Floating Point CORDIC-based Architecture for
Powering Computation

Joshua Mack, Sam Bellestri, Daniel Llamocca
%‘?‘qﬁ%ﬁéﬁp I[mack2545@emaill.arizona.edu sdbellestri@crimson.ua.edu

» llamocca@oakland.edu a2y

Abstract Setup and Design Space Exploration

BEIEIEECEN TR ETRTTY A complete design

16 [9 9313x 10710 4.291 x 10° 373 dB space exploration was

This work presents an architecture for powering computation iIn
floating point arithmetic that is based on an expanded hyperbolic

=
(o))

CORDIC algorithm, where the user can select the 2-D domain of 6 13 9313x107° 4295x 10° s73qg performed by varying
convergence that suits their application. The fully parameterized AR ST 12 Lo S 0 750d8 parameters such as
) : 7 20 2168x 10710 1.845 x 1019 759 dB number representation
har(_jware Implementation al_lows us to explore trade-o_ffs among R T 3403 x 1038 15298 and number of
design parameters (numerical format, number of iterations), 9 26 3455x 10:: 1158 10:: 30718 jterations. The floating
resource usage, accuracy, and execution time. We carry out an R gs point formats tested are
exhaustive design space exploration and generate Pareto-optimal 10 37 2083x10-15% 1341 x 10154 s153gg l1sted to the left. Each
realizations in the resource-accuracy space. Our approach allows 2. 10 41 2983x10715% 1341 x 105 615308 given format was tested
us to select optimal hardware realizations that meet or exceed T bR
_p TN 11 48 2225% 107398 1,798 x 1038 123188 8,12, ..., 52.
accuracy requirements. 11 52 2225x1073%8 1,798 x 10308 12318 dB
- - Table 1 : Floating Point Formats Tested
Key Contributions e S
_ : CORDIC does not converge for all o W= e |
Design Space Exploration values of x and y. Bk o
Pareto-Optimal Realizations based on accuracy and M
resource usage If chosen values of x and y are T S
Fully customizable architecture validated on an FPGA bounded by the given corresponding = JJit. —
curve for a chosen value of M, the - oE — -
expanded CORDIC algorithm will AN ——————
converge. VU
Methodology and Architectures . Wl
In our testing, we choose a range of wr |
test points evenly distributed within ol
Hyperbolic CORDIC provides two . this range for M = 5. x
modes of operation (rotation and T T @J Figure 3: Range of Convergence Plot for x”
vectoring) that allow for the direct ww _ | 2
9) . " — For our accuracy metric, we use PSNR, defined as PSNR(dB) = 10 log,, 22
computation of cosh x, sinh x, Neg g ¢ Neg yReg Neg_zReg | e g MSE
-1 X = s I 1 il S !
Fanh_ : X and e”. By Comblgl_qg the +/- f——1l +/- LUT 1 Resu ItS JE N
identities In(x) = 2 tanh™1 — and f j ——;/1 L —
>> >> +/- 2 | [em :
x? = e "), we can calculate x?. | & — i The execution times in Table 2 and i
The expanded hyperbolic CORDIC B gy g b - the number of slices in Figure 5are ,» &
. . . I 1 ! x bits
algorithm is given by: : - s for a Xilinx® Zyng-7000 XC7Z010- v
I . = = S 1CLG400 SoC running at 125 MHz.
FOTi S 0: - .’femltmns:}o
= —2 _
Xiy1 = X; + 5iYi(1 K 2.") The Pareto front shows the optimal
Vi1 =Y+ 6:X(1-272) - T hardware profiles for our x” Figure 4 : x¥ Architecture - Peak Signal-to-
Ziy1=Z; — Sitanh™1(1 —2172) R e ¢ architecture. Noise Ratio (PSNR) vs. Number of iterations.
Fori > 0: o | T e e S We note that 44 bits with 32 S Number of Iterations (N)
Yiy1 =Y +0;X;2 iy . : * * T accuracy at the expense of a large xY 0.288 0.352 0.432 0.496 0.560 0.688 1.024
Ziv1 = Z; — d;itanh™(27") ot e Jout e v g [22" amount of resource usage. In Table 2: Execution Time (us) vs N for
_ _ 1])] addition, we consider the Pareto xY Architecture.
Rotation: 6; = —1if z; <0, _ _ point circled in blue to have too poor
+1 else Figure 1 : Expanded Hyperbolic of accuracy to be considered. e X Resouroes v PSR
Vectoring: 6; = —1if x;y; =0, CORDIC Architecture. et + bl
[As a result, the case of 28 bits with wo|® * C ate
16 iterations provides the smallest S S
Using CORDIC, we implement a fully . 4 hardware |m[:_)lementat|on that gives e , , : 2
Suie ek A S S S a usable architecture at the expense Baf5™ ; a
RN '_ b] of lower accuracy. 10 510,20 o
CORDIC has specific advantages In _ O Bite, 24 ToF—e_32 Bits, 20 ler
L e e W e o — If we restrict to accuracy = 100dB, 25 Bits, 16 ler
jrhel i | 1 Lol decreg | 1 32 bits with 20 iterations provides " paretoFront "y
The x¥ architecture executes two Ay D l 4,0 i the implementation with minimum | A
consecutive operations. ; 1 01 ° ll resources. PSNR [d6)
1. Loadxg =x+1,yp=x—1,z5 = Cordicsel Figure 5: x¥ Resources vs. PSNR
0 onto the CORDIC engine in O KT with Pareto Front
vectoring mode, so that z,, = M cordicstart
0.5 In x. A floating-point shifter |
; : Full Hyperbolic CORDIC -
generates In x and a floating-point N mode o Conclusion
multiplier computes y In x which is Multpier | _ Bt |
fed back to the CORDIC engine for outa [0 IV |20 Tcordicdone . A fully parameterized floating point iterative architecture for x” was presented and
the second operation. L ot t ‘_} I thoroughly validated. Floating point arithmetic features high accuracy and large
2. Load xy = y, = 1/4,, and z,= > << dynamic range at the expense of resources. The expanded CORDIC approach allows
| In x oonto %;]Oe CORDnI Cen g(i)n = b for customized bounds on the domain of x?¥. We extracted the Pareto-optimal set of
?/otati el g _ ; architectures from the multi-objective design space. Further work will explore other
_ ylnx _ .y Figure 2 : Full Architecture of arithmetic representations and enhanced versions of the expanded CORDIC
Yn = Rl xY Implementation. algorithm such as scale-free hyperbolic CORDIC that requires fewer iterations for

the same region of convergence.

This work was sponsored in part by the National Science Foundation (NSF) under award number EEC-1263133.

mailto:jmack2545@email.arizona.edu
mailto:sdbellestri@crimson.ua.edu
mailto:llamocca@oakland.edu

