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Abstract— The goal of this project is to create an unsigned 

fixed point calculator that takes 2 input numbers with an 

integer part, fractional part, or both, and perform simple 

mathematical functions with them, such as addition, 

multiplication, subtraction, and division. Peripherals utilized 

include the  

I. INTRODUCTION 

This report will cover the specifics on how a fixed-point 

digital calculator will operate utilizing VHDL coding and 

the Nexys 4 FPGA board, the peripherals that will be 

needed, and challenges encountered while in the process of 

creating a functional end product.  

The motivation for this project is to gain more experience 

on how to write and implement algorithms, in the form of 

VHDL coding, on computers with practical uses. This is a 

crucially important topic, as algorithms are the building 

blocks of every computer program, and this calculator will 

be a sufficient introduction to how to effectively design 

these algorithms. This project will reflect many of the topics 

utilized in Daniel Llamocca’s course, Computer Hardware 

Design, such as fixed-point arithmetic and how to 

implement peripherals such as a keyboard/keypad or LCD 

screen. The end-product of this project is a functional 

calculator that does fixed-point arithmetic on fractional 

decimal numbers by converting the numbers to binary 

before operating on them.  

This project utilizes around 30 unique components 

throughout the entire project. The project takes usage of 

Daniel Llamoca’s ‘mydebouncer’ and ‘my_genpulse_sclr’ 

codes for purposes of debouncing the keypad and counters 

respectively. The designs for the multiply and divide 

modules, although coded separately, are also designed by 

Llamocca 
[1]

. The project also reflects philosophy designs 

found in the Hitachi HD44780U datasheet for the LCD 

FSM designs 
[2]

. The design also uses popular ideologies on 

keypad interfaces such as one found on Astro Designs 
[3]

. 

The end result is a calculator interface that can perform 

operations on two fixed point numbers, including a range of 

numbers from 0 to 99, with two decimal values of precision. 

II. METHODOLOGY 

A. Input Interface 

The decimal numbers will be inputted by the user with 

a keyboard/keypad, and will be passed onto the Nexys-4 

DDR board. The keypad should generate an 8-bit binary 

value. This is done through a keypad controller. This 

controller contains a FSM. In this keypad FSM, there are 16 

states, one for each button. This keypad has four inputs, the 

rows, and four outputs, the columns. For the first four states, 

the keypad FSM turns on the leftmost column. Then, if a 

button is pushed while that column is on, the FSM freezes 

for as long as the key is pressed, and an 8-bit signal is 

outputted. After the first four states, the column to right is 

turned on for four states, and so forth. This causes a rotation 

of one column being turned on every four of the sixteen 

states. Again, the end result is an 8-bit signal that is unique 

for every button pressed. 

As mentioned, this keypad controller will produce an 8-

bit signal that will pass through what is currently a multiple 

state input FSM interface, which will allow the user to input 

any two two-digit numbers, be they decimal or integer 

values. The FSM is designed as follows.  

In State 1, the user will be able to input the first 

number, Number A. First, the system will check if the 

counter for A is currently equal to 2. If it is, the user will 

only be able to input A, B, C, or D, which are the operation 

buttons. If the counter is not equal to 2, the user will input, 

along with the operation buttons, the value buttons, 0 to 9, 

for the first number, A. Number A, along with Number B 

are both 2-digit decimal numbers, ranging from 0 to 99, 

including decimal numbers with two decimals of precision.  

As mentioned, the system first checks if the user has 

inputted two numerical values already. This check is done 

through a counter, CounterA. If this is true and the user has 

already inputted two numbers for A, the FSM only allows 

the user to input an operation button. Once the operation 

button is pressed, the FSM moves into the next state, which 

is where the user will input number B. If the user hasn’t 

inputted two number values, the user must input either input 

more numbers, or an arithmetic operation. A check is also 

placed to make sure a key is being pressed. If a key is being 

pressed, an 8-bit signal should be sent to the FSM by the 

input module, the keypad controller. This 8-bit input is then 

identified by the input FSM.  

If the user hasn’t inputted two values and the 8-bit input 

is recognized as a number value, then a 4-bit signal, 

representing the numbers 0-9, is set. This 4-bit signal is sent 

to a shift register that shifts in 4 bits at a time. The output of 

the shift register is 16-bits. These are 16-bit outputs because 

of the shifting FSM, which lays the foundation on how to 



handle decimal placements for A and B, which are 

discussed further in this report. Also, the counter that is 

associated with number A, CounterA, is incremented by 

one. If the user input is a decimal, which is the # button on 

the keypad, the system goes to State 1dec, which deals with 

the decimal portion of the number. If the input is an 

operation input, the system advances to State 2. Just as well, 

the operator that was inputted determines a 2-bit signal that 

is saved into a 2-bit register. The identification of each 

operation can be seen in Figure 1. 

 

 

Operation Meaning Value 

A Addition 00 

B Subtraction 01 

C Multiplication 10 

D Division 11 

Figure 1 – The identification for each operation 

If the input is anything other than an arithmetic 

operation, the decimal input, or a number value input, then 

nothing happens. Likewise, if the user has already inputted 

two numbers and tries to input another number, nothing 

happens. Instead, the user remains in the first state of the 

FSM. 

State 1dec works in a similar manner to State 1, with 

one key difference. If the input is a number, the number is 

added to the shift register for A, and not only CounterA, but 

also CounterAdec is incremented by one. CounterAdec 

serves to keep track of the number of decimal places in the 

number. If the input is an operator, the system advances to 

State 2, and the operator that was inputted generates the 2-

bit signal to be saved into the register with the same values 

as shown above. 

State 2 and 2dec are the same as State 1 and 1dec where 

the number B is inputted and the same functions that were 

done on number A are also done on number B, with some 

differences. First, if the input is an arithmetic operation, 

then nothing happens. Another difference being that if the 

input is the ‘equals-sign’ input, the system moves onto state 

3. This is where the input FSM ends for now, until the entire 

process is finished. Once the output is given, the user can 

then reset the entire project with the press of any button.  

The input portion of this calculator design can be seen 

in Figure 2.  It is worth mentioning that this figure is only a 

portion of the top file diagram used in this calculator design 

project. Because so many components are utilized in this 

project, it is absolutely necessary to divide the top diagram 

up into smaller portions, such as the one in Figure 2. 

 
Figure 2 – The input portion of the top file diagram 

As mentioned, the shift registers each output a 16-bit 

sized std_logic_vector value that represents each input, A 

and B. These are BCD binary numbers, and must be 

converted into binary values. This is done by the 

BCDtoBinary module. This module will check the four 

most significant bits of the 16-bit input. It determines what 

value, again from 0-9, these four bits are. It then sets a 

signal, z4, to a binary number value. Then, the program 

moves on the next four significant bits, and sets z3, and so 

on for z2 and z1. The output, z, is an addition of all four 

signals, z4, z3, z2, and z1. So, if the 16-bit input is a 

hexidecmial value of ‘9999,’ z4 is set to ‘10001100101000,’ 

z3 is set to ‘00001110000100,’ z2 is set to 

‘00000001011010’ and z1 is set to ‘00000000001001.’ The 

end result is the 14-bit sized output, z, which is a value of 

‘10011100001111,’ which is the binary representation for 

9999.  

Because the user can only input two digits for each 

number, the initial values of Number A and Number B can 

be no larger than 99, which is a 7-bit binary number. 

Because of this, the initial 14-bit values can be cut down to 

7-bit values, leaving the user with two binary values, bTwo 

and aTwo. These will be used later in the design for the 

multiplication module.  

One more aspect of the input FSM worth noting is that 

if a valid key is pressed, the FSM actually goes into a 

intersect phase. In this phase, nothing happens until 20 ms 

have passed. If the key is still being pressed, then another 20 

ms must pass. Otherwise, the key has been registered as 

being depressed, and the FSM can continue as normal. This 

is a manner of “debouncing” the incoming signal from the 

keypad. Figure 2 shows part of the FSM algorithmic state 

diagram for the input FSM. 



 
Figure 3 – A portion of the input FSM. State 1dec and 2 

work in similar fashion 

 

B. Shifting Interface 

As mentioned, once the numbers A and B are inputted, 

the program should move into the next state, which is 

properly aligning the two numbers for addition, subtraction 

and division, based on how many decimal inputs were 

conducted. For example, if the numbers “3.3” and “.33” are 

inputted, the shift register values will be, in hexadecimal 

BCD format, “0330” and “0033”. The decimal counters will 

be 1 and 2, respectively. This shifting FSM will adjust these 

values so that the decimal points properly align, so the new 

shift register values are ‘0330’ and ‘0033.’ This is the 

reasoning for the size of the 16-bit shift registers. If the shift 

registers were 8-bit sized, then the project design could not 

account for decimal values. With 16-bit shift registers, the 

program can properly account for any decimal number 

between 0 and 99. 

Once the system is initially finished with the input 

FSM, The system then moves to the shifting FSM. This 

FSM doesn’t start until the input FSM is finished, as the 

first state checks to make sure the input FSM has sent its 

‘done’ signal to the shifting FSM. The first actual process of 

this FSM is to load the 16-bit BCD contents of Number A 

and Number B onto new 16-bit shift registers. These 

registers will serve as the shifted values for Number A and 

Number B.  

Next, the system checks the operation and the value of 

both decimal counters for Number A and B, qAdec and 

qBdec, to determine how to arrange and align the numbers.   

If the operation is multiplication, the result’s decimal 

count, qR, is (qAdec + qBdec), and the shifting FSM is 

done. No shifting is needed for multiplication, as the 

multiply module deals with the 7-bit non-shifted numbers 

discussed earlier.  

If the operation is addition/subtraction, the system 

compares the values of qAdec and qBdec. If qAdec is larger 

than qBdec, then qR is equal to qAdec, and Number B is 

shifted by a number of zeros equal to (qAdec - qBdec). If 

qBdec is larger than qAdec, then qR is equal to qBdec, and 

Number A is shifted by a number of zeros equal to (qBdec - 

qAdec). If they are equal, no shifting is needed, and qR is 

equal to qBdec, which is equal to qAdec.  

If the operation is division, then the numbers are shifted 

the same way as they are if the operation is addition or 

subtraction. However, qR will always be set to 0. This is 

because the division module will take two numbers and give 

a quotient and a remainder. Only the quotient will be 

considered, so shifting is done to get the most out of the 

division module in the simplest manner possible. Figure 4 

shows the FSM diagram for the shifting interface. 

 
Figure 4– The FSM diagram for the shifting interface 

 

After the shifting FSM is finished shifting and setting 

qR, then the shifting FSM is finished, for now. The shifting 

FSM, much like the input FSM, can be reset once the entire 

process is complete, if the user inputs any button on the 

keypad afterwards. Figure 5 shows the shifting portion of 

the top file diagram. Notice that some elements of Figure 2 

are tied into Figure 5. 

 



 
Figure 5– The shifting portion of the top file diagram 

 

C. Arithmetic 

Once the shifting FSM is initially finished, the system 

will then move to the arithmetic portion of the design. This 

is where the mathematical procedure is done on the 

numbers, depending on what operation was chosen. A 

number of procedures are done. First, the 2-bit operation 

signal is sent to a two-to-four decoder with an enable. The 

enable is the signal that gets sent once the shifting FSM is 

finished. The representation for this decoder can be seen in 

Figure 6. This will be utilized in deciding when to not only 

perform the arithmetic operations, but also when to output 

the result onto the LCD display. 

Operation Meaning DMSA 

00 Add A and B 0001 

01 Subtract B from A 0010 

10 Multiply A and B 0100 

11 Divide B from A 1000 

Figure 6 – The representation for the two-to-four decoder 

 

There will be two signals each for both A and B. There 

will be a 7-bit non-shifted signal, as mentioned will come 

from the input FSM, and a 14-bit shifted signal will come 

from the shifting FSM. Two of these four signals will be 

used depending on what operation is being done. These 

operations are done in unsigned fashion. The addition and 

subtraction operations will take the shifted 14-bit inputs for 

A and B, and generate a 15-bit output, to account for 

overflow. The output will then be cut back down to 14 bits, 

ending with the addi and subi signals. The multiplication 

operation will take the two 7-bit non-shifted inputs for A 

and B and generate a 14-bit output, ending with the multi 

signal. The division operation will take the two 14-bit 

shifted inputs and generate a 14-bit quotient and a 14-bit 

remainder. Only the quotient will be considered in the 

result, which is the divi signal. 

The division and multiplication operations will require 

a clock signal. This is one of the reasons as to why the two-

to-four decoder is utilized. The multiply and divide modules 

require a starting signal to being their arithmetic processes. 

The multiply module only begins when both the shifting 

FSM is finished and the DMSA signal’s third most 

significant bit is high. Likewise, the divide module only 

begins when both the shifting FSM is finished and the 

DMSA signal’s most significant bit is high. 

Regardless of what operation is done, all four signals 

for each operation will be 14-bit signals. These four signals 

are sent to a four-to-one multiplexer with an enable. The 

enable is high only when the shifting FSM is finished, and 

either the first bit of the DMSA signal is high, the second bit 

of the DMSA signal is high, the divide module is done, or 

the multiply module is done. The selecting bits of this 

multiplexer is the two-bit operation signal. This will result 

in a 14-bit result binary signal, which then gets converted 

back into a 16-bit BCD signal, resultBCD. This is done in a 

somewhat reversed process in terms of converting the 16-bit 

BCD signal to a 14-bit signal. This resultBCD signal, along 

with qR from the shifting FSM, are then outputted onto the 

LCD. Figure 7 shows the arithmetic portion of the top file 

diagram. 

 
Figure 7– The arithmetic portion of the top file 

diagram 

D. LCD Module 

When the arithmetic is done, the result will be outputted 

to the user thorough an LCD screen connected to the Nexys 

4 DDR board. The result is displayed on the LCD once the 

arithmetic procedure ends, but the LCD, or rather, the LCD 

FSM controlling the LCD, also communicates with the 

input FSM and outputs according to what the user is 

inputting. For instance, when inputting Number A, the LCD 

outputs “Enter A.” Likewise, when inputting Number B, the 



LCD outputs “Enter B.” Finally, the LCD outputs the result, 

including the result number and the decimal point exactly 

where it should be placed. This is done due to the LCD only 

outputting one character at a time.  

The result is four characters long. Before each character 

is outputted to the LCD, the LCD FSM checks if it is 

appropriate to output the decimal number. This is done by 

checking qR and comparing it to how many numbers have 

been outputted to the LCD. If it’s appropriate to put the 

decimal point onto the LCD, the LCD FSM outputs the 

decimal point, then moves on to outputting the rest of the 

result. 

For example, if the result is supposed to be “34.56,” the 

resultBCD is, in hex, “3456” and the decimal counter, qR, is 

2. The LCD FSM outputs ‘3,’ then ‘4,’ then determines that 

the decimal point is to be put down, and then it finishes 

outputting the number. 

The LCD FSM starts by first initializing the LCD. This is 

done by first powering on the LCD, then waiting 15 ms. The 

LCD takes in 8 bits of data, along with an enable bit and an 

RS bit, that tells the LCD if an instruction is being sent or if 

data is being sent. After the 15 ms of waiting, then a low 

signal is sent to the RS port, along with the instruction 

setting interface length, the Function set instruction. After 

4.1 ms, the same Function set instruction is sent again. After 

100 us, the same instruction is sent again. Then, the same 

instruction is sent a final time. Then, the clear display 

instruction is sent, and the FSM waits for 1.5 ms. Then, the 

LCD FSM turns the display on, and sets the entry mode. 

After the initialization, the LCD FSM can then write data 

onto the LCD. As mentioned, this is done character by 

character, the data sent is an 8-bit signal that is decoded into 

a character that is outputted onto the LCD. 

 After the LCD outputs the result, the process is 

technically done. Once the LCD FSM is done, a signal is 

sent to the Input FSM that allows it to recognize a single 

input. When the user presses any key, the system will return 

to the first state of the input FSM. Likewise, the input FSM 

sends signals that result every other FSM and component in 

the system, and the process begins all over again. Figure 8 

shows the LCD part of the top diagram. 

 
Figure 8– The LCD portion of the top file diagram 

 

III. EXPERIMENTAL SETUP 

The hardware used for this project is the FPGA board 

known as the Nexys 4 Artix-7. The FPGA has Pmod ports 

that will allow for the keypad and LCD display to be 

connected. Some simulations have also been taken to 

describe further how some of the FSMs function. Note that, 

given some FSMs have a rather long wait time, not all 

simulations can be easily taken. For most of these 

simulations, time should not be taken account of, as 

counters have most likely been edited heavily. 

Figure 9 shows the timing simulation conducted on the 

InputFSM, and shows the outputs related to the first state, 

inputting Number A. Here, the blue signals are the inputs 

generated from the keypad. The yellow signals show the 

output signals related to Number A, including the enable for 

the counter that keeps track of how many digits have been 

inputted, those being EA, zA and qA, along with the 4-bit 

signal sent to the 4-bit shift register and the shift register’s 

enable signal, aInput and EAcc.  

Here, it can be seen that “48,” in hex, is first sent to the 

FSM, immediately sending the FSM to the decimal phase of 

inputting Number A. Then, a ‘1’ and a ‘9’ are inputted from 

the ‘keypad,’ thus maximizing the number of inputs that can 

be made to Number A, as noted by zA, which goes high 

when that limit is reached. Finally, an operation signal is 

sent to the FSM, sending the FSM to the state where 

Number B is inputted. Also note the intersecting states that 

occur when an input is made, and that the FSM only leaves 

those states when the key input is set to low, thus 

‘depressing’ the key on the keypad. 

 

 
Figure 9 – A simulation done for the input FSM 



Figure 10 shows a simulation for the shifting FSM. Here, 

the signals related to Number A are in blue, the signals 

related to Number B are in yellow, and the output signals 

are in purple. Here, A is equal to 0.09, and B is equal to 99. 

So, qA is higher than qB. Therefore, qR is set to qA, which 

is 2. Next, B has to be shifted in order for A and B to 

properly align, hence why B is shifted to “9900,” while A 

remains “0009.”  

 
Figure 10– A simulation done for the shifting FSM 

Figure 11 shows a simulation for the LCDTop FSM 

module. This is where the LCD sends instruction and data 

signals. The red signals are inputs that are sent to the LCD. 

As mentioned earlier, RS represents if an instruction is 

being sent or if data is being sent. Note that for every state, 

enable is turned on for a short period of time. This is 

because LCDTop FSM is also tied to an inputLCD FSM 

that controls when the enable is turned to a high signal. In 

that FSM, enable is set to high for a brief period of time, 

which allows the data from the 8-bit db port to be sent. Also 

note that the LCD has to initialize and set itself up before it 

writes data. It accomplishes all of its instruction commands 

before sending data. Also note that some initialization 

phases require waiting after sending the signal. This is, 

while not seen in the simulation, especially the case with the 

‘clear display’ instruction, which as mentioned, requires 

roughly 1.5 ms for that instruction to complete before any 

other instructions or data can be sent. 

 
Figure 11 – A simulation done for the LCDTop FSM 

 

IV. RESULTS 

This project is programmed onto the Nexys-4 DDR 

FPGA board. An Arduino 4x4 matrix serves as the keypad, 

and a 1602A LCD display is utilized. These two 

components are wired to the Pmod ports on the board. 

The biggest hurdle to cross was by far getting the input 

interface to work. At first, a USB keypad was utilized 

instead of the 4x4 matrix. However, that proved to be too 

problematic to use, as the USB keypad would stop 

functioning sporadically. The USB keypad was then 

replaced with the Arduino keypad. At first, there were 

several issues getting the desired signal, and debouncing the 

signal proved to be rather problematic. However, all issues 

with the Arduino keypad have been, for the most part, 

straightened out. There are still glitches every now and then 

with the keypad, but that is more than likely due to user 

input than anything else. The keypad is now generally 

outputting the desired signals consistently.  

The LCD interface was also a huge hurdle to pass 

through. At first, the calculator was, although intended to be 

designed for the LCD, instead designed with the seven-

segment displays and LEDs on the FPGA board in mind. 

The biggest hurdle for the LCD was getting an 

understanding the datasheet behind it, or rather, Hitachi’s 

HD44780U datasheet. However, once an understanding was 

made, the LCD was successfully integrated into the design. 

The LCD is powered by an Arduino Uno, but the Arduino 

Uno serves no other purpose. Additionally, the seven-

segment display and LED signals, although not discussed at 

all in this report, remain on the project. Every four bits of 

the resultBCD signal gets sent to one of the seven-segment 

displays. Also, the rightmost LEDs on the board show the 

value for qR. Finally, the leftmost LEDs on the board show 

the operation value. The end result, regardless, is the proper 

result with the proper decimal count for the result. The only 

exception to this is when Number A is subtracted by a 

Number B that is larger than Number A, in which the result 

is 9999, when it should be a negative number. The entire 

calculator composition can be seen in Figure 12. 

Figure 12 – The digital calculator 
 

The user will, as mentioned heavily in this report, be able 

to input two digits for Number A, an operation, and two 

digits for Number B. In return, the user will receive the 

proper answer to the calculation made. Afterwards, the user 

can press any button to do another input. 

V. CONCLUSION 

This project, although heavily complex, provides a very 

solid infrastructure for a digital fixed point calculator. 

Although limited by only allowing two numerical inputs per 

number, this design provides an efficient and reasonable 

basis for a calculator system that can accomplish simplistic 

mathematical operations such as addition, subtraction, 

multiplication and division. This project should serve as a 

reasonable design and philosophy behind designing and 

developing a decimal point calculator system. 
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