o — VR

N (B

ALV - .ﬂp

W - N ‘ /J V
RS Jqu_.,N/‘>'“.._f"mwﬁﬁ'ﬂq"ﬁ"dﬂd. MW &“/‘/.

CRLONRS I SRR A AR O AL

=
.....

(64 16] FX

a'e
O
T
<
—
)
O
—
<T
O

B RE L LN

TOPICS TO BE COVERED TODAY

= QOverview of hardware
= Calculator Input Output Specifications

= Keyboard input of operands

= Mathematical functions (addition, subtraction, multiplication, division)
= LCD output of result

= Project challenges

= Live Demonstration

OVERVIEW OF HARDWARE

Enter «+—

{}SNH

Calculator Input Output Specifications

=Resolution: 216 = 0.000015259
*Input range: [-2%/, 247-2-16] =

»-140,737,488,355,328 to +140,737,488,355,327.999984741
=Qutput range: [-22>, 29> - 2716] =

= -3.961408125713217e+28 to +3.961408125713217e+28

KEYBOARD INTERFACE

PIC uC hides the USB HID protocol and emulates PS/2 bus

PS/2-style keyboards use scan codes to communicate key press data

If the key is held down, the scan code will be sent repeatedly about

once every 100ms

When a key is released, an FO key-up code is sent, followed by the

scan code of the released key

Edge0 Tck Tck

ot

Edge 10

CLocK —_ /. " J
‘0’ start bit . > Thid

DATA —\

("1' stop bit

A D BRI |

/

Tsu» =

Symbol

Parameter

Max

Tck

Clock time

30us

50us

Tsu

Data-to-clock setup time

Sus

25us

THiD

Clock-to-data hold time

Sus

25us

KEYBOARD INPUT OF OPERANDS

resetn = 0’

DIN(15-8)="F0"

s1 53 s="1"

yes

q="79"||
787 || "7¢" ||
waA"

q="5A" || “79
178" || *7¢ |
agpr

Set opcode

A~

MATHEMATICAL FUNCTIONS

= Multiplication

The selution is computed in M + 1 cydles. N M
Datah +1+uu__u

reset

5 —
Z —
bﬂ »

—*E P
—#»zclrP

F5M

MM |00 0"sDatan
»
6 L 4
0 afdin
L= 1 a
E=—E
b=
Nem] | SRiEt-les:

DataB

EF i
sclrP—

Parallel Access

5 1 =1 — Load

g 1 =0 — shift

Ehift-right

[}
H+H¥ H+HJ;
B+

P done

ITERATIVE
}HLILT1FIJEH

MATHEMATICAL FUNCTIONS

= Division (Appended 16 0’s to the dividend for improved resolution)

[112 16] unsigned FX
result input

Split: [96 Integer Bits],

of —<ion
or —sign Iinput [16 Fractional Bits]

LCD Start Flag=1

96 integer bits: 2796-1 = range = 29 decimal digit range Sign to ASCII, output
16 fractional bits: 2*16-1 = range = 5 decimal digits range to LCD

Integer BCD vector Integer bits
grows to 29 digits*4 converted to BCD
= 116 bits 29 decimal digits

Fractional bits
converted to integer,

Fractional BCD vector
then to BCD (5 digits)

grows to 5 digits*4 =

20 bits BCD numbers converted to ASCII
characters. Each character sent to
LCD one by one.

PROJECT CHALLENGES

= Matlab Quantizer not capable of supporting full [64 16]

ra n ge 0101100111010011100111100113111100111011010000000000000000000000

>> b = num2bin(a,09876543210%6887.9580)

= Matlab Quantizer uses double floating point arithmeticto »-

I Convert from decimal to hex therefore the fu nction Wi” do 01011001110100111001113001111131100111011010000000000000000000000
BE CAREFUL! strange rounding to your input number and the binary output” o 7 numibin(a,096765432109667.5992)
will not be the same as the input.

0101100111010011100111100111111100111011010000000000000000000000

= 1 week was spent trying to troubleshoot the binary to BCD » © - nmzbinc,0ss765432109887.9984)
converter due to this issue. BCD output values did not match > -
quantizer deCimaI input. 01011001110100111001113001137133100111011010000000000000000000000

>> b = num2bin(a,09876543210%6887.9586)

b =

Syntax issues

0101100111010011100111100111111100111011010000000000000000000000

= Assignment is NOT the same as equality check (Vivado will >
not flag an error)

= b<="1000" when a ="00" else not the same as b <="1000"
when a <="00"

= Keyboard input functionality troubleshooting

= We spent hours troubleshooting the keyboard input after
fixing the VHDL code issues and it turned out that power
cycling the FPGA board solved the problem.

Live Demonstration!

User Instructions:

1.

Power on calculator (FPGA) and wait for
initialization

Input first operand using keyboard (16
hex values O-F)

Input operator using keyboard (+,-,/,%*)

Input second operand using keyboard
(16 hex values 0-F)

Press Enter
Press BTNU on FPGA to print result.

Press BTNL and BTNR to scroll display
left and right to see all digits.

Note the following:

1.
2.

16 hex values * 4 bits = 64 bit input.

Input is shifted in from the right so
input your operands as you would read
them from left to right (MSB to LSB).

Last 4 hex values represent fractional
bits (4*4 = 16) [64 16]

7 segment display will show the 64 LSB
values of a 128 bit vector signal which
holds both operands as they are shifted
in from the right.

Output from mathematical operation is
in [112 16] format. 16 LSB were
truncated from [128 16] result.

