

The Island

List of Authors (Garrett Heiser, Mark Heiser, Alex McInerney, Tyler Wiegand)

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: ghheiser@oakland.edu, maheiser@oakland.edu, ramciner@oakland.edu, tjwiegan@oakland.edu

Abstract: Our project consists of making a game

that is a resource survival game. It uses a keyboard

interface to increment the value for various actions

that may be performed. It then outputs these values

via VGA interface to the user. This allows the user

to make new decisions based off of the data

presented.

I. INTRODUCTION

The island was influenced with our love of
video games. We wanted to give the user a rewarding
yet stimulating gaming experience that had a sense of
difficulty to the game. This was implemented using a
keyboard and VGA display. The brain of the project
was the finite state machine. Within the finite state
machine was all of the important logic in order to tell
if the user was winning or losing. The VGA enabled
us to use a variety of ideas in order to capture the best
player experience. The keyboard was a massive help
in giving us the creative freedom to tell the user to
click multiple buttons and add different dimensions to
our game. Throughout the course of the report each of
these topics will be further elaborated upon.

II. METHODOLOGY

A. Game planning

During this phase of the development we had to
come up with arguably the most crucial part of the
project. We needed to come up with a concept that
would inspire generations to come to want to play. We
needed something that used an input and output
interface in tandem with the FPGA. To start with we
decided that we would make a text based game and
throughout the course of the game development it had
different visions for the future. Eventually we settled
upon a resource survival game because of the
originality that it brought to the table.

B. VGA Display

 We needed to come up with a way to display

the information to the user. The only way that seemed

like a logical decision was using the vga to display to

a monitor. This proved to be one of the trickiest parts

of the project. At first, we were going to use the

professors vga control code [1]. We then were going

to upload 256x256 photos for each state that was

active. Yet, this seemed not beneficial for

repeatability. The next task involved figuring out how

to display multiple letters on the screen at the same

time.

a. Creating the letters

 The letters for the project were created using

paint. We resized the images in paint to 32x32 pixels.

This allowed us to place multiple letters next to each

other to form sentences. In order to use these newly

created letters we needed to change them to text files.

The professor provided us with a script to MATLAB

that converted the png to a text file with ease. [1]

Allowing us to proceed to the next step of our

project.

 b. understanding HS and VS

These images now needed to be placed on the screen,

but they needed to be in certain locations. It was

found that the VGA accepts 5 inputs, R, G, B, HS,

and VS. It was easy enough to see that RGB signals

were in charge of choosing what colors to display

onto the VGA display. HS and VS were relatively

new parameters to our group. We had heard of them

in lecture, yet we had never worked with them. After

creating a quick test bench, it was very easy to see

that these two parameters acted as counters.

c. RAM

Each of these text files needed to be loaded to the

FPGA and held somewhere in order to be called at

any given time in the code. We had learned that

RAM could hold values for us. So to start the

program off we loaded each RAM with a different

image text file. Then to call these files to display on

the screen we used a simple multiplexer that gave out

mailto:ghheiser@oakland.edu
mailto:maheiser@oakland.edu
mailto:ramciner@oakland.edu
mailto:tjwiegan@oakland.edu

each RAM out data depending on the select.

d. Graphing the different images

Finally, we had made it to the point that we could put

images onto the VGA. In order to plot one of these

letters we needed to be greater than the last image

and less than the next image to be displayed. Since

each image was exactly 32x32 pixels it was easy to

do the math in order to find the locations for each

image. The outputs of the FSM also needed to be

taken into consideration in choosing which screen to

show. For example, the game needed to display the

start screen then once the game began the actual

game screen needed to be displayed. This is done by

keeping track of a day count signal within the finite

state machine. Finally, the last part of the VGA was

figuring out how to update the number count each

time a value was incremented or decremented. This

was done by creating a mux that when a different

value was presented from the state machine it would

pass the proper codes for the numbers that needed to

be presented to the user.

C. Finite State Machine

 The finite state machine is the brain behind

this elaborate game. The first state of the game is

used in order to display a screen to the user saying to

press B in order move on to the actual game. The

FSM will then wait for input from the keyboard

controller to move on to the next state. Once the

actual game has started you will stay in state 2 until

the escape option is selected. The escape button will

move the player through the other various states,

where the player has the option to collect food or

water, build shelter, increase the maximum capacity,

or escape. If at any point, the food, water, or shelter

values drop to 0, or the turn count increments past 64,

the FSM will go to the final “dead” state. Each action

in these states requires input from the keyboard

controller and depends on which key is pressed. The

“win” state is reached when the player increments the

escape value above 10. Each state has the same logic

repeated. If you click food, water, or shelter that

resource increments by 4 while the other two

resources will decrement by 1. If you exceed your

tank size then your resource will return to only

having 1 of that resource. At any given point if you

run out of a resource you will die. There is also a day

count of 64, if this is exceeded then you will die as

well. The only way to win is to use escape 10 times.

D. Keyboard

 Control of the keyboard inputs to the code

was handled by two sets of codes working in unison.

A PS/2 port was utilized with a USB connection to a

keyboard through which a single bit wide data stream

could be sent and used to determine the letter pressed

on the keyboard and send it to the FSM. The two

codes controlling this process included the PS/2

interface for communication with the keyboard and a

FSM specifically designed to read the appropriate

scan code of the pressed key and send it as a single 8-

bit wide bus to the FSM controlling the state of the

game.

a. PS/2 Keyboard

The keyboard is programmed to send a scan

code, which is unique to each key, which is 8 bits

along with a stop and start bit indicating the

beginning and end of the scan code. Upon pressing a

key, an “F0” signal is sent to the board and shifted in

via registers to be detected. After the key is released,

the same process is repeated including a ‘0’ stop bit

and a ‘1’ stop bit with the scan code to the key being

sent and shifted in. Both of these scan codes are then

sent to the FSM along with a done signal indication

of the full 8-bit scan code being correct.

 b. Keyboard FSM

The keyboard FSM is used to control the

letter signal to the Finite State Machine for the entire

game control. The FSM receives the first done signal

and checks that the scan code is an “F0” to indicate a

key has been pressed. On the next done signal, the

new scan code being sent from the PS/2 keyboard

code corresponds to the scan code of the key. The

signal is output as a letter to the FSM for the overall

game to change the state and control play. The letter

signal is returned to all zeroes and the FSM resets to

await the next done signal for a new key press.

III. EXPERIMENTAL SETUP

The setup of our project consists of several
different modules created in Vivado. One module for
each component that was used. For example, one
module for the VGA and another for the keyboard. For
each module, we created a test bench in order to test
the modules separate of one another. We found it
easier to debug our vhdl modules when there was less
involved. It was easier to test functionality each step
of the way in order to achieve the greatest accuracy
and no unforeseen bugs. For the VGA module, we also
were able to use the VGA screen to troubleshoot. Since
when we did the test bench the RGB values were not

able to describe if the project was working. To start we
would insert an arbitrary sentence onto the screen to
make sure in fact that each image displayed in the
proper location. Once this was achieved we needed to
move on to trying to change screens from the start,
dead, win, and main screen. Once we confirmed that
each of these modes were functional we started to
create sentences and put the actual game information
into the code.

IV. RESULTS

The main result of our game was pretty easy to see.

The start screen was initially displayed. Then after

pressing B the next screen was to be displayed. In

fact, this is what occurred. On the main screen, every

time you incremented food, water, or shelter the

number incremented was to go up by 4 while the

others went down by 1. This occurred each time as

well. Another requirement is that every time that you

exceed your tank size the amount of that resource is

to go to 1. If you run out of any resource at any given

time then you are supposed to go to the dead screen.

If you manage to survive 64 days without escaping

you will also die. The only way to win is to increase

the escape value above 10. This is not an easy

mission as when you select escape every other value

decrements as well. So, if you run out of food, water,

or shelter while trying to escape the treacherous

island you will die as well.

 CONCLUSIONS

 From this project, a lot of knowledge was gained.

We now know how to interface with an input and an

output with an FPGA. There is many improvements

that could be made to our project. We could make a

high score table in order for contestants to compete

against one another. Another improvement could be

to make different difficulty levels. This can be done

by changing how the program increments each value.

As well as easy mode could display your day count

so that you can be absolutely certain that you escape

the island in a timely fashion. We had some issues

that if we didn’t assign a value properly it would

choose to display random images from the RAM. We

could delve more into this to determine why this is

happening. In the future, we can use the knowledge

we have gained of the VGA to display information

that our modules compile to the user. With the

keyboard code, we gained the knowledge to be able

to submit a ton of very different inputs to our system,

rather than the few buttons that the standard FPGA

board offers the user.

REFERENCES

[1] Daniel Llamocca. “VHDL Coding for

FPGAs”.

http://www.secs.oakland.edu/~llamocca/VHDLforFP

G As.html

