, Z, by 
 
 

 
where p is the dimension of the feature space and s = 1 for a Hamming distance 
or s = 2 for a Euclidean distance.  Form the projections 

(2)                       

/1

1

1
1

)(
s

p

k

s

krpijz ikjk ba
∑
=

−=












 −

α≥∈∀ ijtkCji ,,

∑
∈ iCj jx

iC

1

)min,min(min)max,max(max BkAkBkAkkr −=

jk
x

iCjiAk ∈
= minminmin

jk
x= maxmaxmax

CjiAk ∈ i

}{ iCaiwaiwaW ==α



 5

 
 
and 

(4)

(3)                  max ijz
i

A
i =ρ

                   max ijz
j

B
i =ρ

 
 
 
Merging Cluster Sets 
  
Using the centroid relation matrix, Z, and ρi

B, a new collection of clusters ℵt+1 is 
constructed with threshold, β.  For all ρi

B > β, aj is replaced as follows, 
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Accordingly, waj is updated with wbi + waj. 
Finally, form  
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for a new collection of clusters representing time-series ∆tk1 and ∆tk2.  This 
method is repeated for each successive time interval, ∆t. 
 
Cluster Similarity Measure 
 
Let Aα be the set of clusters formed by adding and merging cluster sets over a 
number of time intervals.  Let Bα be the cluster set during a new time interval, 
∆tn.  A fuzzy relation matrix Z can be computed from Eq. (2) and the projection 
ρi

B is given by Eq. (4).  The similarity measure q, is defined as the degree to 
which cluster set Bα is similar to cluster set Aα as 
 

Examples of using this similarity measure will be given in the following section. in
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EXPERIMENTAL RESULTS 
     To test the theory given in the previous section we conducted two 
experiments.  The first experiment used the well-known Iris data as surrogate 
driving data in order to show the behavior of the algorithms in a simple 
situation.  The second experiment used data collected from a driver simulator. 
 
Iris Data 
     The well-known iris data [8, 9] contains 50 samples for each of three species 
of iris plants:  Iris setosa, Iris versicolor, and Iris virginica.  Each measurement 
contains four features representing sepal length, sepal width, petal length, and 
petal width.  It is well known that the setosa class is linearly separable from the 
other two classes.  The clusters associated with the versicolor and virginica 
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classes overlap somewhat and are not linearly separable.  While most clustering 
algorithms try to cluster these three classes into three clusters, our interest is to 
use sequences of this data to simulate different temporal data. 
     To simulate a possible driving situation we took the first 15 samples of setosa 
together with the first 15 samples of versicolor to represent driving during ∆t1.  
We would expect this to form two distinct clusters representing two different 
driving situations.  The next 15 samples of setosa and versicolor represented the 
data in ∆t2 and the last 20 samples of setosa and versicolor represented the data 
in ∆t3.  We call this the setver data set and it represents Driver 1.  A similar set 
of data (called setvir) was made from the setosa and virginica data sets and 
represents Driver 2.  Note that both data sets contain the same setosa data and 
therefore should have a common cluster.  This might represent driving along a 
straight road at a specific speed.  However, the clusters associated with 
versicolor and virginica are slightly different but can be distinguished using the 
similarity measure, q, given in Eq. (7). 
     The ∆t1 samples (set S1) from setver (Driver 1) were clustered using the 
clustering algorithm described above with a value of α = 0.83.  This produced 
the two clusters labeled S1 in Table 1.  The first cluster contains the setosa data 
and the second cluster contains the versicolor data.  The ∆t2 and ∆t3 samples 
(sets 2 and 3) produced the two-cluster sets labeled S2 and S3 in Table 1.  The 
two clusters in set 2 were then merged with the two clusters in set 1 using Eq. 
(6) with a value of β = 0.8 to produce the three-cluster group labeled G12 in 
Table 1.  Note that the two setosa clusters were merged while the two versicolor 
clusters remained unique. A similar set of clusters was formed from the setvir 
data set representing Driver 2. 
     The three cluster sets, S1-S3, from each of the two data sets, setver (Driver 1) 
and setvir (Driver 2), were compared with the G12 clusters from both setver 
(Driver 1) and setvir (Driver 2).  The resulting similarity values, q, from Eq. (7) 
are shown in Figure 1.  One can think of sets 1 and 2 as the “training” sets for 
setver (Driver 1) and setvir (Driver 2), and the unknown set 3 as the test 
samples.  In both cases the values of q for the same driver are larger than the 
values of q for the other driver, making the recognition possible. 
 

Table 1  Clusters formed from the setver data set 
Set/ 

Group 
No.  of 
Samples 

Cluster Centroids Class 

S1 15 4.9  3.3  1.4  0.2 Setosa 
 15 6.0  2.8  4.2  1.3 Versicolor 

S2 15 5.1  3.6  1.5  0.3 Setosa 
 15 6.2  2.8  4.4  1.4 Versicolor 

S3 20 5.0  3.4  1.5  0.2 Setosa 
 20 5.7  2.7  4.2  1.3 Versicolor 

G12 15 6.0  2.8  4.2  1.3 Versicolor 
 30 5.0  3.5  1.5  0.2 Setosa 
 15 6.2  2.8  4.4  1.4 Versicolor 
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Figure 1  Similarity measurements with respect to the setver and setvir G12 
cluster groups 

 
Driving Simulator Data 
     To test the feasibility of using fuzzy clustering to characterize driver behavior 
a series of experiments were conducted on a Virtual Vehicle System Simulator 
(VVSS) [10, 11] at Oakland University.  The VVSS is a networked distributed 
modular real-time driving simulator that immerses a human operator in various 
driving scenarios.  It provides visual, audio, and motion feedback to the operator 
as the virtual car is being driven.  Validated dynamic models for the vehicle are 
employed for the simulation.  Simulated data for the vehicle states can readily be 
collected from the "virtual driving test runs.” 
     The shape of the driving track used in the experiments is shown in Figure 2.  
Three separate drivers drove around the track.  Real-time measurements of 
speed, acceleration, and steering angle were collected at a rate of 5 samples per 
second for approximately two complete trips around the track.  The data for each 
driver were divided into ten time segments with cluster sets formed for each 
time segment using a value of α = 0.9.  After removing clusters made from a 
single data point the number of clusters remaining in these data sets ranged from 
1 to 4.  The data from the first five time segments (representing approximately 
the first time around the track) were merged with a value of β = 0.9 to form a 
cluster group for each of the three drivers.  The total number of clusters in these 
cluster groups was 6 for driver 2 and 9 for drivers 1 and 3. 
     The cluster sets 6-10 (representing approximately the second time around the 
track) were used to test the recognition capability of these cluster groups.  These 
five cluster sets for each driver were compared with each of the three training 
cluster groups (from the first time around the track) using the similarity 
measure, q, given in Eq. (7).  The resulting values of q ranged from 0.79 to 0.97.  
For each segment the three driver cluster sets were compared with the three 
driver cluster groups in an attempt to identify the driver.  For example, in 
segment 7 the cluster set for driver 3 was compared with the cluster groups for 
drivers 1, 2, and 3.  The value of q for the driver 1 group was 0.85, for the driver 
2 group was 0.84, and for the driver 3 group was 0.97.  Therefore, the predicted 
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driver in this segment is driver 3, which is correct.  The predicted drivers in 
segments 6-10 for each of the three drivers are shown in Table 2.  By taking a 
vote over all five segments, each driver is correctly identified the second time 
around the track. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2  Shape of Driving Track 
 
 

Table 2  Predicted Drivers for Segments 6-10 
Segment Driver 1 Driver 2 Driver 3 

6 Driver 3 Driver 2 Driver 2 
7 Driver 1 Driver 2 Driver 3 
8 Driver 1 Driver 3 Driver 2 
9 Driver 1 Driver 3 Driver 3 

10 Driver 3 Driver 2 Driver 3 
Predicted Driver Driver 1 Driver 2 Driver 3 

CONCLUSIONS 
     In this paper we have shown how clustering based on a fuzzy equivalence 
relation can be used to find pattern behavior in temporal data.  Its possible 
application to detecting driver behavior was discussed.  One advantage of the 
method is that large amounts of data that are arriving in real time can be 
absorbed by clustering small segments of data and merging the clusters into 
cluster groups that characterize a particular time sequence.  A similarity 
measure, q, was introduced that measures how closely a new cluster set matches 
(fits into) a larger cluster group.  This can be used to determine if the new 
cluster set belongs to a particular cluster group (e.g. is this the same driver?).  
The individual components of the fuzzy projection used to calculate q could be 
used to indicate when a new cluster that is different from existing clusters 
appears unexpectedly.  In the case of driving data this might indicate a change in 
driver behavior related to fatigue, for example. 
     Future research should collect a wider range of real-time data in an actual 
car.  This data should include signals that are likely to be different for different 
driving patterns.  In addition to detecting driver behavior, the behavior of the car 
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itself can be monitored using this method.  Such an intelligent vehicle might be 
able to warn the driver of needed maintenance before the car breaks down on the 
highway. 
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