
 1

A FIXED-POINT IMPLEMENTATION OF THE EXPANDED HYPERBOLIC

CORDIC ALGORITHM

Daniel R. Llamocca-Obregón

llamocca.dr@pucp.edu.pe

Carla P. Agurto-Ríos

agurto.cp@pucp.edu.pe
Grupo de Procesamiento Digital de Señales e Imágenes - Pontificia Universidad Católica del Perú

Av. Universitaria s/n Cuadra 18 - Lima 32, Perú

Telf.: +511-6262000 Anexo 4681

ABSTRACT

he original hyperbolic CORDIC (Coordinate Rotation

Digital Computer) algorithm [1] imposes a limitation to the

inputs’ domain which renders the algorithm useless for certain

applications in which a greater range of the function is needed.

To address this problem, Hu et al [2] have proposed an

interesting scheme which increments the iterations of the original

hyperbolic CORDIC algorithm and allows an efficient mapping

of the algorithm onto hardware.

 A fixed-point implementation of the hyperbolic CORDIC

algorithm with the expansion scheme proposed by Hu is

presented. Three architectures are proposed: a low cost iterative

version, a fully pipelined version, and a bit serial iterative

version. The architectures were described in VHDL, and to test

the architecture, it was targeted to a Stratix FPGA. Various

standard numerical formats for the inputs are analyzed for each

hyperbolic function directly obtained: Sinh, Cosh, Tanh-1 and

exp. For each numerical format and for each hyperbolic function

an error analysis is performed.

1. INTRODUCTION

 The hyperbolic CORDIC algorithm as originally proposed by

Walther[1] allows the computation of hyperbolic functions in an

efficient fashion. However, the domain of the inputs is limited in

order to guarantee that outputs converge and yield correct values,

and this limitation will not satisfy the applications in which

nearly the full range of the hyperbolic functions is needed.

 Various strategies have been proposed to address the problem

of limited convergence of the hyperbolic CORDIC algorithm.

One strategy is to use mathematical identities to preprocess the

CORDIC input quantities[1]. While such mathematical identities

work, there is no single identity that will remove or reduce the

limitations of all the functions in the hyperbolic mode. In

addition, the mathematical identities are cumbersome to use in

hardware applications because their implementation requires a

significant increase in processing time and hardware[2]. Another

approach, proposed by Hu et al [2], involves a modification to

the basic CORDIC algorithm (inclusion of additional iterations)

that can be readily implemented in a VLSI architecture or in a

FPGA without excessively increasing the processing time.

 Three architectures for the fixed-point implementation of the

hyperbolic CORDIC algorithm with the expansion scheme

proposed by Hu[2] are presented: a low cost iterative version, a

fully pipelined version, and a bit serial iterative version. Results

in terms of resource count and speed were obtained by targeting

the architectures, described in VHDL, to a Stratix FPGA of

ALTERA®.

 Four different numerical formats are proposed for the inputs.

For each hyperbolic function, an analysis of each numerical

format is performed and the optimal number of iterations along

with the optimal format for the angle are obtained. Finally, an

error analysis is performed for each hyperbolic function with

each numerical format. The data obtained with the fixed-point

architectures are contrasted with the ideal values obtained with

MATLAB®.

 The rest of this paper is organized as follows: In Section 2, the

expansion scheme for the hyperbolic CORDIC algorithm is

presented. Section 3 describes the three architectures

implemented. Section 4 presents an analysis of each input

numerical format for each hyperbolic function, so that an

optimum output numerical format and architecture can be

obtained. In addition, the results of the FPGA implementation for

selected numerical formats and functions are shown. Section 5

presents an error analysis. Finally, conclusions and

recommendations are given.

2. EXPANSION SCHEME FOR THE HYPERBOLIC

CORDIC ALGORITHM

2.1 Original Hyperbolic CORDIC algorithm

 The original hyperbolic CORDIC algorithm, first described by

Walther [1], states the following iterative equations:

iiii

i
iiii

i
iiii

ZZ

XYY

YXX

θδ

δ

δ

−=

+=

+=

+

−
+

−
+

1

1

1

2

2

 (1)

Where: ()i
i Tanh −−= 21θ (2)

And i is the index of the iteration (i = 1, 2, 3, … N). The

following iterations must be repeated in order to guarantee the

convergence: 4, 13, 40,… k, 3k + 1. The value of δi is either +1

or –1 depending on the mode of operation:

otherwiseyxifVectoring

otherwisezifRotation

iii

ii

,1,01:

,1,01:

+≥−=

+<−=

δ

δ
 (3)

 In the rotation mode, the quantities X, Y and Z tend to the

following results, for sufficiently large N:

T

 2

[]
[]

0

0000

0000

←

+←

+←

n

nn

nn

Z

SinhZXCoshZYAY

SinhZYCoshZXAX

 (4)

And, in the vectoring mode, the quantities X, Y and Z tend to the

following results, for sufficiently large N:







+←

←

−←

−

0

01
0

2
0

2
0

0

X
Y

TanhZZ

Y

YXAX

n

n

nn

 (5)

Where ‘An’ is: ∏
=

−−←

N

i

i
nA

1

221 (6)

 With a proper choice of the initial values X0, Y0, Z0 and the

operation mode, the following functions can be directly obtained:

Sinh, Cosh, Tanh-1, and exp. Additional functions (e.g. ln, sqrt,

Tanh) may be generated by applying mathematical identities,

performing extra operations and/or using the circular or linear

CORDIC algorithms [3].

2.2 Basic Range of Convergence

 The basic range of convergence, obtained by a method

developed by Hu[2] states the following:

Rotation Mode: ∑
=

+≤

N

i

iNZ

1

0 θθ (7)

� () ()∑
=

−−−− +≤

N

i

iN TanhTanhZ

1

11
0 22 (8)

� ∞→≈ NforZ ,182.1
max0 (9)

 This is the restriction imposed to the domain of the input

argument of the hyperbolic functions in the rotation mode. Note

that the domain of the functions Sinh and Cosh is +∞∞− , .

Vectoring Mode: ∑
=

− +≤







N

i

iNX
Y

Tanh

1
0

01 θθ (10)

� ∞→≤





−

Nfor,.
X

Y
Tanh 11821

0

01
 (11)

� ∞→≈ Nfor,.
X

Y

max

806940
0

0 (12)

 This is the limitation imposed to the domain of the quotient of

the input arguments of the hyperbolic functions in the vectoring

mode. Note that the domain of Tanh-1 is 1,1 +− , and thus this

function remains greatly limited in its domain.

2.3 Expansion of the Range of Convergence

 The convergence range described by (9) and (12) is unsuitable

to satisfy all applications of the hyperbolic CORDIC algorithm.

 One strategy to address the problem of limited convergence is

the use of mathematical identities to preprocess the CORDIC

input quantities[1]. However, a different preprocessing scheme is

necessary for each function, making it very difficult to have a

unified hyperbolic CORDIC hardware. Moreover, the

preprocessing leads to a significant increase in processing time

and hardware.

 Hu et al [2] have proposed another scheme to address the

problem of the range of convergence. The approach consists in

the inclusion of additional iterations to the basic CORDIC

algorithm. As it will be shown in Section 3, the hardware and

processing time increase is bearable and suitable for VLSI and

FPGA implementation.

 The method proposed by Hu consists in the inclusion of

additional iterations for negative indexes i:

() 0,21 21 ≤−= −− iforTanh i
iθ (13)

Therefore, the modified algorithm results:

()
()

()21
1

2
1

2
1

21

21

21

0

−−
+

−
+

−
+

−−=

−+=

−+=

≤

i
iii

i
i

iii

i
i

iii

TanhZZ

XYY

YXX

iFor

δ

δ

δ
 (14)

()i
iii

i
iiii

i
iiii

TanhZZ

XYY

YXX

iFor

−−
+

−
+

−
+

−=

+=

+=

>

2

2

2

0

1
1

1

1

δ

δ

δ
 (15)

 The trend of the results for the rotation and vectoring mode is the

same as that stated in (4) and (5). The value of δi is the same as

indicated in (3). But the quantity An, described in (6), must be

redefined as follows:

()()













−














−−← ∏∏

=

−

−=

−
N

i

i

Mi

i
nA

1

2
0

22
21211 (16)

 The range of convergence, stated in (7) and (10) for the basic

hyperbolic CORDIC algorithm, now becomes:

Rotation Mode: max0 θ≤Z (17)

Vectoring Mode: max
0

01 θ≤





−

X
Y

Tanh (18)

Where: () +−= ∑
−=

−−
0

21
max 21

Mi

iTanhθ

 () ()













++ ∑

=

−−−−
N

i

iN
TanhTanh

1

11
22 (19)

 Although (17) and (18) look nearly the same, they are

interpreted differently: (17) states the maximum input angle the

user can enter to obtain a valid result, whereas (18) states the

maximum value attainable for the Tanh-1 function to which Z-Z0

tends (according to (5)). If Z0=0, (18) states the maximum value

attainable at Z, and therefore imposes a limitation to the inputs X0

and Y0.

 The values for θmax have been tabulated for M between 0 an 10

and are shown in Table 1.

 3

nr bits

2-it -2

nr bits

+/-

s_xyz

di

 n bits

+/-
di

T
a
n

h
-1

(2
-i

t)

nr bits

+/-

nr bits

+/-

X_0 Y_0 Z_0

s_xyzp

dip

n bits

+/-
di

T
a
n

h
-1

(1
-2

-j
-2

)

2-j -22-j-2

s_xyz

s_xyzp

dip

0

nr nrnn

nrnr

+/-

Xn Yn

n n

n

n

n

n

Zn

LUT1

LUT2

0 10 1 01

0 1 01

0 1

n

n n

+/-

+/-

dip

M θθθθmax from (19) M θθθθmax from (19)

0

1

2

3

4

2.09113

3.44515

5.16215

7.23371

9.65581

5

6

7

8

9

10

12.42644

15.54462

19.00987

22.82194

26.98070

31.48609

Table 1. θθθθmax versus M for the Modified Hyperbolic CORDIC

algorithm (after Hu[2])

 For example, if M = 5 is chosen (six additional iterations), then

θmax=12.42644, and the domain of the functions Cosh and Sinh is

greatly expanded to [-12.42644,+12.42644] compared with the

domain in (9). Similarly, the range of the function Tanh-1 is

increased to [-12.42644,+12.42644], which means that the

domain of the quotient Y0/X0 becomes nearly 1,1 +− , which is

the entire domain of Tanh-1.

 From the last example, it is clear that the expansion scheme

does work. The more domain of the functions is needed, the more

the iterations (M+1) that must be executed.

3. ARCHITECTURES PROPOSED FOR THE EXPANDED

HYPERBOLIC CORDIC ALGORITHM

 The architectures presented here implement the expanded

hyperbolic CORDIC algorithm described in (14) and (15). The

architectures are such that the inputs and outputs have an

identical bit width. The intermediate registers and operators can

be of higher bit width due to particular details of the algorithm

and precision considerations which will be explored later in this

paper. As it will be shown in Section 4, the bit width of the

intermediate registers, the fixed-point format of the inputs and

outputs, and the number of iterations vary considerably with the

input/output bit width and the particular function desired. That is,

to obtain an optimum architecture which yields a particular

hyperbolic function (e.g. Tanh-1, Sinh/Cosh, exp), the architecture

has to be changed for each function and for each input/output bit

width. In Section 4, we explore the particularities of each

architecture for Tanh-1, Sinh, Cosh, and exp.

 It is worth to note, however, that a unified hyperbolic CORDIC

hardware, capable of obtaining all the functions within the same

architecture, is desirable for certain applications, as has been

shown in [5]. The same principle which will be applied to the

analysis of Tanh-1, Sinh, Cosh and exp can be applied to this case

and thus the optimum architecture can be attained.

 In addition, there exists a precision consideration which

extends the bit width: it is a ‘rule of thumb’ found in [5]: “If n

bits is the desired output precision, the internal registers should

have log2(n) additional guard bits at the LSB position”. This

consideration, although arbitrary, have proved to work very well.

With these considerations in mind, three fixed-point architectures

are presented: a low cost iterative version, a fully pipelined

version, and a bit serial iterative version. But first, it is necessary

to define some nomenclature used:

n: input/output bit width

nr: bit width of the internal registers and operators

ng: additional guard bits. ng = log2(n)

N: number of basic iterations

M: number of additional iterations minus one.

 Note that nr ≥ ng + n. We define the quantity na = nr – (ng+n)

as the additional bits that are added to the MSB part, which will

be necessary as we will demonstrate in Section 4.

3.1 Low-Cost Iterative Architecture

 Fig. 1 depicts the architecture that implements the equations

(14) and (15) in an iterative fashion. The two LUTs (look-up

tables) are needed to store the two sets of elementary angles

defined in equations (2) and (13).

 The process begins when a start signal is asserted. After

‘M+1+N+v’ clock cycles (‘v’ is the number of repeated iterations

stated in Section 2.1), the result is obtained in the registers X, Y

and Z, and a new process can be started.

Figure 1

 Inputs: X_0, Y_0, and Z_0

 Outputs: X_N, Y_N, and Z_N

 j = M � 0 it = 1 � N

 There are two stages: One that implements the iterations for i ≤ 0

and is depicted in the upper part, it needs two multiplexers, two

registers, four adders and two barrel shifters. This is the most

critical part of the design, and introduces considerable delay, thus

reducing the frequency of operation. The lower part of Figure 1

implements the iterations for i > 0, this is a classical hardware

found in many textbooks and papers.

 A state machine controls the load of the registers, the data that

passes onto the multiplexers, the add/substract decision of the

adder/substracters, and the count given to the barrel shifters.

3.2 Fully Pipelined Architecture

 To develop the architecture, the algorithm described in (14)

and (15) is unfolded. In addition, the stages that implement the

expansion (the upper part of Figure 2) need to be partitioned in

order to avoid large delays. Therefore ‘2*(M+1) + N + v’ stages

 4

nr bits nr bits

+/- +/-

s s

nr bits nr bitsnr bits nr bits

2 -(M+2)2 -(M+2)

+/--/+

nr bits nr bits

+/- +/-

nr bits nr bitsnr bits nr bits

2 -22 -2

+/-

nr bits nr bits

-/+

+/- +/-

2-1

di1

2-1

nr bits nr bits

+/- +/-

nr bits nr bits

2-N

2-N

n bits
s

n bits

+/-

T
a
n
h

-1
(1

-2
-M

-2
)

n bits

n bits

+/-

n bits

+/-

n bits

+/-

nbits

dip_(M+2)

di0

di1

diN

..
.

..
. ..
.

..
...
. ..
.

T
a

n
h

-1
(1

-2
-2

)
T

a
n

h
-1

(2
-1

)
T

a
n
h

-1
(2

-N
)

X_0 Y_0 Z_0

Xn Yn Zn

n nn

nnn

S
T

A
G

E

M

S
T

A
G

E

0
S

T
A

G
E

1

S
T

A
G

E

N

will appear (‘v’ is the number of repeated iterations as stated in

Section 2.1). The architecture is depicted in Figure 2.

 Such architecture can obtain a new result each cycle. The

initial latency is ‘2*(M+1) + N + v’ cycles.

 At each stage, X and Y have a fixed shift that can be

implemented in the wiring, thus removing the barrel shifters of

Section 3.1. In addition, the look-up values for the θi are

distributed as constants across the stages, which are hardwired,

hence removing the look-up table. The entire hardware is reduced

to an array of interconnected adder/substractors and registers. A

little additional hardware in needed to obtain the ‘dix’ signals,

which are obtained as indicated in (3).

Figure 2. Pipelined-CORDIC

3.3 Bit serial iterative architecture

 The simplified interconnect and logic in a bit serial design

should allow it to work at a much higher frequency than other

architectures. However, the design needs to be clocked ‘n’ times

for each iteration (‘n’ is the width of the data). This architecture

maps well in FPGA [4] and is depicted in Figure 3.

The input data (X_0, Y_0 and Z_0) is loaded into the register bit

per bit. Then the calculation starts. The array of serial

adders/substractors, multiplexers, flip flops are arranged in a

special fashion and controlled by a state machine, so that one

output bit is computed every cycle, and after ‘n +

n*(M+1+N+v)’ cycles a new result is obtained in the registers. *

‘v’ is the number of repeated iterations as stated in Section 2.1.

4. ANALYSIS OF NUMERICAL FORMATS FOR EACH

HYPERBOLIC FUNCTION

 For our fixed-point hardware, four standard bit widths for the

inputs/ outputs are explored: 12, 16, 24, and 32.

 Our aim is to obtain an optimum architecture that implements

just one hyperbolic function. As a result, we will restrict our

analysis to each architecture that implements one of the following

functions: Tanh-1, Cosh, Sinh, and exp, which can be directly

obtained from the hyperbolic CORDIC equations in (14) and

(15). In case a unified hyperbolic CORDIC hardware is desired,

the same analysis can be applied to obtain the optimum

architecture. We will show that the intermediate registers and

operators need to be augmented in the MSB part and that the

format for X, Y, Z, and the number of iterations varies for each

architecture that implements a particular hyperbolic function. The

least significant positions are always extended for log2(n) bits,

where n is the input/output bit width. In the following sub-

sections we will calculate the internal datapath, but this value

will not consider the guard bits (log2(n)), because it is always

present and to avoid complicating the explanation.

 The numerical format is defined as: [T D]

Where T: total number of bits

 D: total number of fractional bits

4.1 Inverse Hyperbolic Tangent (Tanh-1)

 To obtain this function in Z, we have to set Z0=0 and X0=1 in

the vectoring mode. Then, ZN  Tanh-1(Y0).

 As the domain of Tanh-1 is 1,1 +− , the input Y0 is restricted

to 1 integer bit in the 2’s complement fractional fixed-point

representation (|Y0|<1). But, as the input X0=1 requires 2 integer

bits for correct representation, and the format for X and Y must be

the same, then X and Y must have 2 integer bits.

 The critical case occurs when Y0 is at its maximum value, from

which the maximum value of ZN is obtained. Then we use Table

1 to find the number of additional iterations (M) needed to

correctly represent ZN (by locating the nearestθmax) .

 It is needless to add more bits to X and Y, because X and Y tend

to decrease as shown in (5). At each different format (12, 16, 24

and 32) we will obtain an adequate format for the bits of Z.

4.1.1 Input/Output bit width: 12. Format for X and Y:[12 10]

 |Y0| max = 3FFh = 0.999023475

 � ZN max = Tanh-1(3FFh) = 3.812065

Given ZN max, we need 3 integer bits to represent Z. And Table 1

specifies that 3 additional iterations are needed (M=2,

θmax=5.162).

 However, in this case, the maximum intermediate value for Z

is 4.04, then 1 bit must be extended to the MSB. This change will

be implemented in the internal architecture. Thus, the format for

Z remains [12 9] and the internal datapath is 13 bits. With the Z

format [12 9] the LUT’s angles are:

 5

M Value N Value N Value

-2

-1

0

36F

2B5

1F2

1

2

3

4

5

119

083

040

020

010

6

7

8

9

008

004

002

001

Table 2

Table 2 shows that the number of iterations needed is 9. Any

further iteration will yield a value less or equal than 001h for the

fixed angle rotation, which is useless.

 In conclusion, M=2 and N=9. Z format is [12 9], and the

internal datapath for Z is 13.

4.1.2 Input/Output bit width: 16. Format for X and Y: [16 14]

|Y0| max = 3FFFh = 0.99993896484375

 � ZN max = Tanh-1(3FFFh) = 5.1985885952

 Table 1 indicates that 4 additional iterations are needed (M=3,

θmax=7.23). Given the maximum ZN, we found that 4 integer bits

are needed to represent Z.

 And, as θmax=7.23 needs 4 integer bits, no bit will be extended.

Thus, the format for Z remains [16 12] and the internal datapath

is 16 bits. With the Z format [16 12] the LUT’s angles are:

M Value N Value N Value

-3

-2

-1

0

2125

1B79

15AA

0F91

1

2

3

4

5

6

08CA

0416

0203

0100

0080

0040

7

8

9

10

11

12

0020

0010

0008

0004

0002

0001

Table 3

Table 3 shows that the number of iterations needed is 12. Any

further iteration will yield a value minor or equal than 001h for

the fixed angle rotation, which is useless.

 In conclusion, M = 3 and N = 12. Z format is [16 12], and the

internal datapath for Z is 16.

4.1.3 Input/Output bit width: 24. Format for X and Y: [24 22]

 |Y0| max = 3FFFFFh

 � ZN max = Tanh-1(3FFFFFh) = 7.9711925

 Table 1 specifies that 5 additional iterations are needed (M=4,

θmax=9.655). Given the maximum ZN, we found that 4 integer bits

are needed to represent Z.

 However, in this case, the maximum intermediate value for Z is

8.5346, so we have to extend 1 bit to the MSB. This change will

be implemented in the internal architecture. Thus, the format for

Z remains [24 20] and the internal datapath is 25 bits.

 With the Z format [24 20] the LUT’s angles are:

M Value N Value N Value

-4

-3

-2

-1

0

26C0E5

212524

1B78CE

15AA16

0F9139

1

2

3

4

5

6

7

8

0F9139

08C9F5

04162C

0202B1

010056

00800B

002000

001000

9

10

11

12

13

14

15

16

000800

000400

000200

000100

000080

000040

000020

000010

Table 4

We have chosen 16 as the number of iterations. While 20

iterations can be executed, it would increase the amount of

hardware excessively.

 In conclusion, M=4 and N=16. Z format is [24 20], and the

internal datapath for Z is 25.

4.1.4 Input/Output bit width: 32. Format for X and Y: [32 30]

|Y0| max = 3FFFFFFFh

 � ZN max = Tanh-1(3FFFFFFFh) = 10.743781

Table 1 specifies that 6 additional iterations are needed (M=5,

θmax=12.42644). Given the maximum ZN, 5 integer bits are

needed to represent Z.

 And, as θmax=12.42644 requires 5 bits, no bit is needed to be

extended. Thus, the format for Z remains [32 27] and the internal

Figure 3. Hyperbolic bit serial iterative CORDIC

nr bits

nr bits

X(19)

Shift in

y(19)

Shift in

X(0)

y(0)

N(LSB)

0

1

01

X_0

p

e_di sign

data0

j

M+2(LSB) 0 1

0 1

di

di

di

di

di

di

n bits
Z(15)

Shift in

Z(0)

0

1

01

sig_z

p

e_di sign

data0

LUT (N+M+1 values)

i

d_zq

e_zq

E

exp

0 1

di

n

+/-
serial

+/-
serial

+/-
serial

+/-
serial

+/-
serial

+/-

serial

+/-

serial

0

1

i

p<=(nr-1-a)

0

1

0

1

exp

p<=(nr-1-b)

0

1

0

1

p<=(nr-1-a)

p<=(nr-1-b)

0

1

exp

0

1

01

Y_0

p

e_di
sign

data0
n

M+2(LSB)

N(LSB)

Z_0

c

c

 6

datapath is 32 bits. With the Z format [32 27] the LUT’s angles

are:

M Value N Value N Value

-5

-4

-3

-2

-1

0

162A40FE

13607294

109291E9

0DBC6724

0AD50B1D

07C89CAC

1

2

3

4

5

6

7

8

0464FA9F

020B15DF

01015892

00802AC4

00400556

002000AB

00100015

00080003

9

10

11

12

13

14

15

16

00040000

00020000

00010000

00008000

00004000

00002000

00001000

00000800

Table 5

 We have chosen the number of iterations to be 16. While 27

iterations can be executed, it would increase the amount of

hardware excessively.

 In conclusion, M=5 and N=16. Z format is [32 27], and the

internal datapath for Z is 32.

4.2 Hyperbolic Sine and Hyperbolic Cosine

 To obtain these functions in X and Y, it is necessary to set Y0=0

and X0=1/An in the rotation mode. Then, YN  Sinh(Z0) and

XN  Cosh(Z0). As the domain of Sinh and Cosh is +∞∞− , ,

there is no input restriction. Our strategy will consist in fixing to

[12 10] the input Z for the bit width of 12, and increment 1

integer bit for a larger bit width, so that by augmenting the bit

width, the range of the functions Sinh and Cosh is incremented.

 The critical case occurs when |Z0| is at the maximum value

attainable at each format, from which the maximum values of XN

and YN are obtained. Then we use Table 1 to find the number of

additional iterations (M) needed to correctly represent Z0 (by

locating the nearest θmax).

 Note that it is unnecessary to add more bits to Z, because Z

tends to 0 as shown in (4). At each different format (12, 16, 24

and 32) we will obtain an adequate format for the bits of X and Y.

4.2.1 Input/Output bit width: 12. Input format for Z: [12 10]

|Z0|max = |400h| = |-2|

 Table 1 shows that 1 additional iteration is needed (M=0).

With the Z format [12 10] the LUT’s angles are:

M Value N Value N Value

0 3E4 1

2

3

4

5

232

106

081

040

020

6

7

8

9

10

010

008

004

002

001

Table 6

Table 6 shows that the number of iterations needed is 10. Any

further iteration will yield a value less or equal than 001h for the

fixed angle rotation, which is useless. Then,

An=0.54777601990563 and X0=1/An=1.82556366774193.

 Also, the maximum values of XN and YN,, given |Z0|max are:

 XN = Sinh(400h) = -3.62686040784702

 YN = Cosh(400h) = +3.76219569108363

Given these maximum values, we found that 3 integer bits are

needed to represent X and Y. In addition, in this case, the

maximum intermediate values for X is 2.510150043145 and for Y

is 2.281954584677. So, no bit need to be extended. Thus, format

for X and Y remains [12 9] and the internal datapath is 12 bits.

 Note that the format for Z([12 10]) has been chosen arbitrarily.

However, this is a good format, because with [12 9] for Z we

would have obtained [12 6] for X and Y, where many fractional

bits would have been lost.

 In conclusion, M=0 and N=10. X, Y format is [12 9], and the

internal datapath for X, Y is 12.

4.2.2 Input/Output bit width: 16. Input format for Z: [16 13]

|Z0| max = |8000h| = |-4|

 Table 1 indicates that 3 additional iterations are needed (M=2).

With the Z format [16 13] the LUT’s angles are:

M Value N Value N Value

-2

-1

0

36F2

2B54

1F22

1

2

3

4

5

6

1194

082C

0405

0201

0100

0080

7

8

9

10

11

12

13

0040

0020

0010

0008

0004

0002

0001

Table 7

Table 7 shows that 13 iterations are needed. Any further iteration

will yield a value less or equal than 001h for the fixed angle

rotation, which is useless. Then, An = 0.09228252133203 and X0

= 1/An = 10.83628823276322.

 Also, the maximum values of XN and YN, given |Z0|max are:

 XN = Sinh(8000h) = -27.289917197

 YN = Cosh(8000h) = +27.3082328361

 These maximum values indicate that 6 integer bits are needed

to represent X and Y. In addition, in this case, the maximum

intermediate values for X is 34.45601024011 and for Y is -

34.4348456146, so we have to extend 1 bit to the MSB. This

change will be implemented in the internal architecture. Thus, the

format for X and Y remains [16 10] and the internal datapath is 17

bits.

 Note that the format for Z([16 13]) has been chosen arbitrarily.

However, this is a good format, because with [16 12] for Z we

would have obtained [16 4] for X and Y, where many fractional

bits would have been lost.

 In conclusion, M=2 and N=13. X, Y format is [16 10], and the

internal datapath for X, Y is 17.

4.2.3 Input/Output bit width: 24. Input format for Z: [24 20]

|Z0|max=|800000h|=|-8|

 From Table 1, we found that 5 additional iterations are needed

(M=4). With the Z format [24 20] the elementary angles defined

for the LUT (look-up table) are equal as those in Table 4.

 From Table 4, the number of iterations selected is 16. While 20

iterations can be executed, it would increase the amount of

hardware excessively. Then, An=4.0305251x10-3 and

X0=1/An=248.1066.

 Also, the maximum values of XN and YN, given |Z0|max are:

 XN = Sinh(800000h) = -1490.47882

 YN = Cosh(800000h) = +1490.47916

 Given these maximum values, we found that 12 integer bits are

needed to represent correctly X and Y. In addition, in this case,

the maximum intermediate values for X is 3081.0854 and for Y is

3081.085173, so we have to extend 1 bit to the MSB. This

change will be implemented in the internal architecture. Thus, the

format for X and Y remains [24 12] and the internal datapath is

25 bits.

 Note that the format for Z([24 20]) has been chosen arbitrarily.

However, this is a good format, because with [24 19] for Z we

 7

would have obtained [24 0] for X and Y, and the fractional bits

would have disappeared.

 In conclusion, M=4 and N=16. X, Y format is [24 12], and the

internal datapath for X, Y is 25.

4.2.4 Input/Output bit width: 32. Input format for Z: [32 27]

|Z0| max = |80000000h| = |-16|

 Table 1 indicates that 8 additional iterations are needed

(M=7). With the Z format [32 27] the elementary angles defined

for the LUT (look-up table) are equal as those in Table 5.

 From Table 5, the number of iterations selected is 16. While 27

iterations can be executed, it would increase the amount of

hardware excessively. Then, An = 2.7737x10-6 and X0 = 1/An =

3.605287519x10-5.

 Also, the maximum values of XN and YN, given |Z0|max are:

 XN = Sinh(80000000h) = 4.44305526x106

 YN = Cosh(80000000h) = 4.44305526x106

Given these maximum values, we found that 24 integer bits are

needed to represent X and Y. In addition, in this case, the

maximum intermediate value for X is 20.32x106 and for Y is

20.32x106, so we have to extend 2 bits to the MSB. This change

will be implemented in the internal architecture. Thus, the format

for X and Y remains [32 8] and the internal datapath is 34 bits.

 Note that the format for Z([32 27]) has been chosen arbitrarily.

But this is a good format, because with [32 26], we would have

needed more than 32 integer bits for X and Y, that is impossible

to implement.

 In conclusion, M=7 and N=16. X, Y format is [32 8], and the

internal datapath for X, Y is 34.

4.3 Exponential (ex)

 To obtain this function, we have to set X0=Y0=1/An in the

rotation mode. Then, YN  Sinh(Z0) + Cosh(Z0) and XN 

Cosh(Z0) + Sinh(Z0). And, as ew = Sinh(w) + Cosh(w), we can

rewrite: 0
Z

N eY ← and 0
Z

N eX ← .

 The domain of ew is +∞∞− , , hence there is no input

restriction. Our strategy will consist in fixing to [12 10] the input

Z for the bit width of 12, and incrementing 1 integer bit for each

larger bit width, so that by augmenting the bit width, the range of

the function ew is incremented. It is worth to mention that the

hardware will be the same of the hardware that computes Sinh

and Cosh.

 The critical case occurs when Z0 is at the maximum value

attainable at each format, from which the maximum values of XN

and YN are obtained. Then we use Table 1 to find the number of

additional iterations (M) needed to correctly represent Z0 (by

locating the nearestθmax).

 As Z tends to 0 (as shown in (4)), it is needless to add more

bits to Z. At each different format (12, 16, 24 and 32) we will

obtain an adequate format for the bits of X and Y.

4.3.1 Input/Output bit width: 12. Input format for Z: [12 10]

Z0max = 7FFh = 1.9990234375.

 Table 1 indicates that 1 additional iteration is needed (M=0).

With the Z format [12 10] the LUT’s angles are those shown in

Table 6, which specifies that 10 iterations are needed. Any

further iteration will yield a value less or equal than 001h for the

fixed angle rotation, which is useless. Then,

An=0.54777601990563 and X0=Y0=1/An=1.82556366774193.

Also, the maximum values of XN and YN, given Z0 max are:

XN = YN = e7FFh = 7.38184374606390

 Given this maximum value, we found that 4 integer bits are

needed to correctly represent X and Y.

 In addition, in this case, the maximum intermediate value for X

and Y is 7.607583091. So, no bit need to be extended. Thus, X

and Y’s format remains [12 8] and the internal datapath is 12 bits.

 Note that the format for Z([12 10]) has been chosen arbitrarily.

But this is a good format, since with [12 9] for Z we would have

obtained [12 5] for X and Y, and many fractional bits would have

been lost.

 In conclusion, M=0 and N=10. X, Y format is [12 8], and the

internal datapath for X, Y is 12.

4.3.2 Input/Output bit width: 16. Input format for Z: [16 13]

Z0 max = 7FFFh = 3.9998779296875.

 Table 1 specifies that 3 additional iterations are needed (M=2).

With the Z format [16 13] the LUT’s angles are those shown in

Table 7, which specifies that 13 iterations are needed. Any

further iteration will yield a value less or equal than 001h for the

fixed angle rotation, which is useless. Then, An =

0.09228252133203 and X0 = 1/An = 10.83628823276322.

 Also, the maximum values of XN and YN, given |Z0|max are:

XN = YN = e7FFFh = 54.59148562667914

 Given this maximum value, we found that 7 integer bits are

needed to correctly represent X and Y.

 Besides, in this extreme case, the maximum intermediate value

for X and Y is 68.89085585, so we have to extend 1 bit to the

MSB. This change will be implemented in the internal

architecture. Thus, the format for X and Y remains [16 9] and the

internal datapath is 17 bits.

 Note that the format for Z([16 13]) has been chosen arbitrarily.

However, this is a good format, because with [16 12] for Z we

would have obtained [16 3] for X and Y, and many fractional bits

would have been lost.

 In conclusion, M=2 and N=13. X, Y format is [16 9], and the

internal datapath for X, Y is 17.

4.3.3 Input/Output bit width: 24. Input format for Z: [24 20]

Z0max = 7FFFFFh = 7.99999904632568.

 Table 1 indicates that 5 additional iterations are needed (M=4).

With the Z format [24 20] the elementary angles defined for the

LUT (look-up table) are equal as those in Table 4.

 From Table 4, the number of iterations selected is 16. While 20

iterations can be executed, it would increase the amount of

hardware excessively. Then, An=4.0305251x10-3 and

X0=Y0=1/An=248.1066.

 Also, the maximum values of XN and YN, given |Z0|max are:

 XN = YN = e7FFFFFh = 2980.955144180013

 Given these maximum values, we found that 13 integer bits are

needed to correctly represent X and Y.

 In addition, in this case, the maximum intermediate value for X

and Y is 6162.17058, so we have to extend 1 bit to the MSB. This

will be implemented in the internal architecture. Thus, the format

for X and Y remains [24 11] and the internal datapath is 25 bits.

 Note that the format for Z([24 20]) has been chosen arbitrarily.

However, this is a good format, because with [24 19] for Z we

would have needed 25 integer bits for X and Y, which would be

impossible to implement.

 In conclusion, M=4 and N=16. X, Y format is [24 11], and the

internal datapath for X, Y is 25.

 8

A

B

4.3.4 Input/Output bit width: 32. Input format for Z: [32 27]

Z0 max = 7FFFFFFFh = 15.99999999254942.

 Table 1 specifies that 8 additional iterations are needed (M=7).

With the Z format [32 27] the elementary angles defined for the

LUT (look-up table) are equal as those in Table 5. From Table 5,

the number of iterations selected is 16. While 27 iterations can be

executed, it would increase the amount of hardware excessively.

Then, An = 2.7737x10-6 and X0 =Y0= 1/An = 3.605287519x10-5.

 Also, the maximum values of XN and YN, given |Z0|max are:

 XN = YN = e7FFFFFFF = 8.886110454x106

 Given these maximum values, 25 integer bits are needed to

represent X and Y.

 In addition, in this case, the maximum intermediate value for X

and Y is 4.06x107, so we have to extend 2 bits to the MSB. This

will be implemented in the internal architecture. Thus, the format

for X and Y remains [32 7] and the internal datapath is 34 bits.

 Note that the format for Z([32 27]) has been chosen arbitrarily.

But this is a good format, since with [32 26], we would have

needed more than 32 integer bits for X and Y, that is impossible

to implement.

 In conclusion, M=7 and N=16. X, Y format is [32 7], and the

internal datapath for X, Y is 34.

4.4 Results of FPGA implementation

 Note that the hardware for obtaining exp and Sinh/Cosh is

exactly the same, though the results are interpreted differently.

Type N Function LEs fmax

Sinh/Cosh, exp 402 97.53
12

Tanh-1 433 108.75

Sinh/Cosh, exp 544 85.73
16

Tanh-1 516 99.70

Sinh/Cosh, exp 866 77.50
24

Tanh-1 869 84.74

Sinh/Cosh, exp 1170 83.03 IT
E
R
A
T
IV
E
 (
F
ol
de
d

R
ec
ur
si
ve
)

32
Tanh-1 1119 87.92

Sinh/Cosh, exp 662 182.22
12

Tanh-1 675 187.18

Sinh/Cosh, exp 1308 168.75
16

Tanh-1 1396 177.34

Sinh/Cosh, exp 1512 160.35
24

Tanh-1 1527 171.15

Sinh/Cosh, exp 1686 152.35

F
U
LL
Y
 P
IP
E
LI
N
E
D

(U
nf
ol
de
d
P
ip
el
in
ed
)

32
Tanh-1 1718 165.40

Sinh/Cosh, exp 225 206.10
12

Tanh-1 234 208.77

Sinh/Cosh, exp 345 192.74
16

Tanh-1 348 193.25

Sinh/Cosh, exp 469 182.50
24

Tanh-1 478 188.62

Sinh/Cosh, exp 703 187.40 B
IT
 S
E
R
IA
L
IT
E
R
A
T
IV
E

(F
ol
de
d
re
cu
rs
iv
e)

32
Tanh-1 710 191.50

Table 8. Final Results

Device: Stratix EP1S10F484C5

The results, obtained with Quartus II 5.0, show that the

hyperbolic CORDIC implementation is amenable to FPGA. The

clock rates are relatively high and the resource effort is bearable

for high-density FPGAs.

5. ERROR ANALYSIS

For the cases analyzed in 4.1, 4.2 and 4.3, an error analysis is

performed. The results are contrasted with the ideal values

obtained in MATLAB®. The error measure will be:

valueideal

valueCORDICvalueideal
ErrorRelative

−
= (20)

 The three cases will be tested. We have taken 1024 values

equally spaced along the maximum domain of functions obtained

for each bit width analyzed. In the case of Tanh-1, it has been

necessary to add more values, for the Tanh-1 grows dramatically

as its argument nears ± 1.

5.1 Inverse Hyperbolic Tangent

We will show the relative error for the hardware that

implements the hyperbolic tangent in its entire domain for 12, 16,

24 and 32 bits. Figures 7, 8, and 9 show the relative error

performance for the function Tanh-1(w) for 12, 16, 24 and 32 bits.

Although the domain of Tanh-1 is 1,1 +− , we have just plotted

for w [1,0 +∈ since Tanh-1 is an odd function.

Figure 4. In Curve A, 12 bits were used. In Curve B, 16 bits

were used.

Figure 5. In the curve, 24 bits were used.

 9

A

B

A

B

A

B

Figure 6. In the curve, 32 bits were used.

 For w near 0, all the curves exhibit high relative error values,

because Tanh-1(w) yields the smallest values for w near 0, and the

fixed-point hardware fails representing those small values.

 The more the bit width, the less the relative error. For example,

for 12 bits (figure 4) nearly all the relative error values are below

10-2 (an error below 1%), and for 24 bits (Figure 5), the relative

error values are below 10-4 (an error below 0.1%).

 The curve for 32 bits (Figure 6) exhibits some irregularities

due to the reduced basic iterations (16); but in general it provides

the least relative error. However, it is unusual to have a Tanh-1

hardware with an bit input data width of 32 bits.

5.2 Hyperbolic Sine and Hyperbolic Cosine

 We will show the relative error for the hardware that

implements Sinh and Cosh in the maximum domain obtained in

4.2 for 12, 16, 24 and 32 bits.

 Figures 7 and 8 show the relative error for Cosh(w) for 12, 16,

24 and 32 bits. We have just plotted the positive domain. The

negative domain is not plotted, since Cosh is an even function

and will yield the same values.

Figure 7. In Curve A, 12 bits were used ([2,0∈w). In

Curve B, 16 bits were used ([4,0∈w).

Figure 8. In Curve A, 24 bits were used ([8,0∈w). In Curve

B, 32 bits were used ([16,0∈w).

 The curve A (Figure 8) for 24 bits is very regular because in

this format we use a larger quantity of fractional bits than with

the other formats.

 The curve B (Figure 8) for 32 bits exhibits some irregularities

due to the reduced fractional bits (8) and the reduced number of

basic iterations (16). However, it provides the greatest domain for

the Cosh(w) function ([16,16−∈w).

 Figures 9 and 10 show the relative error performance for

Sinh(w) for 12, 16, 24 and 32 bits. We have just plotted the

positive domain. The negative domain is not plotted, since Sinh is

an odd function and will yield the negative values of those

obtained in the positive domain.

Figure 9. In Curve A, 12 bits were used([2,0∈w). In Curve

B, 16 bits were used([4,0∈w).

 10

A

B

A

B

A B

Figure 10. In Curve A, 24 bits were used ([8,0∈w). In

Curve B, 32 bits were used ([16,0∈w).

 The curve A (Figure 10) for 24 bits is very regular because in

this format we use a larger quantity of fractional bits than with

the other formats.

 The curve B (Figure 10) for 32 bits exhibits some irregularities

due to the reduced fractional bits (8) and the reduced number of

basic iterations (16). However, it provides the greatest domain for

the Sinh(w) function ([16,16−∈w).

5.3 Exponential

 We will show the relative error for the hardware that

implements ex in the domain obtained in 4.3 for 12, 16, 24 and 32

bits.

 Figures 11 and 12 show the relative error for ew for 12, 16, 24

and 32 bits.

Figure 11. In Curve A, 12 bits were used([2,2 +−∈w). In

Curve B, 16 bits were used([4,4 +−∈w).

Figure 12. In Curve A, 24 bits were used([8,8 +−∈w). In

Curve B, 32 bits were used([16,16 +−∈w).

Note that, as w is more negative, the error increases and even

becomes constant (as in Figure 12). The reason is that ew is very

small for large negative values of w, and the fixed-point hardware

fails representing those small values.

6 CONCLUSIONS

• The expansion scheme proposed by Hu[2], despite the

additional hardware needed, has proved to be amenable for

our FPGA implementation, as the clock rate and resource

effort indicates. The function Tanh-1 gets expanded in all its

domain, and the functions Cosh and Sinh have a greater

domain as the bit width increases.

• The analysis for a unified CORDIC algorithm has not been

performed in order to not to lengthen this paper. But the

analysis for this case is very similar to that of Section 4.

• The error analysis shows certain irregularities in the relative

error performance. This irregularities are due to the

truncation of the fractional bits and the ever-limited number

of basic and additional iterations. We have tested the

CORDIC algorithm in MATLAB® and have found that the

error performance is uniform.

7 REFERENCES

[1] J.S. Walther, “A unified algorithm for elementary

functions”, in Proc. Spring Joint Comput. Conf., 1971, pp.

379-385.

[2] X. Hu, R. Huber, S. Bass, “Expanding the Range of

Convergence of the CORDIC Algorithm”, IEEE

Transactions on Computers. Vol. 40, Nº 1, pp. 13-21, Jan.

1991.

[3] U. Meyer – Baese, Digital Signal Processing with Field

Programmable Gate Arrays: Springer-Verlag Berlin

Heidelberg, May 2001.

[4] Ray Andraka, “A survey of CORDIC algorithm for FPGA

based computers”,

[5] Y. Hu: “CORDIC-Based VLSI Architectures for Digital

Signal Processing”, IEEE Signal Processing Magazine pp.

16-35 (1992)

