Embedded System Design for Zynq[™] SoC

INSTRUCTOR	Daniel Llamocca	Reconfigurable Systems		
CONTACT INFO	email: <u>llamocca@oakland.edu</u>			
WEBPAGE	www.secs.oakland.edu/~llamocca/EmbSysZynq.html	Static Dynamic		
REFERENCES	 Louise H. Crockett, Ross A. Elliot, Martin A. Enderwitz, Robert W. Stewart, "The Zyng Book Tutorials", Aug. 2015. ✓ Free download: http://www.zyngbook.com/ 	б	Embedded Systems	
MATERIALS	ZYBO Z7-10 (or ZYBO) Zynq [™] -7000 Development Board Vivado [™] Design Suite 2019.1 – Webpack Edition Xilinx Software Development Kit 2019.1	Interfacing	Applications: DSP, automotive, communications	

Digital Logic Design

DESCRIPTION

 Embedded System Design with Vivado[™] Design Suite software for Zynq[™] System-on Chip. Software implementation with the Software Development Kit (SDK). Hardware/software co-design: creation of custom-defined VHDL IP cores, interfacing with the AXI bus, and creating software applications to control the VHDL IP cores.

OUTLINE OF TOPICS

Introduction to Vivado	 Hardware Design Flow: Design Entry, Functional Simulation, Mapping, Timing Simulation, Implementation Case example: Counter with enable controlled by a pulse generator ✓ I/O assignment: XDC file ✓ VHDL Testbench Generation and Testing 		
Introduction to	 Using both the PL (Programmable Logic) and PS (Processing System). 		
Hardware/Software	 Vivado: Create a block-based project. Use of AXI GPIO peripheral to control LEDs SDK: Create a software application 		
Design	SDR. Create a Software application.		
AXI4-Lite: Custom	Case examples: Pixel Processor, Pipelined Divider, Pipelined 2D Convolution Kernel		
Peripheral	Vivado: Create IP, AXI4-Lite interface. Create block-based project.		
	 SDK: Load custom drivers. Create software application and test with UART. 		
	Case example: Pixel Processor, Pipelined Divider, Pipelined 2D Convolution Kernel		
	 Vivado: Create IP, AXI4-Full interface. Create block-based project. 		
AXI4-Full: Custom	 SDK: Load custom drivers. Create software application and test with UART. 		
Peripheral	 Case example: DCT or Matrix multiplier (with a constant matrix) 		
	 Vivado: Create IP, complex AXI4-Full interface. Create block-based project. 		
	 SDK: Load custom drivers. Create software application and test with UART. 		
Using the SD Card (in PS)	 Software drivers 		
Using the SD card (III PS)	 Reading/writing binary and text files. 		
Dynamic Partial	 Vivado Design Flow using TCL scripts. 		
Reconfiguration (PL)	 Case example: LED Pattern controller: 1 RPs and 2 RPs 		
Reconfiguration (PL)	 Testing with JTAG interface. 		
Dynamic Partial	 Vivado Design Flow using TCL script for PS+PL 		
Reconfiguration (PL+PS)	 Case examples: Pixel Processor, DCT 2D. 		
Reconfiguration (PL+PS)	 SDK: Write partial bitstreams using the PCAP port. 		
	 Memory to memory transfers, Memory to PL transfers. 		
Using DMA	 Using interrupts to signal DMA Transfer completion. 		
	Case example: Pixel Processor with interrupt outputs.		
Using Intervents	• Vivado: Create IP, AXI4-Full interface with interrupt. Create block-based project and		
Using Interrupts	connect interrupt signals to PS.		
	 SDK: Create software application to enable, assert, and de-assert PL interrupts. 		
USING INTERPUTS			