

Visual Graphic Array Floating Point Calculator

Kelley Harris, Benjamin Hayes, Benjamin Jackson, William Strand
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

e-mails: kjharri2@oakland.edu, bshayes@oakland.edu, bwjacks2@oakland.edu, wwstrand@oakland.edu

Abstract— Using Vivado, a Floating-Point Calculator was
implemented using the Video Graphics Array (VGA)
controller on the Nexys4 DDR Field Programmable Gate
Array (FPGA) board to display the inputs and outputs
generated by a floating point arithmetic unit. Images uploaded
from MATLAB are used and downloaded onto the VGA
controller.

I. INTRODUCTION
The need for more accurate and precise scientific

instruments is ever present in the fields of technology and
research. Developing an understanding some of the
instruments used today could lead to their refinement or
even the creation of new instruments. This project attempts
to break down the process of manipulating data in the form
of a floating point calculator, as well as display the
information in a meaningful way. The calculator will
involve addition, subtraction, multiplication, and division,
as well as a control for the number of integer bits and
precision bits. The control for the calculator will come from
the Nexys’ switches and push buttons. The information
generated from this will be routed to a VGA circuit, which
will interpret the data and display it on a monitor screen.

II. METHODOLOGY

A. Input Method
 The input system is done using the sixteen switches on
the Nexus4 board. In total, two 32-bit floating point
numbers and one 2-bit operation code need to be taken in.
With the limited amount of switches, this needs to be done
in 5 stages and controlled by a finite state machine (See
Figure 01). The 16 most significant bits of the floating point
number are put on the switches and then loaded into the
program and simultaneously displayed on the 7-segment
display (in hex) on a button push. This is repeated for the 16
LSB’s, the operation code and finally the 16 MSBs and
LSBs of the second floating point number. These 3 signals
are then used as the inputs to the calculator unit. The state
machine waits in state 6 indefinitely until reset is pressed.

Figure 01: Input FSM

B. Calculator Architecture
An arithmetic module takes in the two 32-bit floating

point numbers and a 2-bit operation signal (add, subtract,
multiply or divide) from the input system, interpreted as
single representation under IEEE-754 standard [1]. There
are three circuits inside the arithmetic module, detailed in
Figure 02 below: multiplication and division are separate
circuits but addition and subtraction are integrated together
and the appropriate operation is chosen via a multiplexor in

the arithmetic module top level circuit. All three circuits run
in parallel and the desired result chosen afterward, this
works but may be a source of slowdown in the project and
as a future optimization could be simplified.

Figure 02: Arithmetic Module

The multiplexed output signal needs to be sent to the

VGA to be displayed but at this point it is a 32-bit binary
number and not in a very human-friendly format. To correct
this it is sent through an intermediary step to be converted
from binary to a readable decimal number. Detailed
diagrams of the individual arithmetic units are included at
the end of the report [Figures 06 & 07].

C. BCD Conversion
 While the binary input and output floating point numbers
could have been chosen to be displayed on the VGA, it is
not easy for the user to read. The floating point numbers
have three components that we need to convert to BCD: the
sign bit, the 8-bit biased-exponent and the 23-bit mantissa.
Converting the sign bit was as simple as using that bit as a
selector in a 2-to-1 MUX and having the outputs be the
appropriate plus and minus BCD codes. Converting the 8-bit
exponent is a straight 1-to-1 conversion done using a
simple, well-known conversion algorithm called the
shift-add-three algorithm (also called the double-dabble
algorithm) [2]. Before the 8-bit number was input into the
BCD converter, the number needed to be converted into a
signed number, the bias removed, the sign bit extracted and
converted the same as the sign bit for the entire number, and
the number returned to an unsigned format to be put into the
converter. Dealing with the mantissa is quite a bit more
involved. The mantissa is interpreted by the hardware as a
23 bit unsigned number, but in reality it must be interpreted

as a fixed point number of the format [24 23], or 0.xxx…
That is, if the unaltered mantissa was fed into the BCD, the
output would not represent the integer values of the number.
To solve this problem, the number would be multiplied by
10^N and then multiplied by 2^-N, where N is the size of
the entire number. In theory, N would be equal to 23 since
there are 23 numbers (it would not be 24 because the integer
part, or left of the radix, is zero). However, if these
operations would be carried out with N equal to 23, the
result of the first multiplication would be a number larger
than (2^31) - 1, the largest integer number that Vivado can
handle. So, the 7 MSB’s had to be extracted from the
mantissa and be multiplied by 10^7 in order to not violate
Vivado’s rules. After this operation was completed, the
resulting number can be fed into the BCD circuit. However,
this solution results in a number that is slightly different
than the actual mantissa, creating some error.
The results of each BCD stage (sign bit, e plus bias, and
mantissa) were fed directly into the VGA controller.

D. VGA Controller
The VGA controller takes in the truncated digits of the

calculator inputs and output after their conversion to BCD.
We will display the first 4 significant digits of the output
and its three digit exponent on the monitor, in the format of
± 1.xxx E ± xxx. To avoid further conversion complexity,
the desired final number to be displayed on the VGA was
chosen to be simply the decimal conversion of the
significand and the decimal conversion of the exponent, this
means the first digit of the decimal significand will always
be one (as support for denormal numbers is not fully
implemented) and means this “1” can be combined with the
decimal point as a single character to save slightly on code
complexity. Further, the exponent “E” can be combined
with the exponent sign in the text file to reduce the number
of characters to be displayed.

This means there are nine characters to be displayed on
the VGA, one constant and 8 variable, with a total range of
15 possible characters. Covered below, matlab was used to
convert these fifteen 64*64 pixel characters as images into a
usable text file to be uploaded into 15 RAM modules inside
the VGA controller.

The output data of these RAM modules are fed into a
15-to-1 bus-multiplexor. The selector of this multiplexer is
the heart of the entire VGA controller. It is the result of a
series of If statements that take in the current horizontal and
vertical count (HC & VC) along with the BCD codes for the
nine characters to be displayed. For example, for the first
image it needs to be displayed while HC is between 0 and
63 AND while VC is between 0 and 63 as well. So the first
If statement will be of the format (simplified for
readability):

If 0<HC<63 AND 0<VC<63 then
 selBusMux <= sign;

End If;
Where selBusMux is the 4-bit signal that selects between
the 15-to-1 mux, and sign is the 4-bit BCD code that we
defined to be for either ‘+’ or ‘-’ and corresponds to the
RAM multiplexer input for the ‘+’ or ‘-’ text file. So for an
output number that is positive in magnitude, the BCD
converter will give out a “1110” for character 1, where
“1110” is the chosen code for ‘+’ and selects the output of
the 15th multiplexer input to be sent to the display (The full
multiplexer code is available at the end of this report along
with the relevant section of the VGA block diagram, see
Figure 08 & 09). This process continues for the remaining
nine characters: the conditions for VC never change as all
the images are the same height while the conditions for HC
increment the lower and upper bounds of the greater-than
and less-than statements by 64 each. So the code for the
second image is:

If 64<HC<127 AND 0<VC<63 then
 selBusMux <= “1101”;
End If;

There are a few remaining pieces to the VGA, first is the

selection between the multiplexer output, a 0xFFF code for
a white background, and a 0x000 code for the porch areas.
The background selection is done with a simple 2-to-1 bus
mux that look only at HC and VC to determine if they’re
inside the drawing area (HC<575 and VC<63), outside of
which 0xFFF replaces the RAM multiplexer output signal.
The porch selection is decided by a video_on signal that is
generated inside the provided VGA code.

The last remaining piece to the VGA controller is the

address selection for the RAM inputs. Each RAM module
has an input of [log base-2 of the image size] bits, in our
case of a 64*64 image size this comes out to 12-bits wide.
This input signal for each of the 15 RAMs is the
concatenation of the six LBS of both the VC and HC signals
respectively.

Since our image locations are A) unmoving, B) squares
of 2^6 size and C) starting at the top left corner (0,0) we
can use the cyclical nature of this address signal to our
advantage to significantly simplify the address selection
code for all RAM cases to be:

inRAM_add <= VC(5 downto 0) & HC(6
downto 0);
What the general goal of the address selector is is to load
out the first RGB value when VC & HC are at the top left
corner of where the image is to be displayed. So at
HC=VC=0 the ram address is 0 and selects the first value in
the text file. At HC=1, VC=0, the ram address is 1 and
outputs the second value in the text file. At HC=VC=63, the
ram address is “111111”&”111111” corresponding to
the final value in the text file. Now, HC and VC can both
take numbers larger than 63, so as stated before the ram

address only takes the bottom 6 bits of each. This works
perfectly to our advantage as we can demonstrate by looking
at the address values for the second image:
The top left of the second image starts at HC=64, VC=0,
this corresponds to an HC value of “1000000” where
very critically the lowest 6 bits are “000000”, exactly as
they were in the top left corner of the first image and thus
the entire address is 0 and will correctly select the first value
of the corresponding text file. It can then be shown by the
same logic, that the correct address will be selected for each
pixel of not only the second image but also any of the nine
images.

E. MATLAB
To begin, simple images needed for the VGA display are

created in paint and then read into the MATLAB file. The
images are resized to fit into the designated pixel ranges and
converted into a 12-bit RGB image which will allow the
image to be easily downloaded onto the FPGA board. The
MATLAB code used for these images is taken from the
class website [3] and slightly edited to read the new image
files while eliminating the default android image that was
used for the class website’s example. The MATLAB code
(Figure 03) that was used and the images converted (Figure
04) are shown below.

Figure 03: MATLAB code

Figure 04: Images used

III. EXPERIMENTAL SETUP

The physical project consisted of only the Nexys 4DDR
board and an external VGA-capable display. All of the
inputs and processing are done on the Nexys board and the
only output is the VGA signal which displays the
calculator/BCD converter output on the screen if all is
functioning correctly.

IV. RESULTS

The system successfully displays the correctly converted
calculator output on the screen as can be seen below:

 Figure 05: VGA Monitor Output

The results given as the final result are not completely
accurate in all cases. Firstly, there is inherent error
introduced by representing a fractional decimal number in
floating point, for example some numbers cannot be
represented exactly in binary, “1.2” for example as a single
floating point format comes out to be 0x3f99999a which,
converted back to decimal is 1.2000000476837158 * 2^0.
The arithmetic unit also seems to give slightly inaccurate
results, the reason behind this is unknown as A) time was
not available to investigate and B) there was a much larger

error induced by the BCD conversion process. That BCD
conversion error is the result of limitations in the maximum
size of numbers usable in the FPGA IDE. In order to
convert the entire significand to BCD it would need to be
multiplied by 10^23 in binary, it turns out that this number
is many orders of magnitude larger than the largest integer
supported natively by Vivado. The best we could do was to
obtain the BCD conversion of the top 7 fractional bits of the
mantissa. For some numbers and operations this causes the
lowest displayed digit on the VGA to be off by one or two.
The final project presented had a mistake wherein the “E-”
and “E+” text files were accidentally replaced with just “-”
and “+” respectively.

CONCLUSIONS

The project proved to be much tougher than originally
planned. Interestingly, the arithmetic unit was probably the
easiest piece to implement while the supporting structures
like the BCD converter and VGA controller proved to be
very difficult. It was a difficult learning process to get these
to work correctly. Possible improvements include:

-Display of the inputs and the operation on the VGA
-Using a keypad/keyboard for input
-Increased accuracy of the output
-Full support for denormal numbers

REFERENCES

[1] HTTP://IEEEXPLORE.IEEE.ORG/DOCUMENT/4610935/

[2]HTTPS://WWW.EMBEDDEDRELATED.COM/SHOWTHREAD/COMP.ARCH.EMBEDDED/1806
0-1.PHP

[3]]http://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/ISE/U
nit_7/img2txt.m

Left: Figure 06: Adder/Subtractor Block Diagram
Below: Figure 07: Multiplier and Divider Block Diagram

Above Figure 08: VGA controller simplified block diagram
Below Figure 09: VGA 15-to-1 Bus Mux code

with selBmux select

inRAM_odata <= inRAM_odata0 when "0000", --this is the text file for ‘0’
 inRAM_odata1 when "0001", --this is the text file for ‘1’
 inRAM_odata2 when "0010", --this is the text file for ‘2’
 inRAM_odata3 when "0011", --this is the text file for ‘3’
 inRAM_odata4 when "0100", --this is the text file for ‘4’
 inRAM_odata5 when "0101", --this is the text file for ‘5’
 inRAM_odata6 when "0110", --this is the text file for ‘6’
 inRAM_odata7 when "0111", --this is the text file for ‘7’
 inRAM_odata8 when "1000", --this is the text file for ‘8’
 inRAM_odata9 when "1001", --this is the text file for ‘9’
 inram_odataNege when "1010", --this is the text file for ‘e-’
 inram_odataPose when "1011", --this is the text file for ‘e+’
 inRAM_odataNeg when "1100", --this is the text file for ‘-’
 inRAM_odataOneDot when "1101", --this is the text file for ‘1.’
 inRAM_odataPos when "1110", --this is the text file for ‘+’
 "0000000000000000" when others; --blank case, shouldnt ever happen

