
Methodology

Open-Source Hardware Implementation of a

SpaceWire Router

Introduction

The aim of the project was to implement a SpaceWire Router,

documented by the European Space Agency in 2003. The

SpaceWire protocol is an effective data transport system that details

high frequency data transfer from the wire to the network level, with

the aim of operating effectively on spacecraft hardware. The

SpaceWire Router design, described in VHDL, encompassed several

protocol layers (Character, Exchange, and Network). Internal to the

architecture are SpaceWire Nodes which are directed by the router

and must establish a link before passing data characters. Most of the

work done focused on the design of these nodes and the correct

implementation of the nodal “handshake” required by the protocol.

Each node contains a Transmitter that interfaces with a host, a

Receiver that reads the Data and Strobe lines to interpret data

characters, and a State Machine that manages the node operation

and interprets signals from the network on correct state and

operation.

Kristi Stefa, Thomas Filarski, Daniel Llamocca

kstefa@oakland.edu, tfilarski@oakland.edu, llamocca@oakland.edu

Department of Electrical and Computer Engineering

School of Engineering and Computer Science, Oakland University

Conclusion

A SpaceWire Link and and a Router were designed in dedicated hardware and

verified on an FPGA (Field Programmable Gate Array). The design can be

incorporated into other systems that employ the SpaceWire protocol. With a

complete Exchange to Physical implementation, it would prove effective in the

spacecraft applications it was intended for.

Design

Results

This work was sponsored the Michigan Space Grant Consortium Research Seed Grant 2017.

Within a SpaceWire node, Figure

4 depicts the design of the

Receiver.

By using these components, the

process of reading serial data and

converting it to the correct parallel

data was accomplished. The

receiver is also able to

communicate with the host side to

transfer the parallel data to the

modules or through the router.

Figure 5 depicts the router with an

accompanying host block. The design

was based around having these two

communicate with each other. The

host serves as the buffer for both the

Transmitter and Receiver portions

associated with a node. This allows for

two data streams to be passed through

the router to opposite node locations.

Simulation -Case 1: Data

with Even Number of 1s

The initial link is

successful and data flows

until a TimeCode is

required. This flips the

parity of the data stream

for a cycle and if captured

by the Receiver, a parity

error is tripped and

communication ends.

Simulation - Case 1: Data

with Odd Number of 1s

The first NULL to start the

link is successful but the

system needs to immediately

grab the next character before

the parity changes which it

only has one cycle to do.

Another parity error thrown

by the Receiver.

By using a Timer, the main

State Machine runs through a

signal check before initiating

node connection and ending

in continuous data transfer

until a relevant error occurs

and transmission is aborted.

Figure 3: Operation Logic (Source:ESA)

Figure 2. SpaceWire Note

Figure 1 depicts the SpaceWire Router along with several SpaceWire

nodes. This was the final goal of the project and the version that was

successfully assembled consisted of a Router and two node blocks with

respective host stimuli blocks.

Figure 2 shows a SpaceWire Node which includes the Receiver,

Transmitter, and main State Machine. The node has to interface with a host

system and generate data bits or decoding incoming data bits into data

characters. The two components of the node will establish a handshake

protocol and begin data transfer with another node. This is how we can

include the same node design into all the relevant systems that need data

transfer or reception via the SpaceWire protocol.

FINITE STATE
MACHINE

TRANSMITTER

RECEIVER

Tx Data/Time-C ode

Tx C lock

Rx Data/Time-C ode

Rx C lock

Link

C ontrol

Transmitter

C ontrol/Status

Receiv er

C ontrol/Status

Link

Status

ENCODER-DECODER

SPACEWIRE LINK

Data

O ut

Strobe

O ut

Data

In

Strobe

In

LVDS

LVDS

Parameters

...

D
a
ta

O

u
t

S
tr

o
b
e

O
u
t

D
a
ta

In

S
tr

o
b
e

In

SpaceWire

Port

S
p
a
ce

W
ir
e

Li
n
k

SpaceWire

Port

S
p
a
ce

W
ir
e

Li
n
k

MODULE

SpaceWire

Port

S
p
a
ce

W
ir
e

C
O

D
E
C

MODULE

SpaceWire

Port

S
p
a
ce

W
ir
e

Li
n
k

SpaceWire

Port

S
p
a
ce

W
ir
e

Li
n
k

SpaceWire

Port

S
p
a
ce

W
ir
e

Li
n
k

..
.

SpaceWire

Port

S
p
a
ce

W
ir
e

Li
n
k

SpaceWire

Port

S
p
a
ce

W
ir
e

Li
n
k

SpaceWire

Port

S
p
a
ce

W
ir
e

Li
n
k

..
.

ROUTING
LOGIC

I/OControl Status

SpaceWire

Port

S
p
a
ce

W
ir
e

Li
n
k

MODULE

..
.

SpaceWire

Port

S
p
a
ce

W
ir
e

Li
n
k

MODULE

SpaceWire

Port

S
p
a
ce

W
ir
e

Li
n
k

MODULE

..
.

SpaceWire

Port

S
p
a
ce

W
ir
e

Li
n
k

MODULE SpaceWire

Port

S
p
a
ce

W
ir
e

Li
n
k

MODULE

SPACEWIRE ROUTING SWITCH

Parameters

...

SpaceWire Node

LOOPBACK

SPACEWIRE POINT-TO-POINT COMMUNICATION

LOOPBACK

MODULE

Figure 1. SpaceWire Router with nodes

Figure 4. SpaceWire Receiver Design

Figure 5. SpaceWire Router with a Host

Figure 6. Simulation (even # of 1s). Error Occurrence

Figure 7. Simulation (even # of 1s). Closer look at

Error Occurrence

Figure 8. Simulation (odd # of 1s). Error Occurrence

Figure 9. Simulation (odd # of 1s). Closer look at Error Occurrence

mailto:kstefa@oakland.edu
mailto:tfilarski@oakland.edu
mailto:llamocca@Oakland.edu

