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We introduce Dual Fixed Point CORDIC, that provides a
compromise between Fixed Point and Floating Point CORDIC
hardware implementations. A fully parameterized hardware is
presented that allows for extensive exploration of the resources-
accuracy design space, from which we generate optimal (in the
multi-objective sense) realizations. We compare Fixed Point, Dual
Fixed Point, and Floating Point CORDIC units In terms of
resources and accuracy. Results show the effectiveness of Dual
Fixed Point for CORDIC implementation where the increase In

resources Is largely offset by the high accuracy improvements.

Key Contributions

« Parameterized architecture validated on a FPGA

« Design Space Exploration

« Comparisons among DFX, FX, and FP architectures

Methodology and Architectures

We used the expanded CORDIC
algorithms to implement the DFX |-

Hyperbolic and Circular CORDICs

The expanded hyperbolic CORDIC

IS described mathematically by:

( Xiv1 = x; — 8;y;(1 — 2172)

Yie1 = ¥i — 8, (1 — 2072)
\Zi+1 =Z; + SiOi,Oi — Tanh_l(l - 2i—2)
T b S 0; ;27" i
Ziy1 = Z; + Siei, Gl- = Tanh (2 l)
Rotation: 6; = +1if z; < 0; —1, otherwise
Vectoring: 6; = +1if x;y; = 0; —1, otherwise

1 <0: A«

Yn = An()’inCOShzin h xinSinhzin)

X, = A, (xjpcoshz;, + yi,sinhz;,)
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Figure 1 : Expanded DFX Hyperbolic
CORDIC Architecture.

et {xn W G A ONENT SIGNED SIGNIFICANT: n-1 bits
Zn = Zip T tanh_l(yw/xin) T - >
LE I nbit:{ )l
; ] b numoO: | 0 | |
An n-bit Dual Fixed-Point (DFX) .
number Is composed of a (n-1)-bit ™+ L1 ‘ |
- - - g P1
signed significand (X) and an e s s N
exponent bit (E). The exponent ——7 ‘ I
determines the scaling for the ' ' . = ¢ = 54
significand: el : b Tt
D= num0: X.27Po, if E=0 _ ) 1
~ |numl: X.27P1, ifE=1" Po~P1 Figure 2 :DFX number and range of values.

DFX adder/subtractor architecture
Includes a pre-scaler, an FX
adder/subtractor, and a post-scaler.
The pre-scaler aligns the DFX
Input operands so they can be
added In FX arithmetic. In the
post-scaler, the range detector
determines whether the result Is a
num0 or num1; we then select the
proper result and set the exponent
bit.

The function x¥Y =e¥Ym* s
computed In two steps.

1. We first get z,=(lnx)/2,
followed by z,, X 2y = yIn x.
Then, we use x;, =V,
1/4,, z,, =ylnx
mode=rotation to get x,
eylnx — xY.

The argument bounds of x¥ ((x, y)
values for which x¥ converges) are
given by |[ylnx| < 6,,,,(M).

2.

qn-1
PBsig

Bn-1---BO

addsub

PRE-SCALER

_____________

-

|—~|—~OC)3>
o

POST-SCALER

overflow,

Detector

~roroW

> Po — P1

Sin,

K Po — D1

X

L

v
+
v

X

v

[n p1]’
S_0 2
[n pol

MSB
discarded

__________________________

Figure 3. DFX Adder/subtractor.
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Setup and Design Space Exploration

P o By varying n, py, p; (the DFX format), we
‘ < =en  create a design space of hardware configurations
, o forevery function to be tested. This also requires
y . w2  careful selection of the domain of the inputs.
‘ < " Some functions were only explored for a subset
[2417 [N v v v p [3211 ] £ } i ) :
e & of the design space; this Is due to Intrinsic
;v <« . =« limitations such as convergence or CORDIC
e e e algorithm, scaling  factor  representation,
— © @ input/output numerical representation. We
;v v v o mn completed 249 individual tests.
[3224 [ S, S, S, S, [4f922
v v v 7 | E}}i FUNCTION INPUTTEST'\:'G(';N FOR CORDIC MODULE M
Ed A Y sin(x), _ CIRCULAR: ROTATION. z_ =X
—— ——1— ?31?4 cos(x) mEXST X_m+1 = 1/Ay, }’—M+1M;10 2
el C 7 Ny CIRCULAR: VECTORING. Y_pm4+1 = X
— B e [6;2%6 atan(x) 0<x<20 =1, 7o :1\6+1 2
14556 I v v v B2 sinh(x), HYPERBOLIC: ROTATION. Z_p = X,
., . . . . w2 cosh(x) O=x=4 X m=1/4ny-mu = OM )
T T T [6319%5 o < x<? HYPERBOLIC: ROTATION. z_y = X,
s R Yy-m=x_y=1/4,
——T— T — TG x| < 0.9995 HYPERBOLIC: VECTORING. y_y =X
a1l = x_y=1,z_y=0
B I I I HYPERBOLIC: VECTORING. Z_y = 0,
ARA R REK NE 0<x<36 X_y=x+ 1/(442), 3
v v v v v _‘y_M=X—1/(4-A,21)
35 N Y A HYPERBOLIC: VECTORING. Z_y = 0,
L L . L L In(x) 0.0005 <x< 15 X_y=X+1,y_y=X _I]V{ 5
v v v 7 | v X7 0.135<x<7.39 HYPERBOLIC: VECTORING AND 4
—2<y<2 ROTATION
Uelalle 1 IS LFO el 5 Tee Table 2 : Testing domain for the CORDIC-based functions.

In the experimental setup.

Fn.

For our accuracy metric we used:
MSE = Y (HW value—ideal value)?

number of samples

HW value —ideal value

Relative Error = ‘

ideal value Inx

Results
The Pareto-optimal realizations for
atan/Inx allows us to only consider
optimal hardware realizations while
simultaneously satisfying accuracy and
resource constraints. For Inx, If we
want highest accuracy and fewer than
1k slices, we would pick DFX[48 43
29]. Table 3 depicts how DFX
compares to FX in terms of resources
and accuracy. For xY on average,
resources Increased by 55% while
accuracy Improved 61.45dB. Fig 6
shows the relative error of DFX and
two FX realizations each with the same
pO or pl. Table 4 lists resources an
accuracy values of FP and DFX units
for e*,xY. The resource increase and
accuracy improvement of the FP units
over the DFX units. For xY, a 53%
resource Increase Yyields a 108.48dB
gain in accuracy.

xY

Increase in

EW: 24, FW:

16 [24 12 5]
yie 326'12 506 / 184.6dB 53% / 108.48dB
Single [32 27 12]
e* Precision
782 /29.1dB 559/ 71.85dB 40% /42.75dB

resources and
accuracy (FP/DFEX

[2415]
343

FX

115.78 dB

[24 10]
198

-34.70dB

[2415]
201

71.62dB

Table 3 : DFX vs FX. Resources

[249]
326
100.42dB

[24 20]

200
28.49dB

[2410]

197
-11.17dB

avgresource
accuracy inc.

(DFX/FX)

FP EW:24

DEX FW: 16

[24159]

518
46.65 dB

[24 20 10]

439
-104.61dB

[24 15 10]

399
-35.29dB

769
7.61dB

55%
61.45dB

718

1209
% -135.2dB

101.5dB

605

1009
% -37.92dB

65.52dB

and accuracy.

Accuracy (MSE) vs Resources (Slices)
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Accuracy Comparison Between FX and DFX for X
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Figure 5 : Accuracy-Resources
design space for atan/sin/cos/Inx.

Relative Error

——— DFX [24 15 9]
———FX[24 15]
FX [24 9]

Y

Table 4 : DFX vs FP. Resources and accuracy.

Conclusion
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Figure 6 : Accuracy comparison

between 24-bit FX and DFX.

We presented and validated fully customized DFX CORDIC and Inx,Vx,xy
units. We extensively explored the accuracy-resources design space and
extracted the Pareto front. Comparisons between DFX, FX, and FP
CORDIC architectures demonstrate that DFX Is an efficient alternative for
CORDIC implementation: DFX accuracy improvements more than make
up for the resource increase with respect to FX. Further work will focus on

the implementation of scale-free CORDIC that reg

uires fewer iterations for

the same range of convergence, and by leveraging Partial Reconfiguration

technology to implement Dynamic Dual Fixed

dynamic ranges.
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