

An Elastic Microprocessor Core

for Xilinx FPGAs

Richard E. Haskell and Darrin M. Hanna
Computer Science and Engineering Department

Oakland University
Rochester, Michigan 48309

Abstract

An embedded system based on the use of an FPGA such as the Xilinx Spartan or 4000 series FPGA is typically

designed using a hardware description language such as VHDL. On the other hand an embedded system based on
the use of a microcontroller such as the Motorola 68HC12 is typically designed by writing software in either
assembly language or a high-level language such as Forth or C. When an embedded system contains both a
microprocessor and an FPGA a decision must be made on how to partition the system into its hardware and software
components. This decision can have a profound effect on the overall system cost. The longer the irrevocable
decision of how to partition the hardware and software can be delayed, the better is the chance to keep overall
system cost to a minimum. This paper describes the design of a microprocessor core that has been implemented in a
Xilinx FPGA. Software programs written in Forth can be compiled to VHDL code that uses the minimum amount
of hardware to implement the microprocessor core to run the program. The entire embedded system, including both
the microprocessor core and additional hardware, is implemented using VHDL, allowing a unified approach to
design, simulation, and testing.

1. Introduction

A typical embedded system contains a microprocessor and possibly an FPGA.
Microcontrollers such as the Motorola 68HC12 contain integrated modules for implementing
parallel and serial I/O, A/D conversion, and various timing functions [1]. While these functions
are convenient to have available, they may not provide all the hardware functions needed for a
particular design. Such a microcontroller will certainly include some functions that are not
actually used in a particular design.

As the size of an FPGA (in terms of the number of equivalent gates) has increased while
its cost has decreased, it is becoming feasible to consider putting all functions, including a
microprocessor core, into the same FPGA forming a true System-on-a-Chip (SOC). The
software running on the microprocessor core would also be stored in the form of instructions in
the same FPGA.

VHDL is used to design all the hardware, including the microprocessor core, that is
synthesized to the FPGA. The microprocessor core is a stack-based computer that will efficiently
execute Forth code. A program written in Forth can be translated to a VHDL program that will
synthesize only the hardware necessary to implement the particular Forth program. Because the
Forth software program ends up as just more VHDL code that can be simulated and synthesized
with the rest of the hardware design, the boundary between hardware and software has become
almost entirely obliterated. This has the advantage of delaying (or avoiding) the

hardware/software partition decision. This is possible because the same person is designing both
the hardware and software as a unified whole. Changes can be made at any point in the design
process as simulations and synthesis tests provide information about speed and area tradeoffs.

Chuck Moore invented Forth in the late 1960s while programming minicomputers in
assembly language. His idea was to create a simple system that would allow him to write many
more useful programs than he could using assembly language. The essence of Forth is simplicity
-- always try to do things in the simplest possible way. Forth is a way of thinking about
problems in a modular way. It is modular in the extreme. Everything in Forth is a word and
every word is a module that does something useful. There is an action associated with Forth
words. The words execute themselves. In this sense they are very object-oriented. We send
words parameters on the data stack and ask the words to execute themselves and send us the
answers back on the data stack. We really don't care how the word does it -- once we have
written it and tested it so we know that it works.

Forth has been implemented in a number of different ways. Chuck Moore's original
Forth had what is called an indirect-threaded inner interpreter. Other Forths have used what is
called a direct-threaded inner interpreter. These inner interpreters get executed every time you
go from one Forth word to the next; i.e. all the time. A unique version of Forth called WHYP
(pronounced whip) has recently been described in a book on embedded systems [1]. WHYP
stands for Words to Help You Program. WHYP is what is called a subroutine-threaded Forth.
This means that the subroutine calling mechanism that is built into the 68HC12 is what is used to
go from one WHYP word to the next. In other words, WHYP words are just regular 68HC12
subroutines.

Inasmuch as Forth (and WHYP) programs consist of sequence of words, the most often
executed instruction is a call to the next word. This means executing the inner interpreter
(NEXT) in traditional Forths, or calling a subroutine in WHYP. Up to 25% of the execution
time of a typical Forth program is used up in calling the next word. To overcome this problem,
Chuck Moore designed a computer chip, called NOVIX, in the mid-eighties which could call the
next word (equivalent to a subroutine call) in a single clock cycle [2]. Many of the Forth
primitive instructions would also execute in a single clock cycle. The design of the NOVIX chip
was eventually sold to Harris Semiconductor where it was redesigned as the RTX 2000 [3].
Similar 32-bit Forth engines were also developed [4-6]. In the late eighties Chuck Moore
designed a 32-bit microprocessor called ShBoom that had 64 8-bit instructions and was designed
to interface to DRAM [7]. Later Chuck Moore and C. H. Ting designed the MuP21 that has
been described by Ting [8-9]. In 1999 the author designed the W8X microcontroller [10] that
was based on ideas developed in these early Forth engines. It was designed using VHDL [11]
and has been implemented in a Xilinx FPGA by students in a junior-level course at Oakland
University [12].

This paper describes an enhanced W8X, the W8Z, that will fit in a low-cost Xilinx FPGA
and can be used as a microprocessor core for a high-performance embedded system using only a
Xilinx FPGA. It contains over 40 ANSII standard Forth words, all of which execute in a single
clock cycle. It also contains a number of specialized instructions that make it easy to interface to
the Digilab XL development board [13].

 2

2. The W8Z Microcontroller

The W8Z is a high-performance microprocessor that can be implemented to perform

useful functions on a Xilinx Spartan series FPGA. The overall structure of the W8Z is shown in
Figure 1. The data busses in this figure are 8 bits wide and each instruction contains 8 bits. The
heart of the W8Z is a register stack, reg_stack, that contains four registers interconnected in a
complete crossbar fashion. The function unit, Funit, implements 32 arithmetic, logical, Boolean,
and shifting operations. Software programs are stored in a 16-bit program ROM, Wrom, with
two separate outputs containing the upper byte and lower byte of the ROM word. This word can
contain either two instructions or a jump instruction plus the jump address. This technique
allows all instructions, including jump instructions, to be executed in a single clock cycle.

reg_stack

Funit

TN2 N1N3

d0

y1cout

clr

clk

Rcode(3:0)

Fcode(4:0)

msel(5:0)

Wcontrol

Wrom

WPC

clk

clr

inc

M(15:8)
M(7:0)

P

d1

Return
Stack

R

Pmux

Rmux

dual_mux8g

add1

sub1

ROM

RAM

T

T N1

y2

SW(1:8)

rsel(1:0)

psel

BTN(1:4)

rpush

rload

psel
rsel

pload

DigReg

LDreg

dig3 dig1dig4 dig2

LD(1:8)

T

TN1

clr
clk

rpush
rpop

pload

clr
clk

rload
rdec

clk
clr

we

rpop
rdec

ldloadclk
clr

clk
clr digload

P1

R

R1

RM1

p_in

r_in

T

T

Mmuxcnt1

clk clr

tog

c1

instr

tog

inc

ldload we

Figure 1 The W8Z Microprocessor Core

The program ROM address comes from the program counter, WPC, that can be

incremented by 1 when inc = ‘1’. The program counter is loaded from the output of the
multiplexer, Pmux, when pload = ‘1’.

 3

The control unit, Wcontrol, is entirely combinational. This eliminates the need for a
separate instruction register. The input to the control unit is the 8-bit instruction, instr, from the
multiplexer, Mmux, that selects either the upper or lower byte or the Wrom output. The select
input, c1, to Mmux is the output of a 1-bit counter that toggles between ‘0’ and ‘1’ when tog =
‘1’.

A return stack is used to hold return addresses during subroutine calls. The top of the return stack
is held in the register, R, which is decremented by 1 when rdec = ‘1’. The rest of the return stack is
implemented as a LogiBLOX dual-port RAM. A byte is pushed onto this return stack when rpush = ‘1’
and is popped from the return stack when rpop = ‘1’.

The input to the top of the register stack is d0 and can come from one of eight possible sources
through a dual 8-to-1 multiplexer. The input to the second element in the register stack is d1 and can also
come from one of eight possible sources through the same dual 8-to-1 multiplexer. The d0 output of this
multiplexer is controlled by msel(2:0) and the d1 output of the multiplexer is controlled by msel(5:3).

3. The Register Stack

The heart of the W8Z is the register stack, reg_stack, shown in Figure 2. The register

stack consists of four 8-bit registers that are completely interconnected using four 4-to-1
multiplexers as shown in Figure 2.

 sel1(1:0)

sel2(1:0)

sel3(1:0)

load(3:0)

clk
load(3)

sel3(1:0)

R3

S3

clr

clk
load(2)

sel2(1:0)

R2

S2

clr

clk
load(1)

S1

R1
clr

clk
load(0)

sel0(1:0)

R0

S0

clr

d3(n-1:0)

q3(n-1:0) q2(n-1:0) q1(n-1:0) q0(n-1:0)

3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

d2(n-1:0) d1(n-1:0) d0(n-1:0)

y3(n-1:0) y2(n-1:0) y1(n-1:0) y0(n-1:0)regctl

sel0(1:0)

Rcode(3:0)

reg_stack

Figure 2 The Register Stack

The controller, regctl, in the register stack has a 4-bit input, Rcode(3:0), and produces the

control signals load(3:0), sel0(1:0), sel1(1:0), sel2(1:0), and sel3(1:0) to implement the 16 W8Z
instructions shown in Table 1. Note that the value of Rcode(3:0) is the same as the lower 4 bits
of the W8Z opcode for each of the 16 instructions given in Table 1.

 4

Table 1 -- Register Instructions
Hex Opcode Rcode(3:0) Name Function

20 0 NOP No operation
21 1 DUP Duplicate T and push data stack.

N1 <= T; N2 <= N1; N3 <= N2;
22 2 SWAP Exchange T and N1.

T <= N1; N1 <= T;
23 3 DROP Drop T and pop data stack.

T <= N1; N1 <= N2; N2 <= N3;
24 4 OVER Duplicate N1 into T and push data stack.

T <= N1; N1 <= T; N2 <= N1; N3 <= N2;
25 5 ROT Rotate top 3 elements on stack clockwise.

T <= N2; N1 <= T; N2 <= N1;
26 6 -ROT Rotate top 3 elements on stack counter-

clockwise.
T <= N1; N1 <= N2; N2 <= T;

27 7 NIP Drop N1 and pop rest of data stack. T is
unchanged.
N1 <= N2; N2 <= N3;

28 8 TUCK Duplicate T into N2 and push rest of data
stack.
N2 <= T; N3 <= N2;

29 9 ROT_DROP Same as ROT DROP
N2 <= N3;

2A A ROT_DROP_SWAP Same as ROT DROP SWAP
T <= N1; N1 <= T; N2 <= N3;

2B B d0_push Load T from d0 and push data stack.
T <= d0; N1 <= T; N2 <= N1; N3 <= N2;

2C C d0_load Load T from d0. N1, N2, and N3 are
unchanged.
T <= d0;

2D D d0_pop Load T from d0 and pop data stack.
T <= d0; N1 <= N2; N2 <= N3;

2E E d01_load Load T from d0 and load N1 from d1.
T <= d0; N1 <= d1; N2 and N3 are
unchanged.

2F F drop2 Drop T and N1 and pop data stack.
T <= N2; N1 <= N3;

4. The Function Unit

The function unit, Funit, shown in Figure 1 has the top three elements on the register

stack, T, N1, and N2 as inputs. The outputs of Funit are the two 8-bit busses, y1 and y2, and the
single-bit carry value, cout. The 5-bit input, Fcode(4:0), is used to select one of the 32 W8X
instructions shown in Tables 2, 3, and 4. Table 2 contains 14 conditional instructions that leave
either a TRUE (“11111111”) value or a FALSE (“00000000”) value on the top of the register
stack.

 5

 Table 2 -- Conditional Instructions

Hex Opcode Name Function
00 NOP No operation
01 U> T <= TRUE if N1 > T (unsigned), else T <= FALSE

Fcode <= "00000";
02 U< T <= TRUE if N1 < T (unsigned), else T <= FALSE

Fcode <= "00001";
03 = T <= TRUE if N1 = T, else T <= FALSE

Fcode <= "00010";
04 U>= T <= TRUE if N1 >= T (unsigned), else T <= FALSE

Fcode <= "00011";
05 U<= T <= TRUE if N1 <= T (unsigned), else T <= FALSE

Fcode <= "00100";
06 <> T <= TRUE if N1 /= T, else T <= FALSE

Fcode <= "00101";
07 TRUE Set all bits in T to ‘1’.

Fcode <= "00110";
08 FALSE Clear all bits in T to ‘0’.

Fcode <= "00111";
09 > T <= TRUE if N1 > T (signed), else T <= FALSE

Fcode <= "01000";
0A < T <= TRUE if N1 < T (signed), else T <= FALSE

Fcode <= "01001";
0B >= T <= TRUE if N1 >= T (signed), else T <= FALSE

Fcode <= "01010";
0C <= T <= TRUE if N1 <= T (signed), else T <= FALSE

Fcode <= "01011";
0D NOT

0=
TRUE if all bits in T are ‘0’.
Fcode <= "01100";

0E 0< TRUE if sign bit of T is ‘1’.
Fcode <= "01101";

Table 3 contains 8 logic and shift instructions. Table 4 contains 10 ALU instructions.

Note that except for the last four instructions in Table 4, the value of Fcode(4:0) is the same as
the W8Z opcode for all instructions in Tables 2, 3, and 4. Opcode 1E is a multiply partial
product instruction (mpp) that will be described in Section 3.1. The instruction shldc (opcode =
1F) is used for division and will be described in Section 3.2.

 6

Table 3 -- Logic and Shift Instructions
Hex Opcode Name Function

10 AND Pop N1 and AND it to T.
Fcode <= "10000";

11 OR Pop N1 and OR it to T.
Fcode <= "10001";

12 XOR Pop N1 and XOR it to T.
Fcode <= "10010";

13 2* Arithmetic shift T left 1 bit.
Fcode <= "10011";

14 U2/ Logic shift T right 1 bit.
Fcode <= "10100";

15 2/ Arithmetic shift T right 1 bit.
Fcode <= "10101";

16 RSHIFT Pop T and shift N1 T bits to the right.
Fcode <= "10110";

17 LSHIFT Pop T and shift N1 T bits to the left.
Fcode <= "10111";

 Table 4 -- ALU Instructions

Hex Opcode Name Function
18 + Pop N1 and add it to T.

Fcode <= "11000";
19 - Subtract T from N1 and pop the data stack.

Fcode <= "11001";
1A SWAP- Subtract N1 from T and pop the data stack.

Fcode <= "11010";
1B 1+ Increment T by 1.

Fcode <= "11011";
1C 1- Decrement T by 1.

Fcode <= "11100";
1D INVERT Complement all bits of T.

Fcode <= "11101";
1E mpp Multiply partial product

If N1(0) = 1, add N2 to T and shift T:N1, else shift T:N1
1F shldc Shift left for division conditionally.

If T > N1, subtract N1 from T and set N1(0) to '1'
0F C>T Push cout on the data stack

5. Program ROM and Control

The program ROM contains 16-bit words. This means that each ROM word can contain

two 1-byte W8Z instructions, or a single 2-byte W8Z instruction as shown in Figure 5. The
opcode of a 2-byte instruction must be in the left byte of a ROM word with an address in the
right byte. This means that a 1-byte instruction between two 2-byte instructions must be padded
with an X”FF” in the right byte as shown in Figure 5. This X”FF” is not executed as a NOP but
is used by the controller to jump to the following 2-byte instruction when the 1-byte instruction
is executed.

 7

1-byte instr 1-byte instr

2-byte instr addr

1-byte instr X"FF"

2-byte instr addr

ROM addr

0

1

2

3

Figure 5 ROM Instruction Layout

The 16-bit output of the ROM is divided into two 8-bit signals, M(15:8) and M(7:0). One

of these two signals is sent to the controller, Wcontrol, through the multiplexer, Mmux. This
multiplexer is controlled by the output of a 1-bit counter, c1, that toggles on the rising edge of
the clock when the signal tog = ‘1’. When c1 = ‘0’, the mux output, instr, is M(15:8). When c1
= ‘1’, the mux output, instr, is M(7:0). For a 2-byte instruction (such as a jump instruction), tog
= ‘0’. For a 1-byte instruction, tog = ‘1’ unless the instruction is in the left byte, M(15:8), and a
X”FF” is in the right byte, M(7:0). In that case, tog = ‘0’.

The 8-bit address of the program ROM, Wrom, comes from the program counter, WPC,
shown in the center of Figure 1. This program counter must increment by 1 when a non-jump 2-
byte instruction (such as LIT) is executed, or when a 1-byte instruction in the right byte, M(7:0),
is executed, or when a 1-byte instruction in the left byte, M(15:8), is executed and the right byte
contains a X”FF”. This right byte, M(7:0), is an input to Wcontrol so that the controller can
detect when this value is X”FF”.

Table 5 shows three 2-byte W8Z instructions. The instruction LIT will push the value in
M(7:0) onto the top of the data stack, T, through dual_mux8g. The instruction JMP will load the
value of M(7:0) into the program counter, WPC, through Pmux. The instruction JZ will load the
value in M(7:0) into the program counter, WPC, if the value in T is “00000000”.

 Table 5 – LIT and Jump 2-Byte Instructions

Hex Opcode Name Function
34 LIT Load inline literal to T and push data stack.
40 JMP Jump to inline address
41 JZ Jump to inline address if all bits in T are ‘0’

6. The Return Stack

The return stack is shown in the upper-left of Figure 1. The value on the top of the return

stack is stored in the register, R. The rest of the return stack is implemented by the module,
return_stack, shown in Figure 6. This module consists of an 8 x 16 LogiBLOX dual-port RAM,
dpram8x16, and a control unit, stack_addr. The control unit, stack_addr, produces the two
addresses to the dual_port RAM, wr_addr and rd_addr. When a byte is pushed on the stack the
byte is stored at the address, wr_addr, and then wr_addr is decremented by 1. The address,
rd_addr, is equal to wr_addr + 1 as shown in Figure 7. The output q(7:0) in Figure 6 is the
value at address, rd_addr; that is, the value that was just pushed on the stack. This corresponds
to R1 in Figure 1. The VHDL code for the module stack_addr in Figure 6 is given in Listing 1.

 8

Table 6 lists seven W8Z instructions that involve the return stack. The instructions >R,
R>, and R@ are used to move a byte between T and R. The instructions >R and DRJNE can be
used to implement a FOR…NEXT in WHYP as shown in Figure 8. When a CALL instruction is
executed the subroutine address in M(7:0) is loaded in the program counter, WPC, and the return
address, P1 = P + 2, is pushed on the return stack. When the RET (return from subroutine)
instruction is executed, the return address in R is loaded into the program counter, WPC.

 Table 6 -- Return Stack Instructions

Hex Opcode Name Function
30 >R “To-R” Pop T and push it on return stack.
31 R> “R-from” Pop return stack R and push it into T.
32 R@ “R-fetch” Copy R to T and push register stack
33 R>DROP “R-from-drop” Pop return stack R and throw it away
42 DRJNE Decrement R and jump if R is not zero
43 CALL Call subroutine
44 RET Subroutine return

7. W8Z Memory and I/O

The RAM shown in the upper-right of Figure 1 can be a scratchpad RAM implemented

with a LogiBLOX module. Data can be written to the RAM using the WHYP word C! (data
addr --) shown in Table 7. Data can be read from the RAM using the WHYP word C@ (addr
– data) shown in Table 7. The ROM shown in the upper-right of Figure 1 can be used to hold
permanent data and implemented with a LogiBLOX ROM module. Data can be read from the
ROM using the WHYP word ROM@ (addr – data) shown in Table 7.

 Table 7 – Memory and I/O Instructions

Hex Opcode Name Function
35 C@ Fetch the byte at address T in RAM and load it into T
36 C! Store the byte in N1 at the address T. Pop both T and N1.
37 ROM@ Fetch the byte at address T in ROM and load it into T.
38 SW@ Fetch the 8 switch readings and load it into T.
39 DIG! Write the 4 hex digits in N1:T to the digit register DigReg
3A LD! Store the byte in T to the LED register LDreg.
45 JNBTN1 Jump if BTN1 is not pushed
46 JNBTN2 Jump if BTN2 is not pushed
47 JNBTN3 Jump if BTN3 is not pushed
48 JNBTN4 Jump if BTN4 is not pushed
49 JBTN1 Jump if BTN1 is pushed
4A JBTN2 Jump if BTN2 is pushed
4B JBTN3 Jump if BTN3 is pushed
4C JBTN4 Jump if BTN4 is pushed

The WHYP word SW@ (-- n) shown in Table 7 can be used to read the 8 switch

settings on the Digilab board into T. The WHYP word DIG! (N1 T --) can be used to latch the
16-bit value in N1:T into the 16-bit register DigReg. By connecting the outputs of this register to
the module step_display shown in Figure 8, the hex values in N1 and T can be displayed until a
new value is stored in DigReg. The eight bits in T can be displayed on the 8 LEDs on the

 9

Digilab board by storing T in the 8-bit register, LDreg, using the WHYP word LD! (t --) shown
in Table 7.

The signals from the four pushbuttons, BTN(1:4), are inputs to the module Wcontrol as
shown in Figure 1. These signals can be used to implement the eight jump instructions shown in
Table 7. For example, the following two instructions can be used to wait for a button 3 to be
pressed.

4 JBTN3, X”04”,
5 JNBTN3, X”05”,

The first instruction at ROM address 4 will branch on itself until the button has been

released from a possible previous pressing. The second instruction at ROM address 5 will
branch on itself until the button is pressed.

8. Sample W8Z Program

The program ROM, Wrom, contains the program to be executed. To test the W8X the

Forth program shown in Figure 8 was converted to W8Z code as shown in the VHDL program
given in Listing 2. This program first stores a hex $80 in the register, LDreg, connected to the 8
LEDs. This value is arithmetic shifted right 8 times which will light up all 8 LEDs. The second
FOR...NEXT loop stores a $7F (which will turn off the leftmost LED) and then logic shifts this
value right 8 times which will turn off each LED in sequence. This process is then repeated
endlessly.

This Forth program can be converted to W8Z instructions using the coding form shown
in Figure 10. This is done in Figure 11 and then copied to the VHDL ROM program shown in
Listing 2.

HEX
: MAIN (--)
 BEGIN
 80
 8 FOR
 DUP LD! DELAY 2/
 NEXT
 DROP 7F
 8 FOR
 DUP LD! DELAY U2/
 NEXT
 DROP
 AGAIN ;

: DELAY (--)
 5 FOR NEXT ;

Figure 9 Test Forth Program

 10

 11

9. Summary

The W8Z is a high-performance microprocessor core that has been implemented on a

Xilinx Spartan FPGA. All of the 72 W8Z instructions given in Tables 1 – 7 are executed in a
single clock cycle. Of these 72 instructions, only 11 are actually used to implement the Forth
program shown in Figure 9. This means that only these 11 instructions need to be implemented
in VHDL when synthesizing the microprocessor core for this program. That is, the
microprocessor core is elastic in the sense that its size grows and shrinks to accommodate a
particular program. In this way the minimum amount of hardware resources are used for every
program.

Other hardware components can easily be added to this design. For example, it is
possible to make the top of stack, T, a shift register that could interface to external serial devices
using the standard SPI interface. By including a timer module, the W8Z could become a very
useful high-performance, low-cost microcontroller. Adding a UART would allow interactive
communication with the W8Z through a standard asynchronous serial line.

10. References

1. Haskell, R. E., Design of Embedded Systems Using 68HC12/11 Microcontrollers, Prentice

Hall, Upper Saddle River, NJ, 2000.
2. Golden, J., Moore, C. H., and Brodie, L., "Fast Processor Chip Takes Its Instructions

Directly from Forth," Electronic Design, March 21, 1985, pp. 127-138.
3. Hand, T., "The Harris RTX 2000 Microcontroller," Journal of Forth Application and

Research, Vol. 6, No. 1, pp. 5-13, 1990.
4. Koopman, Jr., P., "32-Bit RTX Chip Prototype," Journal of Forth Application and

Research, Vol. 5, No. 2, pp. 331-335, 1988.
5. Hayes, J. R., Fraeman, M.E., Williams, R. L., and Zaremba, T., "A 32-Bit Forth

Microprocessor," Journal of Forth Application and Research, Vol. 5, No. 1, pp. 39-48,
1987.

6. Hayes, J. and Lee, S., "The Architecture of the SC32 Forth Engine," Journal of Forth
Application and Research, Vol. 5, No. 4, pp. 49-71, 1989.

7. Moore, C., "ShBoom on ShBoom: A Microcosm of Software and Hardware Tools," Proc.
1990 Rochester Forth Conference, pp. 21-27, June 12-15, 1990.

8. Ting, C. H., "P Series of Microprocessors," in More on Forth Engines, Vol. 22, pp. 1-17,
Sept. 1997.

9. Ting, C. H., "P16 Microprocessor Design in VHDL," in More on Forth Engines, Vol. 22,
pp. 44-51, Sept. 1997.

10. Haskell, R. E., “WHYP on a Chip -- A VHDL Model for a High-Performance Forth
Engine,” Technical Report No. 9911-1, CSE Dept., Oakland University, Rochester, MI,
Nov. 1999.

11. Ashenden, P. J., The Designer's Guide to VHDL, Morgan Kaufmann, San Francisco, 1996.
12. Haskell, R. E., and D. M. Hanna, “Implementing a Forth Engine Microcontroller on a

Xilinx FPGA,” Looking Forward – The IEEE Computer Society’s Student Newsletter (A
Supplement to Computer), Vol. 8, No. 1, Spring 2000.

13. http://www.digilent.cc/ (Visited on March 1, 2001).

http://www.digilent.cc/

	An Elastic Microprocessor Core
	Abstract
	1. Introduction

