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Abstract 

 
An embedded system based on the use of an FPGA such as the Xilinx Spartan or 4000 series FPGA is typically 

designed using a hardware description language such as VHDL.  On the other hand an embedded system based on 
the use of a microcontroller such as the Motorola 68HC12 is typically designed by writing software in either 
assembly language or a high-level language such as Forth or C.  When an embedded system contains both a 
microprocessor and an FPGA a decision must be made on how to partition the system into its hardware and software 
components.  This decision can have a profound effect on the overall system cost.  The longer the irrevocable 
decision of how to partition the hardware and software can be delayed, the better is the chance to keep overall 
system cost to a minimum.  This paper describes the design of a microprocessor core that has been implemented in a 
Xilinx FPGA.  Software programs written in Forth can be compiled to VHDL code that uses the minimum amount 
of hardware to implement the microprocessor core to run the program.  The entire embedded system, including both 
the microprocessor core and additional hardware, is implemented using VHDL, allowing a unified approach to 
design, simulation, and testing. 

 
 
1.  Introduction 
 

A typical embedded system contains a microprocessor and possibly an FPGA.  
Microcontrollers such as the Motorola 68HC12 contain integrated modules for implementing 
parallel and serial I/O, A/D conversion, and various timing functions [1].  While these functions 
are convenient to have available, they may not provide all the hardware functions needed for a 
particular design.  Such a microcontroller will certainly include some functions that are not 
actually used in a particular design. 

As the size of an FPGA (in terms of the number of equivalent gates) has increased while 
its cost has decreased, it is becoming feasible to consider putting all functions, including a 
microprocessor core, into the same FPGA forming a true System-on-a-Chip (SOC).  The 
software running on the microprocessor core would also be stored in the form of instructions in 
the same FPGA.   

VHDL is used to design all the hardware, including the microprocessor core, that is 
synthesized to the FPGA. The microprocessor core is a stack-based computer that will efficiently 
execute Forth code.  A program written in Forth can be translated to a VHDL program that will 
synthesize only the hardware necessary to implement the particular Forth program.  Because the 
Forth software program ends up as just more VHDL code that can be simulated and synthesized 
with the rest of the hardware design, the boundary between hardware and software has become 
almost entirely obliterated.  This has the advantage of delaying (or avoiding) the 



hardware/software partition decision.  This is possible because the same person is designing both 
the hardware and software as a unified whole.  Changes can be made at any point in the design 
process as simulations and synthesis tests provide information about speed and area tradeoffs. 

Chuck Moore invented Forth in the late 1960s while programming minicomputers in 
assembly language.  His idea was to create a simple system that would allow him to write many 
more useful programs than he could using assembly language.  The essence of Forth is simplicity 
-- always try to do things in the simplest possible way.  Forth is a way of thinking about 
problems in a modular way.  It is modular in the extreme.  Everything in Forth is a word and 
every word is a module that does something useful.  There is an action associated with Forth 
words.  The words execute themselves.  In this sense they are very object-oriented.  We send 
words parameters on the data stack and ask the words to execute themselves and send us the 
answers back on the data stack.  We really don't care how the word does it -- once we have 
written it and tested it so we know that it works. 

Forth has been implemented in a number of different ways.  Chuck Moore's original 
Forth had what is called an indirect-threaded inner interpreter.  Other Forths have used what is 
called a direct-threaded inner interpreter.  These inner interpreters get executed every time you 
go from one Forth word to the next; i.e. all the time.  A unique version of Forth called WHYP 
(pronounced whip) has recently been described in a book on embedded systems [1].  WHYP 
stands for Words to Help You Program.  WHYP is what is called a subroutine-threaded Forth.  
This means that the subroutine calling mechanism that is built into the 68HC12 is what is used to 
go from one WHYP word to the next.  In other words, WHYP words are just regular 68HC12 
subroutines.   

Inasmuch as Forth (and WHYP) programs consist of sequence of words, the most often 
executed instruction is a call to the next word.  This means executing the inner interpreter 
(NEXT) in traditional Forths, or calling a subroutine in WHYP.  Up to 25% of the execution 
time of a typical Forth program is used up in calling the next word.  To overcome this problem, 
Chuck Moore designed a computer chip, called NOVIX, in the mid-eighties which could call the 
next word (equivalent to a subroutine call) in a single clock cycle [2].  Many of the Forth 
primitive instructions would also execute in a single clock cycle.  The design of the NOVIX chip 
was eventually sold to Harris Semiconductor where it was redesigned as the RTX 2000 [3].  
Similar 32-bit Forth engines were also developed [4-6].  In the late eighties Chuck Moore 
designed a 32-bit microprocessor called ShBoom that had 64 8-bit instructions and was designed 
to interface to DRAM [7].  Later Chuck Moore and C. H. Ting designed the MuP21 that has 
been described by Ting [8-9].  In 1999 the author designed the W8X microcontroller [10] that 
was based on ideas developed in these early Forth engines.  It was designed using VHDL [11] 
and has been implemented in a Xilinx FPGA by students in a junior-level course at Oakland 
University [12].   

This paper describes an enhanced W8X, the W8Z, that will fit in a low-cost Xilinx FPGA 
and can be used as a microprocessor core for a high-performance embedded system using only a 
Xilinx FPGA.  It contains over 40 ANSII standard Forth words, all of which execute in a single 
clock cycle.  It also contains a number of specialized instructions that make it easy to interface to 
the Digilab XL development board [13]. 
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2.  The W8Z Microcontroller 

 
The W8Z is a high-performance microprocessor that can be implemented to perform 

useful functions on a Xilinx Spartan series FPGA.  The overall structure of the W8Z is shown in 
Figure 1.  The data busses in this figure are 8 bits wide and each instruction contains 8 bits.  The 
heart of the W8Z is a register stack, reg_stack, that contains four registers interconnected in a 
complete crossbar fashion.  The function unit, Funit, implements 32 arithmetic, logical, Boolean, 
and shifting operations.  Software programs are stored in a 16-bit program ROM, Wrom, with 
two separate outputs containing the upper byte and lower byte of the ROM word.  This word can 
contain either two instructions or a jump instruction plus the jump address.  This technique 
allows all instructions, including jump instructions, to be executed in a single clock cycle. 
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Figure 1  The W8Z Microprocessor Core 

 
The program ROM address comes from the program counter, WPC, that can be 

incremented by 1 when inc = ‘1’.  The program counter is loaded from the output of the 
multiplexer, Pmux, when pload = ‘1’. 
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The control unit, Wcontrol, is entirely combinational.  This eliminates the need for a 
separate instruction register.  The input to the control unit is the 8-bit instruction, instr, from the 
multiplexer, Mmux, that selects either the upper or lower byte or the Wrom output.  The select 
input, c1, to Mmux is the output of a 1-bit counter that toggles between ‘0’ and ‘1’ when tog = 
‘1’.   

A return stack is used to hold return addresses during subroutine calls.  The top of the return stack 
is held in the register, R, which is decremented by 1 when rdec = ‘1’.  The rest of the return stack is 
implemented as a LogiBLOX dual-port RAM.  A byte is pushed onto this return stack when rpush = ‘1’ 
and is popped from the return stack when rpop = ‘1’. 

The input to the top of the register stack is d0 and can come from one of eight possible sources 
through a dual 8-to-1 multiplexer.  The input to the second element in the register stack is d1 and can also 
come from one of eight possible sources through the same dual 8-to-1 multiplexer.  The d0 output of this 
multiplexer is controlled by msel(2:0) and the d1 output of the multiplexer is controlled by msel(5:3). 
 
 
3.  The Register Stack 

 
The heart of the W8Z is the register stack, reg_stack, shown in Figure 2.  The register 

stack consists of four 8-bit registers that are completely interconnected using four 4-to-1 
multiplexers as shown in Figure 2.  
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Figure 2  The Register Stack 
 
The controller, regctl, in the register stack has a 4-bit input, Rcode(3:0), and produces the 

control signals load(3:0), sel0(1:0), sel1(1:0), sel2(1:0), and sel3(1:0) to implement the 16 W8Z 
instructions shown in Table 1.  Note that the value of Rcode(3:0) is the same as the lower 4 bits 
of the W8Z opcode for each of the 16 instructions given in Table 1. 
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Table 1  --  Register Instructions 
Hex Opcode Rcode(3:0) Name Function 

20 0 NOP No operation 
21 1 DUP Duplicate T and push data stack. 

N1 <= T; N2 <= N1; N3 <= N2; 
22 2 SWAP Exchange T and N1. 

T <= N1; N1 <= T; 
23 3 DROP Drop T and pop data stack. 

T <= N1; N1 <= N2; N2 <= N3; 
24 4 OVER Duplicate N1 into T and push data stack. 

T <= N1; N1 <= T; N2 <= N1; N3 <= N2; 
25 5 ROT Rotate top 3 elements on stack clockwise. 

T <= N2; N1 <= T; N2 <= N1; 
26 6 -ROT Rotate top 3 elements on stack counter-

clockwise. 
T <= N1; N1 <= N2; N2 <= T; 

27 7 NIP Drop N1 and pop rest of data stack.  T is 
unchanged. 
N1 <= N2; N2 <= N3; 

28 8 TUCK Duplicate T into N2 and push rest of data 
stack. 
N2 <= T; N3 <= N2; 

29 9 ROT_DROP Same as ROT  DROP 
N2 <= N3; 

2A A ROT_DROP_SWAP Same as ROT  DROP  SWAP 
T <= N1; N1 <= T; N2 <= N3; 

2B B d0_push Load T from d0 and push data stack.  
T <= d0; N1 <= T; N2 <= N1; N3 <= N2; 

2C C d0_load Load T from d0. N1, N2, and N3 are 
unchanged. 
T <= d0;  

2D D d0_pop Load T from d0 and pop data stack.  
T <= d0; N1 <= N2; N2 <= N3; 

2E E d01_load Load T from d0 and load N1 from d1. 
T <= d0; N1 <= d1;  N2 and N3 are 
unchanged. 

2F F drop2 Drop T and N1 and pop data stack. 
T <= N2; N1 <= N3; 

 
4.  The Function Unit 

 
The function unit, Funit, shown in Figure 1 has the top three elements on the register 

stack, T, N1, and N2 as inputs.  The outputs of Funit are the two 8-bit busses, y1 and y2, and the 
single-bit carry value, cout.  The 5-bit input, Fcode(4:0), is used to select one of the 32 W8X 
instructions shown in Tables 2, 3, and 4.  Table 2 contains 14 conditional instructions that leave 
either a TRUE (“11111111”) value or a FALSE (“00000000”) value on the top of the register 
stack. 
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 Table 2 -- Conditional Instructions 

Hex Opcode Name Function 
00 NOP No operation 
01 U> T <= TRUE if N1 > T (unsigned), else T <= FALSE 

Fcode <= "00000"; 
02 U< T <= TRUE if N1 < T (unsigned), else T <= FALSE 

Fcode <= "00001"; 
03 = T <= TRUE if N1 = T, else T <= FALSE 

Fcode <= "00010"; 
04 U>= T <= TRUE if N1 >= T (unsigned), else T <= FALSE 

Fcode <= "00011"; 
05 U<= T <= TRUE if N1 <= T (unsigned), else T <= FALSE 

Fcode <= "00100"; 
06 <> T <= TRUE if N1 /= T, else T <= FALSE 

Fcode <= "00101"; 
07 TRUE Set all bits in T to ‘1’. 

Fcode <= "00110"; 
08 FALSE Clear all bits in T to ‘0’. 

Fcode <= "00111"; 
09 > T <= TRUE if N1 > T (signed), else T <= FALSE 

Fcode <= "01000"; 
0A < T <= TRUE if N1 < T (signed), else T <= FALSE 

Fcode <= "01001"; 
0B >= T <= TRUE if N1 >= T (signed), else T <= FALSE 

Fcode <= "01010"; 
0C <= T <= TRUE if N1 <= T (signed), else T <= FALSE 

Fcode <= "01011"; 
0D NOT 

0= 
TRUE if all bits in T are ‘0’. 
Fcode <= "01100"; 

0E 0< TRUE if sign bit of T is ‘1’. 
Fcode <= "01101"; 

 
Table 3 contains 8 logic and shift instructions.  Table 4 contains 10 ALU instructions.  

Note that except for the last four instructions in Table 4, the value of Fcode(4:0) is the same as 
the W8Z opcode for all instructions in Tables 2, 3, and 4.  Opcode 1E is a multiply partial 
product instruction (mpp) that will be described in Section 3.1.  The instruction shldc (opcode = 
1F) is used for division and will be described in Section 3.2. 
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Table 3 -- Logic and Shift Instructions 
Hex Opcode Name Function 

10 AND Pop N1 and AND it to T. 
Fcode <= "10000"; 

11 OR Pop N1 and OR it to T. 
Fcode <= "10001"; 

12 XOR Pop N1 and XOR it to T. 
Fcode <= "10010"; 

13 2* Arithmetic shift T left 1 bit. 
Fcode <= "10011"; 

14 U2/ Logic shift T right 1 bit. 
Fcode <= "10100"; 

15 2/ Arithmetic shift T right 1 bit. 
Fcode <= "10101"; 

16 RSHIFT Pop T and shift N1 T bits to the right. 
Fcode <= "10110"; 

17 LSHIFT Pop T and shift N1 T bits to the left. 
Fcode <= "10111"; 

 
 Table 4 -- ALU Instructions 

Hex Opcode Name Function 
18 + Pop N1 and add it to T. 

Fcode <= "11000"; 
19 - Subtract T from N1 and pop the data stack. 

Fcode <= "11001"; 
1A SWAP- Subtract N1 from T and pop the data stack. 

Fcode <= "11010"; 
1B 1+ Increment T by 1. 

Fcode <= "11011"; 
1C 1- Decrement T by 1. 

Fcode <= "11100"; 
1D INVERT Complement all bits of T. 

Fcode <= "11101"; 
1E mpp Multiply partial product 

If N1(0) = 1, add N2 to T and shift T:N1, else shift T:N1 
1F shldc Shift left for division conditionally. 

If T > N1, subtract N1 from T and set N1(0) to '1' 
0F C>T Push cout on the data stack 

 
 

 
5.  Program ROM and Control 

 
The program ROM contains 16-bit words.  This means that each ROM word can contain 

two 1-byte W8Z instructions, or a single 2-byte W8Z instruction as shown in Figure 5.  The 
opcode of a 2-byte instruction must be in the left byte of a ROM word with an address in the 
right byte.  This means that a 1-byte instruction between two 2-byte instructions must be padded 
with an X”FF” in  the right byte as shown in Figure 5.  This X”FF” is not executed as a NOP but 
is used by the controller to jump to the following 2-byte instruction when the 1-byte instruction 
is executed. 
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Figure 5  ROM Instruction Layout 
 
The 16-bit output of the ROM is divided into two 8-bit signals, M(15:8) and M(7:0).  One 

of these two signals is sent to the controller, Wcontrol, through the multiplexer, Mmux.  This 
multiplexer is controlled by the output of a 1-bit counter, c1, that toggles on the rising edge of 
the clock when the signal tog = ‘1’.  When c1 = ‘0’, the mux output, instr, is M(15:8).  When c1 
= ‘1’, the mux output, instr, is M(7:0).  For a 2-byte instruction (such as a jump instruction), tog 
= ‘0’.  For a 1-byte instruction, tog = ‘1’ unless the instruction is in the left byte, M(15:8), and a 
X”FF” is in the right byte, M(7:0).  In that case, tog = ‘0’.  

The 8-bit address of the program ROM, Wrom, comes from the program counter, WPC, 
shown in the center of Figure 1.  This program counter must increment by 1 when a non-jump 2-
byte instruction (such as LIT) is executed, or when a 1-byte instruction in the right byte, M(7:0), 
is executed, or when a 1-byte instruction in the left byte, M(15:8), is executed and the right byte 
contains a X”FF”.  This right byte, M(7:0), is an input to Wcontrol so that the controller can 
detect when this value is X”FF”. 

Table 5 shows three 2-byte W8Z instructions.  The instruction LIT will push the value in 
M(7:0) onto the top of the data stack, T, through dual_mux8g.  The instruction JMP will load the 
value of M(7:0) into the program counter, WPC, through Pmux.  The instruction JZ will load the 
value in M(7:0) into the program counter, WPC, if the value in T is “00000000”. 
 
 Table 5 – LIT and Jump 2-Byte Instructions 

Hex Opcode Name Function 
34 LIT Load inline literal to T and push data stack. 
40 JMP Jump to inline address 
41 JZ Jump to inline address if all bits in T are ‘0’ 

 
 
6.  The Return Stack 

 
The return stack is shown in the upper-left of Figure 1.  The value on the top of the return 

stack is stored in the register, R.  The rest of the return stack is implemented by the module, 
return_stack, shown in Figure 6.  This module consists of an 8 x 16 LogiBLOX dual-port RAM, 
dpram8x16, and a control unit, stack_addr.  The control unit, stack_addr, produces the two 
addresses to the dual_port RAM, wr_addr and rd_addr.  When a byte is pushed on the stack the 
byte is stored at the address, wr_addr, and then wr_addr is decremented by 1.  The address, 
rd_addr, is equal to wr_addr + 1 as shown in Figure 7.  The output q(7:0) in Figure 6 is the 
value at address, rd_addr; that is, the value that was just pushed on the stack.  This corresponds 
to R1 in Figure 1.  The VHDL code for the module stack_addr in Figure 6 is given in Listing 1.   
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Table 6 lists seven W8Z instructions that involve the return stack.  The instructions >R, 
R>, and R@ are used to move a byte between T and R.  The instructions >R and DRJNE can be 
used to implement a FOR…NEXT in WHYP as shown in Figure 8.  When a CALL instruction is 
executed the subroutine address in M(7:0) is loaded in the program counter, WPC, and the return 
address, P1 = P + 2, is pushed on the return stack.  When the RET (return from subroutine) 
instruction is executed, the return address in R is loaded into the program counter, WPC. 

 
 Table 6 -- Return Stack Instructions 

Hex Opcode Name Function 
30 >R “To-R”  Pop T and push it on return stack. 
31 R> “R-from”  Pop return stack R and push it into T. 
32 R@ “R-fetch”  Copy R to T and push register stack 
33 R>DROP “R-from-drop”  Pop return stack R and throw it away 
42 DRJNE Decrement R and jump if R is not zero 
43 CALL Call subroutine 
44 RET Subroutine return 

 
 

7.  W8Z Memory and I/O 
 
The RAM shown in the upper-right of Figure 1 can be a scratchpad RAM implemented 

with a LogiBLOX module.  Data can be written to the RAM using the WHYP word C!  ( data 
addr -- ) shown in Table 7.  Data can be read from the RAM using the WHYP word C@  ( addr 
– data ) shown in Table 7.  The ROM shown in the upper-right of Figure 1 can be used to hold 
permanent data and implemented with a LogiBLOX ROM module.  Data can be read from the 
ROM using the WHYP word ROM@  ( addr – data ) shown in Table 7.   

 
 Table 7 – Memory and I/O Instructions 

Hex Opcode Name Function 
35 C@ Fetch the byte at address T in RAM and load it into T 
36 C! Store the byte in N1 at the address T.  Pop both T and N1. 
37 ROM@ Fetch the byte at address T in ROM and load it into T. 
38 SW@ Fetch the 8 switch readings and load it into T. 
39 DIG! Write the 4 hex digits in N1:T to the digit register DigReg 
3A LD! Store the byte in T to the LED register LDreg. 
45 JNBTN1 Jump if BTN1 is not pushed 
46 JNBTN2 Jump if BTN2 is not pushed 
47 JNBTN3 Jump if BTN3 is not pushed 
48 JNBTN4 Jump if BTN4 is not pushed 
49 JBTN1 Jump if BTN1 is pushed 
4A JBTN2 Jump if BTN2 is pushed 
4B JBTN3 Jump if BTN3 is pushed 
4C JBTN4 Jump if BTN4 is pushed 
 
The WHYP word SW@  (  -- n ) shown in Table 7 can be used to read the 8 switch 

settings on the Digilab board into T.  The WHYP word DIG!  ( N1 T --  ) can be used to latch the 
16-bit value in N1:T into the 16-bit register DigReg.  By connecting the outputs of this register to 
the module step_display shown in Figure 8, the hex values in N1 and T can be displayed until a 
new value is stored in DigReg.  The eight bits in T can be displayed on the 8 LEDs on the 
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Digilab board by storing T in the 8-bit register, LDreg, using the WHYP word LD! ( t -- ) shown 
in Table 7. 

The signals from the four pushbuttons, BTN(1:4), are inputs to the module Wcontrol as 
shown in Figure 1.  These signals can be used to implement the eight jump instructions shown in 
Table 7.  For example, the following two instructions can be used to wait for a button 3 to be 
pressed. 

 
4 JBTN3,   X”04”, 
5  JNBTN3,  X”05”, 
 
The first instruction at ROM address 4 will branch on itself until the button has been 

released from a possible previous pressing.  The second instruction at ROM address 5 will 
branch on itself until the button is pressed.   

 
8.  Sample W8Z Program 

 
The program ROM, Wrom, contains the program to be executed.  To test the W8X the 

Forth program shown in Figure 8 was converted to W8Z code as shown in the VHDL program 
given in Listing 2.  This program first stores a hex $80 in the register, LDreg, connected to the 8 
LEDs.  This value is arithmetic shifted right 8 times which will light up all 8 LEDs.  The second 
FOR...NEXT loop stores a $7F (which will turn off the leftmost LED) and then logic shifts this 
value right 8 times which will turn off each LED in sequence.  This process is then repeated 
endlessly. 

This Forth program can be converted to W8Z instructions using the coding form shown 
in Figure 10.  This is done in Figure 11 and then copied to the VHDL ROM program shown in 
Listing 2. 
 

HEX 
: MAIN ( -- ) 
  BEGIN 
     80  
     8 FOR 
       DUP LD! DELAY 2/ 
     NEXT 
     DROP 7F 
     8 FOR 
       DUP LD! DELAY U2/ 
     NEXT 
     DROP 
   AGAIN ; 
 
: DELAY  ( -- ) 
   5 FOR NEXT ; 

 
Figure 9  Test Forth Program 
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9.  Summary  

 
The W8Z is a high-performance microprocessor core that has been implemented on a 

Xilinx Spartan FPGA.  All of the 72 W8Z instructions given in Tables 1 – 7 are executed in a 
single clock cycle.  Of these 72 instructions, only 11 are actually used to implement the Forth 
program shown in Figure 9.  This means that only these 11 instructions need to be implemented 
in VHDL when synthesizing the microprocessor core for this program.  That is, the 
microprocessor core is elastic in the sense that its size grows and shrinks to accommodate a 
particular program.  In this way the minimum amount of hardware resources are used for every 
program. 

Other hardware components can easily be added to this design.  For example, it is 
possible to make the top of stack, T, a shift register that could interface to external serial devices 
using the standard SPI interface.  By including a timer module, the W8Z could become a very 
useful high-performance, low-cost microcontroller.  Adding a UART would allow interactive 
communication with the W8Z through a standard asynchronous serial line. 
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