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ABSTRACT 

 

he original hyperbolic CORDIC (Coordinate Rotation 

Digital Computer) algorithm [1] imposes a limitation to the 

inputs’ domain which renders the algorithm useless for certain 

applications in which a greater range of the function is needed. 

To address this problem, Hu et al [2] have proposed an 

interesting scheme which increments the iterations of the original 

hyperbolic CORDIC algorithm and allows an efficient mapping 

of the algorithm onto hardware. 

 A fixed-point implementation of the hyperbolic CORDIC 

algorithm with the expansion scheme proposed by Hu is 

presented. Three architectures are proposed: a low cost iterative 

version, a fully pipelined version, and a bit serial iterative 

version. The architectures were described in VHDL, and to test 

the architecture, it was targeted to a Stratix FPGA. Various 

standard numerical formats for the inputs are analyzed for each 

hyperbolic function directly obtained: Sinh, Cosh, Tanh-1 and 

exp. For each numerical format and for each hyperbolic function 

an error analysis is performed.  

 

1. INTRODUCTION 

 

 The hyperbolic CORDIC algorithm as originally proposed by 

Walther[1] allows the computation of hyperbolic functions in an 

efficient fashion. However, the domain of the inputs is limited in 

order to guarantee that outputs converge and yield correct values, 

and this limitation will not satisfy the applications in which 

nearly the full range of the hyperbolic functions is needed. 

 Various strategies have been proposed to address the problem 

of limited convergence of the hyperbolic CORDIC algorithm. 

One strategy is to use mathematical identities to preprocess the 

CORDIC input quantities[1]. While such mathematical identities 

work, there is no single identity that will remove or reduce the 

limitations of all the functions in the hyperbolic mode. In 

addition, the mathematical identities are cumbersome to use in 

hardware applications because their implementation requires a 

significant increase in processing time and hardware[2]. Another 

approach, proposed by Hu et al [2], involves a modification to 

the basic CORDIC algorithm (inclusion of additional iterations) 

that can be readily implemented in a VLSI architecture or in a 

FPGA without excessively increasing the processing time. 

 Three architectures for the  fixed-point implementation of the 

hyperbolic CORDIC algorithm with the expansion scheme 

proposed by Hu[2] are presented: a low cost iterative version, a 

fully pipelined version, and a bit serial iterative version. Results 

in terms of resource count and speed were obtained by targeting 

the architectures, described in VHDL, to a Stratix FPGA of 

ALTERA®. 

 Four different numerical formats are proposed for the inputs. 

For each hyperbolic function, an analysis of each numerical 

format is performed and the optimal number of iterations along 

with the optimal format for the angle are obtained. Finally, an 

error analysis is performed for each hyperbolic function with 

each numerical format. The data obtained with the fixed-point 

architectures are contrasted with the ideal values obtained with 

MATLAB®. 

 The rest of this paper is organized as follows: In Section 2, the 

expansion scheme for the hyperbolic CORDIC algorithm is 

presented. Section 3 describes the three architectures 

implemented. Section 4 presents an analysis of each input 

numerical format for each hyperbolic function, so that an 

optimum output numerical format and architecture can be 

obtained. In addition, the results of the FPGA implementation for 

selected numerical formats and functions are shown. Section 5 

presents an error analysis. Finally, conclusions and 

recommendations are given. 

 

2.  EXPANSION SCHEME FOR THE HYPERBOLIC 

CORDIC ALGORITHM 

 

2.1 Original Hyperbolic CORDIC algorithm 

 

 The original hyperbolic CORDIC algorithm, first described by 

Walther [1], states the following iterative equations: 
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Where: ( )i
i Tanh −−= 21θ    (2) 

And i is the index of the iteration (i = 1, 2, 3, … N). The 

following iterations must be repeated in order to guarantee the 

convergence: 4, 13, 40,… k, 3k + 1. The value of δi is either +1 

or –1 depending on the mode of operation: 
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 In the rotation mode, the quantities X, Y and Z tend to the 

following results, for sufficiently large N: 
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And, in the vectoring mode, the quantities X, Y and Z tend to the 

following results, for sufficiently large N: 
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  With a proper choice of the initial values X0, Y0, Z0 and the 

operation mode, the following functions can be directly obtained: 

Sinh, Cosh, Tanh-1, and exp. Additional functions (e.g. ln, sqrt, 

Tanh) may be generated by applying mathematical identities, 

performing extra operations and/or using the circular or linear 

CORDIC algorithms [3]. 

 

2.2 Basic Range of Convergence 

  The basic range of convergence, obtained by a method 

developed by Hu[2] states the following:  
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  This is the restriction imposed to the domain of the input 

argument of the hyperbolic functions in the rotation mode. Note 

that the domain of the functions Sinh and Cosh is +∞∞− , . 
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  This is the limitation imposed to the domain of the quotient of 

the input arguments of the hyperbolic functions in the vectoring 

mode. Note that the domain of Tanh-1 is 1,1 +− , and thus this 

function remains greatly limited in its domain. 

 

2.3 Expansion of the Range of Convergence 

  The convergence range described by (9) and (12) is unsuitable 

to satisfy all applications of the hyperbolic CORDIC algorithm. 

  One strategy to address the problem of limited convergence is 

the use of mathematical identities to preprocess the CORDIC 

input quantities[1]. However, a different preprocessing scheme is 

necessary for each function, making it very difficult to have a 

unified hyperbolic CORDIC hardware. Moreover, the 

preprocessing leads to a significant increase in processing time 

and hardware. 

 Hu et al [2] have proposed another scheme to address the 

problem of the range of convergence. The approach consists in 

the inclusion of additional iterations to the basic CORDIC 

algorithm. As it will be shown in Section 3, the hardware and 

processing time increase is bearable and suitable for VLSI and 

FPGA implementation.  

  The method proposed by Hu consists in the inclusion of 

additional iterations for negative indexes i: 

( ) 0,21 21 ≤−= −− iforTanh i
iθ   (13) 

Therefore, the modified algorithm results: 

( )
( )

( )21
1

2
1

2
1

21

21

21

0

−−
+

−
+

−
+

−−=

−+=

−+=

≤

i
iii

i
i

iii

i
i

iii

TanhZZ

XYY

YXX

iFor

δ

δ

δ
  (14) 

 

( )i
iii

i
iiii

i
iiii

TanhZZ

XYY

YXX

iFor

−−
+

−
+

−
+

−=

+=

+=

>

2

2

2

0

1
1

1

1

δ

δ

δ
  (15) 

 The trend of the results for the rotation and vectoring mode is the 

same as that stated in (4) and (5). The value of δi is the same as 

indicated in (3). But the quantity An, described in (6), must be 

redefined as follows: 
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 The range of convergence, stated in (7) and (10) for the basic 

hyperbolic CORDIC algorithm, now becomes: 
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 Although (17) and (18) look nearly the same, they are 

interpreted differently: (17) states the maximum input angle the 

user can enter to obtain a valid result, whereas (18) states the 

maximum value attainable for the Tanh-1 function to which Z-Z0 

tends (according to (5)). If Z0=0, (18) states the maximum value 

attainable at Z, and therefore imposes a limitation to the inputs X0 

and Y0. 

 The values for θmax have been tabulated for M between 0 an 10 

and are shown in Table 1. 
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M θθθθmax from (19) M θθθθmax from (19) 

0 

1 

2 
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4 

 

2.09113 

3.44515 

5.16215 

7.23371 

9.65581 

5 

6 

7 

8 

9 

10 

12.42644 

15.54462 

19.00987 

22.82194 

26.98070 

31.48609 

Table 1. θθθθmax versus M for the Modified Hyperbolic CORDIC 

algorithm (after Hu[2]) 

 

 For example, if M = 5 is chosen (six additional iterations), then 

θmax=12.42644, and the domain of the functions Cosh and Sinh is 

greatly expanded to [-12.42644,+12.42644] compared with the 

domain in (9). Similarly, the range of the function Tanh-1 is 

increased to [-12.42644,+12.42644], which means that the 

domain of the quotient Y0/X0 becomes nearly 1,1 +− , which is 

the entire domain of Tanh-1. 

 From the last example, it is clear that the expansion scheme 

does work. The more domain of the functions is needed, the more 

the iterations (M+1) that must be executed. 

 

3. ARCHITECTURES PROPOSED FOR THE EXPANDED 

HYPERBOLIC CORDIC ALGORITHM 

 

  The architectures presented here implement the expanded  

hyperbolic CORDIC algorithm described in (14) and (15). The 

architectures are such that the inputs and outputs have an 

identical bit width. The intermediate registers and operators can 

be of higher bit width due to particular details of the algorithm 

and precision considerations which will be explored later in this 

paper. As it will be shown in Section 4, the bit width of the 

intermediate registers, the fixed-point format of the inputs and 

outputs, and the number of iterations vary considerably with the 

input/output bit width and the particular function desired. That is, 

to obtain an optimum architecture which yields a particular 

hyperbolic function (e.g. Tanh-1, Sinh/Cosh, exp), the architecture 

has to be changed for each function and for each input/output bit 

width. In Section 4, we explore the particularities of each 

architecture for Tanh-1, Sinh, Cosh, and exp. 

  It is worth to note, however, that a unified hyperbolic CORDIC 

hardware, capable of obtaining all the functions within the same 

architecture, is desirable for certain applications, as has been 

shown in [5]. The same principle which will be applied to the 

analysis of Tanh-1, Sinh, Cosh and exp can be applied to this case 

and thus the optimum architecture can be attained.  

  In addition, there exists a precision consideration which 

extends the bit width: it is a ‘rule of thumb’ found in [5]: “If n 

bits is the desired output precision, the internal registers should 

have log2(n) additional guard bits at the LSB position”. This 

consideration, although arbitrary, have proved to work very well. 

With these considerations in mind, three fixed-point architectures 

are presented: a low cost iterative version, a fully pipelined 

version, and a bit serial iterative version. But first, it is necessary 

to define some nomenclature used: 

n: input/output bit width 

nr: bit width of the internal registers and operators 

ng: additional guard bits. ng = log2(n) 

N: number of basic iterations 

M: number of additional iterations minus one. 

 Note that nr ≥ ng + n. We define the quantity na = nr – (ng+n) 

as the additional bits that are added to the MSB part, which will 

be necessary as we will demonstrate in Section 4. 

 

3.1 Low-Cost Iterative Architecture 

  Fig. 1 depicts the architecture that implements the equations 

(14) and (15) in an iterative fashion. The two LUTs (look-up 

tables) are needed to store the two sets of elementary angles 

defined in equations (2) and (13). 

 The process begins when a start signal is asserted. After 

‘M+1+N+v’ clock cycles (‘v’ is the number of repeated iterations 

stated in Section 2.1), the result is obtained in the registers X, Y 

and Z, and a new process can be started. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 

   Inputs: X_0, Y_0, and Z_0 

   Outputs: X_N, Y_N, and Z_N 

   j = M � 0 it = 1 � N 

 There are two stages: One that implements the iterations for i ≤ 0 

and is depicted in the upper part, it needs two multiplexers, two 

registers, four adders and two barrel shifters. This is the most 

critical part of the design, and introduces considerable delay, thus 

reducing the frequency of operation. The lower part of Figure 1 

implements the iterations for i > 0, this is a classical hardware 

found in many textbooks and papers. 

  A state machine controls the load of the registers, the data that 

passes onto the multiplexers, the add/substract decision of the 

adder/substracters, and the count given to the barrel shifters.  

 

3.2 Fully Pipelined Architecture 

 To develop the architecture, the algorithm described in (14) 

and (15) is unfolded. In addition, the stages that implement the 

expansion (the upper part of Figure 2) need to be partitioned in 

order to avoid large delays. Therefore ‘2*(M+1) + N + v’ stages 
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will appear (‘v’ is the number of repeated iterations as stated in 

Section 2.1). The architecture is depicted in Figure 2. 

 Such architecture can obtain a new result each cycle. The 

initial latency is ‘2*(M+1) + N + v’ cycles. 

 At each stage, X and Y have a fixed shift that can be 

implemented in the wiring, thus removing the barrel shifters of 

Section 3.1. In addition, the look-up values for the θi are 

distributed as constants across the stages, which are hardwired, 

hence removing the look-up table. The entire hardware is reduced 

to an array of interconnected adder/substractors and registers. A 

little additional hardware in needed to obtain the ‘dix’ signals, 

which are obtained as indicated in  (3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Pipelined-CORDIC 

 

3.3 Bit serial iterative architecture 

 The simplified interconnect and logic in a bit serial design 

should allow it to work at a much higher frequency than other 

architectures. However, the design needs to be clocked ‘n’ times 

for each iteration (‘n’ is the width of the data). This architecture 

maps well in FPGA [4] and is depicted in Figure 3. 

 

The input data (X_0, Y_0 and  Z_0) is loaded into the register bit 

per bit. Then the calculation starts. The array of serial 

adders/substractors, multiplexers, flip flops are arranged in a 

special fashion and controlled by a state machine, so that one 

output bit is computed every cycle, and after ‘n + 

n*(M+1+N+v)’ cycles a new result is obtained in the registers. * 

‘v’ is the number of repeated iterations as stated in Section 2.1. 

 

4. ANALYSIS OF NUMERICAL FORMATS FOR EACH 

HYPERBOLIC FUNCTION 

 

  For our fixed-point hardware, four standard bit widths for the 

inputs/ outputs are explored: 12, 16, 24, and 32. 

  Our aim is to obtain an optimum architecture that implements 

just one hyperbolic function. As a result, we will restrict our 

analysis to each architecture that implements one of the following 

functions: Tanh-1, Cosh, Sinh, and exp, which can be directly 

obtained from the hyperbolic CORDIC equations in (14) and 

(15). In case a unified hyperbolic CORDIC hardware is desired, 

the same analysis can be applied to obtain the optimum 

architecture. We will show that the intermediate registers and 

operators need to be augmented in the MSB part and that the 

format for X, Y, Z, and the number of iterations varies for each 

architecture that implements a particular hyperbolic function. The 

least significant positions are always extended for log2(n) bits, 

where n is the input/output bit width. In the following sub-

sections we will calculate the internal datapath, but this value 

will not consider the guard bits (log2(n)), because it is always 

present and to avoid complicating the explanation. 

 The numerical format is defined as: [T D] 

Where T: total number of bits 

    D: total number of fractional bits 

 

4.1 Inverse Hyperbolic Tangent (Tanh-1) 

  To obtain this function in Z, we have to set Z0=0 and X0=1 in 

the vectoring mode. Then,  ZN  Tanh-1(Y0). 

  As the domain of Tanh-1 is 1,1 +− , the input Y0 is restricted 

to 1 integer bit in the 2’s complement fractional fixed-point 

representation (|Y0|<1). But, as the input X0=1 requires 2 integer 

bits for correct representation, and the format for X and Y must be 

the same,  then X and Y must have 2 integer bits. 

  The critical case occurs when Y0 is at its maximum value, from 

which the maximum value of ZN  is obtained. Then we use Table 

1 to find the number of additional iterations (M) needed to 

correctly represent ZN  (by locating the nearestθmax) . 

  It is needless to add more bits to X and Y, because X and Y tend 

to decrease as shown in (5). At each different format (12, 16, 24 

and 32) we will obtain an adequate format for the bits of Z. 

 

4.1.1 Input/Output bit width: 12. Format for X and Y:[12 10] 

  |Y0| max = 3FFh = 0.999023475 

   � ZN  max = Tanh-1(3FFh) = 3.812065 

Given ZN max, we need 3 integer bits to represent Z. And Table 1 

specifies that 3 additional iterations are needed (M=2, 

θmax=5.162). 

  However,  in this case, the maximum intermediate value for Z 

is 4.04, then 1 bit must be extended to the MSB. This change will 

be implemented in the internal architecture. Thus, the format for 

Z remains [12 9] and the internal datapath is 13 bits. With the Z 

format [12 9] the LUT’s angles are: 
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M Value N Value N Value 

-2 

-1 

0 

36F 

2B5 

1F2 

1 

2 

3 

4 

5 

119 

083 

040 

020 

010 

6 

7 

8 

9 

008 

004 

002 

001 

Table 2 

Table 2 shows that the number of iterations needed is 9. Any 

further iteration will yield a value less or equal than 001h for the 

fixed angle rotation, which is useless. 

  In conclusion, M=2 and N=9. Z format is [12 9], and the 

internal datapath for Z is 13. 

 

4.1.2 Input/Output bit width: 16. Format for X and Y: [16 14] 

|Y0| max = 3FFFh = 0.99993896484375 

   � ZN max = Tanh-1(3FFFh) = 5.1985885952 

 Table 1 indicates that 4 additional iterations are needed (M=3, 

θmax=7.23). Given the maximum ZN, we found that 4 integer bits 

are needed to represent Z. 

 And, as θmax=7.23 needs 4 integer bits, no bit will be extended. 

Thus, the format for Z remains [16 12] and the internal datapath 

is 16 bits.  With the Z format [16 12] the LUT’s angles are: 

M Value N Value N Value 

-3 

-2 

-1 

0 

2125 

1B79 

15AA 

0F91 

1 

2 

3 

4 

5 

6 

08CA 

0416 

0203 

0100 

0080 

0040 

7 

8 

9 

10 

11 

12 

0020 

0010 

0008 

0004 

0002 

0001 

Table 3 

Table 3 shows that the number of iterations needed is 12. Any 

further iteration will yield a value minor or equal than 001h for 

the fixed angle rotation, which is useless. 

  In conclusion, M = 3 and N = 12. Z format is [16 12], and the 

internal datapath for Z is 16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1.3 Input/Output bit width: 24. Format for X and Y: [24 22] 

  |Y0| max = 3FFFFFh 

  � ZN max = Tanh-1(3FFFFFh) = 7.9711925 

  Table 1 specifies that 5 additional iterations are needed (M=4, 

θmax=9.655). Given the maximum ZN, we found that 4 integer bits 

are needed to represent Z. 

  However, in this case, the maximum intermediate value for Z is 

8.5346, so we have to extend 1 bit to the MSB. This change will 

be implemented in the internal architecture. Thus, the format for 

Z remains [24 20] and the internal datapath is 25 bits. 

  With the Z format [24 20] the LUT’s angles are: 

M Value N Value N Value 

-4 

-3 

-2 

-1 

0 

26C0E5 

212524 

1B78CE 

15AA16 

0F9139 

1 

2 

3 

4 

5 

6 

7 

8 

0F9139 

08C9F5 

04162C 

0202B1 

010056 

00800B 

002000 

001000 

9 

10 

11 

12 

13 

14 

15 

16 

000800 

000400 

000200 

000100 

000080 

000040 

000020 

000010 

Table 4 

We have chosen 16 as the number of iterations. While 20 

iterations can be executed, it would increase the amount of 

hardware excessively. 

  In conclusion, M=4 and N=16. Z format is [24 20], and the 

internal datapath for Z is 25. 

 

4.1.4 Input/Output bit width: 32. Format for X and Y: [32 30] 

|Y0| max = 3FFFFFFFh 

   � ZN max = Tanh-1(3FFFFFFFh) = 10.743781 

Table 1 specifies that 6 additional iterations are needed (M=5, 

θmax=12.42644). Given the maximum ZN, 5 integer bits are 

needed to represent Z. 

  And, as θmax=12.42644 requires 5 bits, no bit is needed to be 

extended. Thus, the format for  Z remains [32 27] and the internal 

Figure 3. Hyperbolic bit serial iterative CORDIC
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datapath is 32 bits. With the Z format [32 27] the LUT’s angles 

are: 

M Value N Value N Value 

-5 

-4 

-3 

-2 

-1 

0 

162A40FE 

13607294 

109291E9 

0DBC6724 

0AD50B1D 

07C89CAC 

1 

2 

3 

4 

5 

6 

7 

8 

0464FA9F 

020B15DF 

01015892 

00802AC4 

00400556 

002000AB 

00100015 

00080003 

9 

10 

11 

12 

13 

14 

15 

16 

00040000 

00020000 

00010000 

00008000 

00004000 

00002000 

00001000 

00000800 

Table 5 

  We have chosen the number of iterations to be 16. While 27 

iterations can be executed, it would increase the amount of 

hardware excessively. 

  In conclusion, M=5 and N=16. Z format is [32 27], and the 

internal datapath for Z is 32. 

 

4.2 Hyperbolic Sine and Hyperbolic Cosine 

  To obtain these functions in X and Y, it is necessary to set Y0=0 

and X0=1/An in the rotation mode. Then, YN  Sinh(Z0) and 

XN  Cosh(Z0). As the domain of Sinh and Cosh is +∞∞− , , 

there is no input restriction. Our strategy will consist in fixing to 

[12 10] the input Z for the bit width of 12, and increment 1 

integer bit for a larger bit width, so that by augmenting the bit 

width, the range of the functions Sinh and Cosh is incremented. 

  The critical case occurs when |Z0| is at the maximum value 

attainable at each format, from which the maximum values of XN 

and YN  are obtained. Then we use Table 1 to find the number of 

additional iterations (M) needed to correctly represent Z0  (by 

locating the nearest θmax). 

   Note that it is unnecessary to add more bits to Z, because Z 

tends to 0 as shown in (4). At each different format (12, 16, 24 

and 32) we will obtain an adequate format for the bits of X and Y. 

 

4.2.1 Input/Output bit width: 12. Input format for Z: [12 10] 

|Z0|max = |400h| = |-2| 

  Table 1 shows that 1 additional iteration is needed (M=0).  

With the Z format [12 10] the LUT’s angles are: 

M Value N Value N Value 

0 3E4 1 

2 

3 

4 

5 

232 

106 

081 

040 

020 

6 

7 

8 

9 

10 

010 

008 

004 

002 

001 

Table 6 

Table 6 shows that the number of iterations needed is 10. Any 

further iteration will yield a value less or equal than 001h for the 

fixed angle rotation, which is useless. Then, 

An=0.54777601990563 and X0=1/An=1.82556366774193. 

  Also, the maximum values of XN  and YN,, given |Z0|max are: 

   XN = Sinh(400h) =  -3.62686040784702 

   YN = Cosh(400h) = +3.76219569108363 

Given these maximum values, we found that 3 integer bits are 

needed to represent X and Y. In addition, in this case, the 

maximum intermediate values for X is 2.510150043145 and for Y 

is 2.281954584677. So, no bit need to be extended. Thus, format 

for X and Y remains [12 9] and the internal datapath is 12 bits. 

  Note that the format for Z([12 10]) has been chosen arbitrarily. 

However, this is a good format, because with [12 9] for Z we 

would have obtained [12 6] for X and Y, where many fractional 

bits would have been lost. 

  In conclusion, M=0 and N=10. X, Y format is [12 9], and the 

internal datapath for X, Y is 12. 

 

4.2.2 Input/Output bit width: 16. Input format for Z: [16 13] 

|Z0| max = |8000h| = |-4| 

  Table 1 indicates that 3 additional iterations are needed (M=2). 

With the Z format [16 13] the LUT’s angles are: 

M Value N Value N Value 

-2 

-1 

0 

36F2 

2B54 

1F22 

1 

2 

3 

4 

5 

6 

1194 

082C 

0405 

0201 

0100 

0080 

7 

8 

9 

10 

11 

12 

13 

0040 

0020 

0010 

0008 

0004 

0002 

0001 

Table 7 

Table 7 shows that 13 iterations are needed. Any further iteration 

will yield a value less or equal than 001h for the fixed angle 

rotation, which is useless. Then, An = 0.09228252133203 and X0 

= 1/An = 10.83628823276322. 

  Also, the maximum values of XN  and YN, given |Z0|max are: 

   XN = Sinh(8000h) =  -27.289917197 

   YN = Cosh(8000h) = +27.3082328361 

  These maximum values indicate that 6 integer bits are needed 

to represent X and Y. In addition, in this case, the maximum 

intermediate values for X is 34.45601024011 and for Y is -

34.4348456146, so we have to extend 1 bit to the MSB. This 

change will be implemented in the internal architecture. Thus, the 

format for X and Y remains [16 10] and the internal datapath is 17 

bits. 

  Note that the format for Z([16 13]) has been chosen arbitrarily. 

However, this is a good format, because with [16 12] for Z we 

would have obtained [16 4] for X and Y, where many fractional 

bits would have been lost. 

  In conclusion, M=2 and N=13. X, Y format is [16 10], and the 

internal datapath for X, Y is 17. 

 

4.2.3 Input/Output bit width: 24. Input format for Z: [24 20] 

|Z0|max=|800000h|=|-8| 

 From Table 1, we found that 5 additional iterations are needed 

(M=4). With the Z format [24 20] the elementary angles defined 

for the LUT (look-up table) are equal as those in Table 4. 

  From Table 4, the number of iterations selected is 16. While 20 

iterations can be executed, it would increase the amount of 

hardware excessively. Then, An=4.0305251x10-3 and 

X0=1/An=248.1066. 

  Also, the maximum values of XN and YN, given |Z0|max are: 

   XN = Sinh(800000h) =  -1490.47882 

   YN = Cosh(800000h) = +1490.47916 

  Given these maximum values, we found that 12 integer bits are 

needed to represent correctly X and Y. In addition, in this case, 

the maximum intermediate values for X is 3081.0854 and for Y is 

3081.085173, so we have to extend 1 bit to the MSB. This 

change will be implemented in the internal architecture. Thus, the 

format for X and Y remains [24 12] and the internal datapath is 

25 bits. 

  Note that the format for Z([24 20]) has been chosen arbitrarily. 

However, this is a good format, because with [24 19] for Z we 
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would have obtained [24 0] for X and Y, and the fractional bits 

would have disappeared. 

  In conclusion, M=4 and N=16. X, Y format is [24 12], and the 

internal datapath for X, Y is 25. 

 

4.2.4 Input/Output bit width: 32. Input format for Z: [32 27] 

|Z0| max = |80000000h| = |-16| 

  Table 1 indicates that  8 additional iterations are needed 

(M=7). With the Z format [32 27] the elementary angles defined 

for the LUT (look-up table) are equal as those in Table 5. 

  From Table 5, the number of iterations selected is 16. While 27 

iterations can be executed, it would increase the amount of 

hardware excessively. Then, An =  2.7737x10-6 and X0 = 1/An = 

3.605287519x10-5. 

  Also, the maximum values of XN and YN, given |Z0|max are: 

   XN = Sinh(80000000h) =  4.44305526x106 

   YN = Cosh(80000000h) = 4.44305526x106  

Given these maximum values, we found that 24 integer bits are 

needed to represent X and Y. In addition, in this case, the 

maximum intermediate value for X is 20.32x106 and for Y is 

20.32x106, so we have to extend 2 bits to the MSB. This change 

will be implemented in the internal architecture. Thus, the format 

for X and Y remains [32 8] and the internal datapath is 34 bits. 

  Note that the format for Z([32 27]) has been chosen arbitrarily. 

But this is a good format, because with [32 26], we would have 

needed more than 32 integer bits for X and Y, that is impossible 

to implement. 

  In conclusion, M=7 and N=16. X, Y format is [32 8], and the 

internal datapath for X, Y is 34. 

 

4.3 Exponential (ex) 

  To obtain this function, we have to set X0=Y0=1/An in the 

rotation mode. Then, YN  Sinh(Z0) + Cosh(Z0) and XN  

Cosh(Z0) + Sinh(Z0).  And, as ew = Sinh(w) + Cosh(w), we can 

rewrite: 0
Z

N eY ← and 0
Z

N eX ← . 

  The domain of ew is +∞∞− , , hence there is no input 

restriction. Our strategy will consist in fixing to [12 10] the input 

Z for the bit width of 12, and incrementing 1 integer bit for each 

larger bit width, so that by augmenting the bit width, the range of 

the function  ew is incremented. It is worth to mention that the 

hardware will be the same of the hardware that computes Sinh 

and Cosh. 

  The critical case occurs when Z0 is at the maximum value 

attainable at each format, from which the maximum values of XN 

and YN  are obtained. Then we use Table 1 to find the number of 

additional iterations (M) needed to correctly represent Z0  (by 

locating the nearestθmax). 

  As Z tends to 0 (as shown in (4)), it is needless to add more 

bits to Z. At each different format (12, 16, 24 and 32) we will 

obtain an adequate format for the bits of X and Y. 

 

4.3.1 Input/Output bit width: 12. Input format for Z: [12 10] 

Z0max = 7FFh = 1.9990234375. 

  Table 1 indicates that 1 additional iteration is needed (M=0). 

With the Z format [12 10] the LUT’s angles are those shown in 

Table 6, which specifies that 10 iterations are needed. Any 

further iteration will yield a value less or equal than 001h for the 

fixed angle rotation, which is useless. Then, 

An=0.54777601990563 and X0=Y0=1/An=1.82556366774193. 

Also, the maximum values of XN  and YN, given Z0 max are: 

XN  = YN = e7FFh = 7.38184374606390 

 Given this maximum value, we found that 4 integer bits are 

needed to correctly represent X and Y. 

  In addition, in this case, the maximum intermediate value for X 

and Y is 7.607583091. So, no bit need to be extended. Thus, X 

and Y’s format remains [12 8] and the internal datapath is 12 bits. 

  Note that the format for Z([12 10]) has been chosen arbitrarily. 

But this is a good format, since with [12 9] for Z we would have 

obtained [12 5] for X and Y, and many fractional bits would have 

been lost. 

  In conclusion, M=0 and N=10. X, Y format is [12 8], and the 

internal datapath for X, Y  is 12. 

 

4.3.2 Input/Output bit width: 16. Input format for Z: [16 13] 

Z0 max = 7FFFh = 3.9998779296875. 

  Table 1 specifies that 3 additional iterations are needed (M=2). 

With the Z format [16 13] the LUT’s angles are those shown in 

Table 7, which specifies that 13 iterations are needed. Any 

further iteration will yield a value less or equal than 001h for the 

fixed angle rotation, which is useless. Then, An = 

0.09228252133203 and X0 = 1/An = 10.83628823276322. 

  Also, the maximum values of XN and YN, given |Z0|max are: 

XN  = YN = e7FFFh = 54.59148562667914 

 Given this maximum value, we found that 7 integer bits are 

needed to correctly represent X and Y. 

  Besides, in this extreme case, the maximum intermediate value 

for X and Y is 68.89085585, so we have to extend 1 bit to the 

MSB. This change will be implemented in the internal 

architecture. Thus, the format for X and Y remains [16 9] and the 

internal datapath is 17 bits. 

  Note that the format for Z([16 13]) has been chosen arbitrarily. 

However, this is a good format, because with [16 12] for Z we 

would have obtained [16 3] for X and Y, and many fractional bits 

would have been lost. 

  In conclusion, M=2 and N=13. X, Y format is [16 9], and the 

internal datapath for X, Y is 17. 

 

4.3.3 Input/Output bit width: 24. Input format for Z: [24 20] 

Z0max = 7FFFFFh = 7.99999904632568. 

 Table 1 indicates that 5 additional iterations are needed (M=4). 

With the Z format [24 20] the elementary angles defined for the 

LUT (look-up table) are equal as those in Table 4. 

  From Table 4, the number of iterations selected is 16. While 20 

iterations can be executed, it would increase the amount of 

hardware excessively. Then, An=4.0305251x10-3 and 

X0=Y0=1/An=248.1066. 

  Also, the maximum values of XN and YN, given |Z0|max are: 

   XN  = YN = e7FFFFFh = 2980.955144180013 

  Given these maximum values, we found that 13 integer bits are 

needed to correctly represent X and Y. 

  In addition, in this case, the maximum intermediate value for X 

and Y is 6162.17058, so we have to extend 1 bit to the MSB. This 

will be implemented in the internal architecture. Thus, the format 

for X and Y remains [24 11] and the internal datapath is 25 bits. 

  Note that the format for Z([24 20]) has been chosen arbitrarily. 

However, this is a good format, because with [24 19] for Z we 

would have needed 25 integer bits for X and Y, which would be 

impossible to implement. 

  In conclusion, M=4 and N=16. X, Y format is [24 11], and the 

internal datapath for X, Y is 25. 
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A

B

4.3.4 Input/Output bit width: 32. Input format for Z: [32 27] 

Z0 max = 7FFFFFFFh = 15.99999999254942. 

 Table 1 specifies that 8 additional iterations are needed (M=7). 

With the Z format [32 27] the elementary angles defined for the 

LUT (look-up table) are equal as those in Table 5. From Table 5, 

the number of iterations selected is 16. While 27 iterations can be 

executed, it would increase the amount of hardware excessively. 

Then, An =  2.7737x10-6 and X0 =Y0= 1/An = 3.605287519x10-5. 

  Also, the maximum values of XN and YN, given |Z0|max are: 

   XN = YN = e7FFFFFFF = 8.886110454x106 

  Given these maximum values, 25 integer bits are needed to 

represent X and Y. 

  In addition, in this case, the maximum intermediate value for X 

and Y is 4.06x107, so we have to extend 2 bits to the MSB. This 

will be implemented in the internal architecture. Thus, the format 

for X and Y remains [32 7] and the internal datapath is 34 bits. 

  Note that the format for Z([32 27]) has been chosen arbitrarily. 

But this is a good format, since with [32 26], we would have 

needed more than 32 integer bits for X and Y, that is impossible 

to implement. 

  In conclusion, M=7 and N=16. X, Y format is [32 7], and the 

internal datapath for X, Y is 34. 

 

4.4 Results of FPGA implementation 

 Note that the hardware for obtaining exp and Sinh/Cosh is 

exactly the same, though the results are interpreted differently. 

Type N Function LEs fmax 

Sinh/Cosh, exp 402 97.53 
12 

Tanh-1 433 108.75 

Sinh/Cosh, exp 544 85.73 
16 

Tanh-1 516 99.70 

Sinh/Cosh, exp 866 77.50 
24 

Tanh-1 869 84.74 

Sinh/Cosh, exp 1170 83.03 IT
E
R
A
T
IV
E
 (
F
ol
de
d 

R
ec
ur
si
ve
) 

32 
Tanh-1 1119 87.92 

Sinh/Cosh, exp 662 182.22 
12 

Tanh-1 675 187.18 

Sinh/Cosh, exp 1308 168.75 
16 

Tanh-1 1396 177.34 

Sinh/Cosh, exp 1512 160.35 
24 

Tanh-1 1527 171.15 

Sinh/Cosh, exp 1686 152.35 

F
U
LL
Y
 P
IP
E
LI
N
E
D
 

(U
nf
ol
de
d 
P
ip
el
in
ed
) 

32 
Tanh-1 1718 165.40 

Sinh/Cosh, exp 225 206.10 
12 

Tanh-1 234 208.77 

Sinh/Cosh, exp 345 192.74 
16 

Tanh-1 348 193.25 

Sinh/Cosh, exp 469 182.50 
24 

Tanh-1 478 188.62 

Sinh/Cosh, exp 703 187.40 B
IT
 S
E
R
IA
L 
IT
E
R
A
T
IV
E
 

(F
ol
de
d 
re
cu
rs
iv
e)
 

32 
Tanh-1 710 191.50 

Table 8. Final Results 

Device: Stratix EP1S10F484C5 

 

The results, obtained with Quartus II 5.0, show that the 

hyperbolic CORDIC implementation is amenable to FPGA. The 

clock rates are relatively high and the resource effort is bearable 

for high-density FPGAs. 

5. ERROR ANALYSIS 

 

For the cases analyzed in 4.1, 4.2 and 4.3, an error analysis is 

performed. The results are contrasted with the ideal values 

obtained in MATLAB®. The error measure will be: 

 
valueideal

valueCORDICvalueideal
ErrorRelative

−
=  (20) 

 The three cases will be tested. We have taken 1024 values 

equally spaced along the maximum domain of functions obtained 

for each  bit width analyzed. In the case of Tanh-1, it has been 

necessary to add more values, for the Tanh-1 grows dramatically 

as its argument nears ± 1. 

 

5.1 Inverse Hyperbolic Tangent 

We will show the relative error for the hardware that 

implements the hyperbolic tangent in its entire domain for 12, 16, 

24 and 32 bits. Figures 7, 8, and 9 show the relative error 

performance for the function Tanh-1(w) for 12, 16, 24 and 32 bits. 

Although the domain of Tanh-1 is 1,1 +− , we have just plotted 

for w [ 1,0 +∈  since Tanh-1 is an odd function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.   In Curve A, 12 bits were used. In Curve B, 16 bits 

were used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  In the curve, 24 bits were used. 
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Figure 6. In the curve, 32 bits were used. 

 

 For w near 0, all the curves exhibit high relative error values, 

because Tanh-1(w) yields the smallest values for w near 0, and the 

fixed-point hardware fails representing those small values. 

 The more the bit width, the less the relative error. For example, 

for 12 bits (figure 4) nearly all the relative error values are below 

10-2 (an error below 1%), and for 24 bits (Figure 5), the relative 

error values are below 10-4 (an error below 0.1%). 

 The curve for 32 bits (Figure 6) exhibits some irregularities 

due to the reduced basic iterations (16); but in general it provides 

the least relative error. However, it is unusual to have a Tanh-1 

hardware with an bit input data width of 32 bits. 

 

5.2 Hyperbolic Sine and Hyperbolic Cosine 

 We will show the relative error for the hardware that 

implements Sinh and Cosh in the maximum domain obtained in 

4.2 for 12, 16, 24 and 32 bits.  

 Figures 7 and  8 show the relative error for Cosh(w) for 12, 16, 

24 and 32 bits. We have just plotted the positive domain. The 

negative domain is not plotted, since Cosh is an even function 

and will yield the same values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  In Curve A, 12 bits were used ( [ 2,0∈w ). In 

Curve B, 16 bits were used ( [ 4,0∈w ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.  In Curve A, 24 bits were used ( [ 8,0∈w ). In Curve 

B, 32 bits were used ( [ 16,0∈w ).  

 

 The curve A (Figure 8) for 24 bits is very regular because in 

this format we use a larger quantity of fractional bits than with 

the other formats. 

 The curve B (Figure 8) for 32 bits exhibits some irregularities 

due to the reduced fractional bits (8) and the reduced number of 

basic iterations (16). However, it provides the greatest domain for 

the Cosh(w) function ( [ 16,16−∈w ). 

 

 Figures 9 and 10 show the relative error performance for 

Sinh(w) for 12, 16, 24 and 32 bits. We have just plotted the 

positive domain. The negative domain is not plotted, since Sinh is 

an odd function and will yield the negative values of those 

obtained in the positive domain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.  In Curve A, 12 bits were used( [ 2,0∈w ). In Curve 

B, 16 bits were used( [ 4,0∈w ). 
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Figure 10.  In Curve A, 24 bits were used ( [ 8,0∈w ). In 

Curve B, 32 bits were used ( [ 16,0∈w ).  

 

 The curve A (Figure 10) for 24 bits is very regular because in 

this format we use a larger quantity of fractional bits than with 

the other formats. 

 The curve B (Figure 10) for 32 bits exhibits some irregularities 

due to the reduced fractional bits (8) and the reduced number of 

basic iterations (16). However, it provides the greatest domain for 

the Sinh(w) function ( [ 16,16−∈w ). 

  

5.3 Exponential 

 We will show the relative error for the hardware that 

implements ex in the domain obtained in 4.3 for 12, 16, 24 and 32 

bits. 

 Figures 11 and 12 show the relative error for ew for 12, 16, 24 

and 32 bits.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11.  In Curve A, 12 bits were used( [ 2,2 +−∈w ). In 

Curve B, 16 bits were used( [ 4,4 +−∈w ). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12.  In Curve A, 24 bits were used( [ 8,8 +−∈w ). In 

Curve B, 32 bits were used( [ 16,16 +−∈w ). 

Note that, as w is more negative, the error increases and even 

becomes constant (as in Figure 12). The reason is that ew is very 

small for large negative values of w, and the fixed-point hardware 

fails representing those small values. 

 

6 CONCLUSIONS 

 

• The expansion scheme proposed by Hu[2], despite the 

additional hardware needed, has proved to be amenable for 

our FPGA implementation, as the clock rate and resource 

effort indicates. The function Tanh-1 gets expanded in all its 

domain, and the functions Cosh and Sinh have a greater 

domain as the bit width increases. 

• The analysis for a unified CORDIC algorithm has not been 

performed in order to not to lengthen this paper. But the 

analysis for this case is very similar to that of Section 4.  

• The error analysis shows certain irregularities in the relative 

error performance. This irregularities are due to the 

truncation of the fractional bits and the ever-limited number 

of basic and additional iterations. We have tested the 

CORDIC algorithm in MATLAB® and have found that the 

error performance is uniform. 
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