
Implementing a Forth Engine
Microcontroller on a Xilinx FPGA

Richard E. Haskell and Darrin M. Hanna

Computer Science and Engineering Department
Oakland University

Rochester, Michigan 48309

Introduction

In a junior-level course in computer
hardware design it is useful to have students design a
real microprocessor and implement it in an FPGA.
Most real microprocessors can be categorized as
having either a complex instruction set computer
(CISC) architecture or a reduced instruction set
computer (RISC) architecture [1]. Both of these
architectures involve a set of registers and multiple
addressing modes. A simpler architecture that is
easier to implement in an FPGA is a stack-based
processor in which all arithmetic and logical
operations are performed on the top two elements of
a data stack. This architecture is ideally suited for
efficiently executing high-level Forth programs.

Forth is a programming language invented
by Chuck Moore in the late 1960s while
programming minicomputers in assembly language.
His idea was to create a simple system that would
allow him to write many more useful programs than
he could by writing his programs in assembly
language. The essence of Forth is simplicity --
always try to do things in the simplest possible way.
Forth is a way of thinking about problems in a
modular way. It is modular in the extreme.
Everything in Forth is a word and every word is a
module that does something useful. There is an
action associated with Forth words. The words
execute themselves. In this sense they are very
object-oriented. We send words parameters on the
data stack and ask the words to execute themselves
and send us the answers back on the data stack. We
really don't care how the word does it -- once we
have written it and tested it so we know that it works.

Forth has been implemented in a number of
different ways. Chuck Moore's original Forth had
what is called an indirect-threaded inner interpreter.
Other Forths have used what is called a direct-
threaded inner interpreter. These inner interpreters
get executed every time you go from one Forth word
to the next; i.e. all the time. A unique version of
Forth called WHYP (pronounced whip) has recently
been described in a new book on using the Motorola
68HC12 microcontroller in embedded systems [2].

WHYP stands for Words to Help You Program.
WHYP is what is called a subroutine-threaded Forth.
This means that the subroutine calling mechanism
that is built into the 68HC12 is what is used to go
from one WHYP word to the next. In other words,
WHYP words are just regular 68HC12 subroutines.

Inasmuch as Forth (and WHYP) programs
consist of sequence of words, the most often executed
instruction is a call to the next word. This means
executing the inner interpreter (NEXT) in traditional
Forths, or calling a subroutine in WHYP. Up to 25%
of the execution time of a typical Forth program is
used up in calling the next word. To overcome this
problem, Chuck Moore designed a computer chip,
called NOVIX, in the mid-eighties which could call
the next word (equivalent to a subroutine call) in a
single clock cycle [3]. Many of the Forth primitive
instructions would also execute in a single clock
cycle. The design of the NOVIX chip was eventually
sold to Harris Semiconductor where it was
redesigned as the RTX 2000 [4]. Similar 32-bit Forth
engines were also developed [5-7]. In the late
eighties Chuck Moore designed a 32-bit
microprocessor called ShBoom that had 64 8-bit
instructions and was designed to interface to DRAM
[8]. Later Chuck Moore and C. H. Ting designed the
MuP21 that has been described by Ting [9, 10]. The
W8X microcontroller described in this article is
based on ideas developed in these early Forth
engines. It is designed using VHDL [11] and has
been implemented in a Xilinx FPGA by students in a
junior-level course at Oakland University.

The W8X Microcontroller

Figure 1: The W8X Microprocessor

The W8X is a high-performance microcontroller that
can be implemented to perform useful functions on a
Xilinx 4000 series FPGA. The overall structure of the
W8X is shown in Figure 1. The data busses in this figure
are 8 bits wide and each instruction contains 8 bits. The
W8X instruction set is given in Table 1.

Table 1: W8X Instruction Set

Opcode Name Function

00 DUP Duplicate T and push data stack.
01 DROP Drop T and pop data stack.
02 SWAP Exchange T and N1.
03 NIP Drop N1 and pop rest of data stack.
04 ROT Rotate top 3 elements on stack

clockwise.
05 MROT Rotate top 3 elements on stack

counter-clockwise.
06 OVER Duplicate N1 into T and push data

stack.
07 TUCK Duplicate T into N2 and push rest of

data stack.
08 NOP No operation
09 TOR “To-R” Pop T and push it on return

stack.
0A RFROM “R-from” Pop return stack R and

push it into T.
0B RFETCH “R-fetch” Copy R to T and push

register stack
10 LSL Logic shift left T
11 ASR Arithmetic shift right T
12 LSR Logic shift right T
13 ROTR Rotate right T (carry unchanged)
14 ROTL Rotate left T (carry unchanged)
20 ZEROS Clear all bits in T to ‘0’.
21 PLUS Pop N1 and add it to T.

22 MINUS Pop T and subtract it from N1.
23 ANDD Pop N1 and AND it to T.
24 ORR Pop N1 and AND it to T.
25 XORR Pop N1 and AND it to T.
26 INVERT Complement all bits of T.
27 ONES Set all bits in T to ‘1’.
28 ZEQUAL TRUE if all bits in T are ‘0’.
29 ZLESS TRUE if sign bit of T is ‘1’.
2A CTOT Push carry bit to top of register stack
2B 1PLUS Add 1 to T
2C 1MINUS Subtract 1 from T
2D mpp Multiply partial product
2E shld Shift left T and N1 for division
2F subc If T > N1, subtract N1 from T and

set N1(0) to '1'
40 LIT Load inline literal to T and push data

stack.
31 C@ Fetch the byte at addr T in RAM and

load it into T
32 C! Store the byte in N1 at the address T
41 JMP Jump to inline address
42 JZ Jump if all bits in T are ‘0’
43 JNC Jump if carry is cleared
44 DRJNE Decrement R and jump if R is not

zero
45 CALL Call subroutine
46 RET Subroutine return

Return Stack

R

P reg

I Reg

Controller

Program
ROM

P mux

R mux

plus1

mux4g

Reg_Array

ALU

T mux
creg

A Reg

minus1

The data stack in the W8x is a register array designed
with four multiplexers combined with four registers.
The multiplexer for a stack register switches the
output from any of the other three registers to its
input as shown in Figure 2.

clkclk
load(0)

sel0(1:0)

R0

S0

clr

clk
load(1)

sel1(1:0)

R1

S1

clr

clk
load(2)

sel1(1:0)
S2

R2
clr

load(3)

sel3(1:0)

R3

S3

clr

d0(3:0)

q0(3:0) q1(3:0) q2(3:0) q3(3:0)

3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

d1(3:0) d2(3:0) d3(3:0)

y0(3:0) y1(3:0) y2(3:0) y3(3:0)

Figure 2: A Register Array Data Stack

This provides flexibility to implement the stack
instructions in one clock cycle. Although each of the
stack registers have the capability, by design, to be
loaded, the W8x only uses the load provided to the
register designated as the top of the stack. This
design provides an 8x4 register array data stack and
an 8x16 return stack. The return stack is not an
array-bases stack since the flexibility to manipulate
individual stack data is not necessary to obtain single
clock-cycle instructions. The input to the data stack
is multiplexed from two sources, the ALU and a 4-

input multiplexer. The ALU performs the operations
shown below in Table 2. C1: process(current_state, M)

begin
case current_state is
when fetch =>

if M(6) = ‘1’ then
 next_state <= exec;

else
 next_state <= exec_fetch;

end if;
when exec_fetch =>

if M(6) = ‘1’ then
 next_state <= exec;

else
 next_state <= exec_fetch;

end if;
when exec =>

 next_state <= fetch;
end case;

end process C1;

fetch

exec
exec_
fetch

M(6)=‘1’M(6)=‘0’

M(6)=‘0’ M(6)=‘1’

Table 2: W8X ALU Operations
ALU Select Operation

"000"
"001"
"010"
"011"
"100"
"101"
"110"
"111"

all zeros
a + b
b - a
a and b
a or b
a xor b
not a

all ones
 Figure 4: Three-State VHDL implementation
The 8-bit inputs into the ALU are T and N, the top
and second elements in the stack, respectively. The
4-input multiplexer provides an external signal, the
carry out from the ALU, the top of the return stack,
and the current value in the program memory
addressed by the program counter. The program for
the W8X is stored in a program ROM. The ROM is
addressed by the program counter which can be
loaded with a value from the return stack or from
memory for return from subroutine instructions or
instructions that may jump to an inline address. The
return stack can be loaded with values from the top of
the data stack and the program counter plus one. The
W8X microprocessor is controlled by a
microcontroller and instruction register. The
microcontroller is the mealy state machine shown
below in Figure 3.

These multi-cycle instructions have been assigned
opcodes with a '1' in the 6th bit position, the second
most significant bit of the opcode. For instructions
requiring two clock cycles, the controller executes
the current instruction without 'fetching' the next
word from the program ROM. On the second clock
cycle, the microcontroller returns to the fetch state to
'fetch' the next instruction.

Extending the W8X

In addition to implementing, simulating, and
synthesizing the W8X controller in VHDL on a 4000
series FPGA, students are required to complete a
design project that extends the W8X controller. For
example, the top of stack register in the Register
Array was altered to be an SPI (serial peripheral
interface). The new SPI top of stack register is
shown below in Figure 5.

St
at

e
R

eg
is

te
r

C1

x(t)

s(t+1)

s(t)
z(t)

clk

clr

present
 statepresent

 input

next
state

C2

process(clk, init)

process(present_state, x)

process(present_state, x)

LBF

SPI Register

CLR

CPOL

CPHA

MISO

T_IN

LEFT
RIGHT
SPI_EN

MOSI Figure 3: The W8X State Machine

This state machine has three states: Fetch, Execute,
and Execute-Fetch. A portion of its VHDL
implementation is shown in Figure 4. The controller
begins in the fetch state to 'fetch' the next instruction
from the program ROM. If the instruction requires
only a single clock instruction to execute, the current
instruction is executed and the next instruction is read
from the program ROM in the Execute-Fetch state.
The instructions continue to be executed and fetched
at the same time until it is presented with an
instruction that requires more than one clock cycle.

SPI_CLK CLK T

Figure 5: An SPI Register

This SPI register was implemented as the top of the
data stack. An instruction, SPI was added to the
instruction set. Obviously, this instruction requires
more than one or two clock cycles. The
microcontroller was modified to remain in the
execute state for the current number of clock cycles

to complete the SPI transmission. The SPI runs in all
four standard SPI modes: active high and low with
CPHA = 1 and active high and low with CPHA = 0.
With this extension, the W8X will now accept data
through the SPI directly into the top of the stack.
This design was synthesized on a Xilinx 4010 FPGA
and simulated using the Aldec Active VHDL
simulator. A simulation is shown below in Figure 6.

10. Ting, C. H., "P16 Microprocessor Design in
VHDL," in More on Forth Engines, Vol. 22,
pp. 44-51, Sept. 1997.

11. Ashenden, P. J., The Designer's Guide to
VHDL, Morgan Kaufmann, San Francisco,
1996.

Figure 6: SPI Simulation CPHA=0 CPOL=0

References

1. Mano, M. M. and C. R. Kime., Logic and
Computer Design Fundamentals, 2nd Ed.,
Prentice Hall, Upper Saddle River, NJ, 2000.

2. Haskell, R. E., Design of Embedded Systems
Using 68HC12/11 Microcontrollers, Prentice
Hall, Upper Saddle River, NJ, 2000.

3. Golden, J., Moore, C. H., and Brodie, L., "Fast
Processor Chip Takes Its Instructions Directly
from Forth," Electronic Design, March 21,
1985, pp. 127-138.

4. Hand, T., "The Harris RTX 2000
Microcontroller," Journal of Forth Application
and Research, Vol. 6, No. 1, pp. 5-13, 1990.

5. Koopman, Jr., P., "32-Bit RTX Chip
Prototype," Journal of Forth Application and
Research, Vol. 5, No. 2, pp. 331-335, 1988.

6. Hayes, J. R., Fraeman, M.E., Williams, R. L.,
and Zaremba, T., "A 32-Bit Forth
Microprocessor," Journal of Forth Application
and Research, Vol. 5, No. 1, pp. 39-48, 1987.

7. Hayes, J. and Lee, S., "The Architecture of the
SC32 Forth Engine," Journal of Forth
Application and Research, Vol. 5, No. 4, pp.
49-71, 1989.

8. Moore, C., "ShBoom on ShBoom: A
Microcosm of Software and Hardware Tools,"
Proc. 1990 Rochester Forth Conference, pp.
21-27, June 12-15, 1990.

9. Ting, C. H., "P Series of Microprocessors," in
More on Forth Engines, Vol. 22, pp. 1-17,
Sept. 1997.

