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Introduction 
 

In a junior-level course in computer 
hardware design it is useful to have students design a 
real microprocessor and implement it in an FPGA.  
Most real microprocessors can be categorized as 
having either a complex instruction set computer 
(CISC) architecture or a reduced instruction set 
computer (RISC) architecture [1].  Both of these 
architectures involve a set of registers and multiple 
addressing modes.  A simpler architecture that is 
easier to implement in an FPGA is a stack-based 
processor in which all arithmetic and logical 
operations are performed on the top two elements of 
a data stack.  This architecture is ideally suited for 
efficiently executing high-level Forth programs. 

Forth is a programming language invented 
by Chuck Moore in the late 1960s while 
programming minicomputers in assembly language.  
His idea was to create a simple system that would 
allow him to write many more useful programs than 
he could by writing his programs in assembly 
language.  The essence of Forth is simplicity -- 
always try to do things in the simplest possible way.  
Forth is a way of thinking about problems in a 
modular way.  It is modular in the extreme.  
Everything in Forth is a word and every word is a 
module that does something useful.  There is an 
action associated with Forth words.  The words 
execute themselves.  In this sense they are very 
object-oriented.  We send words parameters on the 
data stack and ask the words to execute themselves 
and send us the answers back on the data stack.  We 
really don't care how the word does it -- once we 
have written it and tested it so we know that it works. 

Forth has been implemented in a number of 
different ways.  Chuck Moore's original Forth had 
what is called an indirect-threaded inner interpreter.  
Other Forths have used what is called a direct-
threaded inner interpreter.  These inner interpreters 
get executed every time you go from one Forth word 
to the next; i.e. all the time.  A unique version of 
Forth called WHYP (pronounced whip) has recently 
been described in a new book on using the Motorola 
68HC12 microcontroller in embedded systems [2].  

WHYP stands for Words to Help You Program.  
WHYP is what is called a subroutine-threaded Forth.  
This means that the subroutine calling mechanism 
that is built into the 68HC12 is what is used to go 
from one WHYP word to the next.  In other words, 
WHYP words are just regular 68HC12 subroutines.   

Inasmuch as Forth (and WHYP) programs 
consist of sequence of words, the most often executed 
instruction is a call to the next word.  This means 
executing the inner interpreter (NEXT) in traditional 
Forths, or calling a subroutine in WHYP.  Up to 25% 
of the execution time of a typical Forth program is 
used up in calling the next word.  To overcome this 
problem, Chuck Moore designed a computer chip, 
called NOVIX, in the mid-eighties which could call 
the next word (equivalent to a subroutine call) in a 
single clock cycle [3].  Many of the Forth primitive 
instructions would also execute in a single clock 
cycle.  The design of the NOVIX chip was eventually 
sold to Harris Semiconductor where it was 
redesigned as the RTX 2000 [4].  Similar 32-bit Forth 
engines were also developed [5-7].  In the late 
eighties Chuck Moore designed a 32-bit 
microprocessor called ShBoom that had 64 8-bit 
instructions and was designed to interface to DRAM 
[8].  Later Chuck Moore and C. H. Ting designed the 
MuP21 that has been described by Ting [9, 10].  The 
W8X microcontroller described in this article is 
based on ideas developed in these early Forth 
engines.  It is designed using VHDL [11] and has 
been implemented in a Xilinx FPGA by students in a 
junior-level course at Oakland University. 



The W8X Microcontroller 
 

Figure 1:  The W8X Microprocessor 
 

The W8X is a high-performance microcontroller that 
can be implemented to perform useful functions on a 
Xilinx 4000 series FPGA.  The overall structure of the 
W8X is shown in Figure 1.  The data busses in this figure 
are 8 bits wide and each instruction contains 8 bits.  The 
W8X instruction set is given in Table 1. 

 
Table 1:  W8X Instruction Set 

 
Opcode Name Function 

00 DUP Duplicate T and push data stack. 
01 DROP Drop T and pop data stack. 
02 SWAP Exchange T and N1. 
03 NIP Drop N1 and pop rest of data stack.   
04 ROT Rotate top 3 elements on stack 

clockwise. 
05 MROT Rotate top 3 elements on stack 

counter-clockwise. 
06 OVER Duplicate N1 into T and push data 

stack. 
07 TUCK Duplicate T into N2 and push rest of 

data stack. 
08 NOP No operation 
09 TOR “To-R”  Pop T and push it on return 

stack. 
0A RFROM “R-from”  Pop return stack R and 

push it into T. 
0B RFETCH “R-fetch”  Copy R to T and push 

register stack 
10 LSL Logic shift left T 
11 ASR Arithmetic shift right T 
12 LSR Logic shift right T 
13 ROTR Rotate right T (carry unchanged) 
14 ROTL Rotate left T (carry unchanged) 
20 ZEROS Clear all bits in T to ‘0’. 
21 PLUS Pop N1 and add it to T. 

22 MINUS Pop T and subtract it from N1. 
23 ANDD Pop N1 and AND it to T. 
24 ORR Pop N1 and AND it to T. 
25 XORR Pop N1 and AND it to T. 
26 INVERT Complement all bits of T. 
27 ONES Set all bits in T to ‘1’. 
28 ZEQUAL TRUE if all bits in T are ‘0’. 
29 ZLESS TRUE if sign bit of T is ‘1’. 
2A CTOT Push carry bit to top of register stack 
2B 1PLUS Add 1 to T 
2C 1MINUS Subtract 1 from T 
2D mpp Multiply partial product 
2E shld Shift left T and N1 for division 
2F subc If T > N1, subtract N1 from T and 

set N1(0) to '1' 
40 LIT Load inline literal to T and push data 

stack. 
31 C@ Fetch the byte at addr T in RAM and 

load it into T 
32 C! Store the byte in N1 at the address T 
41 JMP Jump to inline address 
42 JZ Jump if all bits in T are ‘0’ 
43 JNC Jump if carry is cleared 
44 DRJNE Decrement R and jump if R is not 

zero 
45 CALL Call subroutine 
46 RET Subroutine return 
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The data stack in the W8x is a register array designed 
with four multiplexers combined with four registers.  
The multiplexer for a stack register switches the 
output from any of the other three registers to its 
input as shown in Figure 2.   
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Figure 2: A Register Array Data Stack 
 
This provides flexibility to implement the stack 
instructions in one clock cycle.  Although each of the 
stack registers have the capability, by design, to be 
loaded, the W8x only uses the load provided to the 
register designated as the top of the stack.  This 
design provides an 8x4 register array data stack and 
an 8x16 return stack.  The return stack is not an 
array-bases stack since the flexibility to manipulate 
individual stack data is not necessary to obtain single 
clock-cycle instructions.  The input to the data stack 
is multiplexed from two sources, the ALU and a 4-



input multiplexer.  The ALU performs the operations 
shown below in Table 2. C1: process(current_state, M)

begin
case current_state is
when fetch =>

if M(6) = ‘1’ then
        next_state <= exec;

else
        next_state <= exec_fetch;

end if;
when exec_fetch =>

if M(6) = ‘1’ then
        next_state <= exec;

else
        next_state <= exec_fetch;

end if;
when exec =>

       next_state <= fetch;
end case;

end process C1;

fetch

exec
exec_
fetch

M(6)=‘1’M(6)=‘0’

M(6)=‘0’ M(6)=‘1’

 
Table 2:  W8X ALU Operations 
ALU Select Operation 

"000" 
"001" 
"010" 
"011" 
"100" 
"101" 
"110" 
"111" 

all zeros 
a + b 
b - a 
a and b 
a  or b 
a xor b 
not a 

all ones 
 Figure 4:  Three-State VHDL implementation 
The 8-bit inputs into the ALU are T and N, the top 
and second elements in the stack, respectively.  The 
4-input multiplexer provides an external signal, the 
carry out from the ALU, the top of the return stack, 
and the current value in the program memory 
addressed by the program counter.  The program for 
the W8X is stored in a program ROM.  The ROM is 
addressed by the program counter which can be 
loaded with a value from the return stack or from 
memory for return from subroutine instructions or 
instructions that may jump to an inline address.  The 
return stack can be loaded with values from the top of 
the data stack and the program counter plus one.  The 
W8X microprocessor is controlled by a 
microcontroller and instruction register.  The 
microcontroller is the mealy state machine shown 
below in Figure 3. 

 
These multi-cycle instructions have been assigned 
opcodes with a '1' in the 6th bit position, the second 
most significant bit of the opcode.  For instructions 
requiring two clock cycles, the controller executes 
the current instruction without 'fetching' the next 
word from the program ROM.  On the second clock 
cycle, the microcontroller returns to the fetch state to 
'fetch' the next instruction. 
 
Extending the W8X 
 
In addition to implementing, simulating, and 
synthesizing the W8X controller in VHDL on a 4000 
series FPGA, students are required to complete a 
design project that extends the W8X controller.  For 
example, the top of stack register in the Register 
Array was altered to be an SPI (serial peripheral 
interface).  The new SPI top of stack register is 
shown below in Figure 5. 
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MOSI Figure 3:  The W8X State Machine 

 
This state machine has three states:  Fetch, Execute, 
and Execute-Fetch.  A portion of its VHDL 
implementation is shown in Figure 4.  The controller 
begins in the fetch state to 'fetch' the next instruction 
from the program ROM.  If the instruction requires 
only a single clock instruction to execute, the current 
instruction is executed and the next instruction is read 
from the program ROM in the Execute-Fetch state.  
The instructions continue to be executed and fetched 
at the same time until it is presented with an 
instruction that requires more than one clock cycle.   

SPI_CLK CLK T 

 
Figure 5:  An SPI Register 

 
This SPI register was implemented as the top of the 
data stack.  An instruction, SPI was added to the 
instruction set.  Obviously, this instruction requires 
more than one or two clock cycles.  The 
microcontroller was modified to remain in the 
execute state for the current number of clock cycles 



to complete the SPI transmission.  The SPI runs in all 
four standard SPI modes:  active high and low with 
CPHA = 1 and active high and low with CPHA = 0.  
With this extension, the W8X will now accept data 
through the SPI directly into the top of the stack.  
This design was synthesized on a Xilinx 4010 FPGA 
and simulated using the Aldec Active VHDL 
simulator.  A simulation is shown below in Figure 6. 

10. Ting, C. H., "P16 Microprocessor Design in 
VHDL," in More on Forth Engines, Vol. 22, 
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Figure 6:  SPI Simulation CPHA=0 CPOL=0 
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