
[64 16] Fixed Point Calculator

ECE 508: Digital Logic and Microprocessor Design – Winter 2017

Santosh R Epuri, Jacob J Morales Argumedo

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: sepuri@oakland.edu, jmoralesargumed@oakland.edu

Abstract— The project will focus on creating a fixed point

calculator which will take inputs from a keyboard and output

the results to an LCD display. The keyboard, LCD and

calculator will be connected together by an Artix 7 FPGA

development board.

I. INTRODUCTION

This project will allow the students of ECE 508 to
showcase their knowledge of the concepts learned during the
course. By combining the PS/2 protocol for reading the
keyboard, creating an arithmetic logic unit to do
mathematical calculations and outputting these results to an
LCD screen, we will have successfully covered and
demonstrated our knowledge of building digital circuits
using an FPGA.

The main motivation for this project is to explore digital
circuit design for a device as simple as a calculator. Though
calculators are used and taken for granted every day, our
team would like to understand how these simple machines
truly work at the digital circuit level.

II. METHODOLOGY

A. Keypad Input

For the keypad input, our team started off by using Dr.
Llamocca’s PS2 keyboard VHDL code and mapping the
constraints in Vivado HDL. We encountered issues with
using this code for this application. So, we created a VHDL
design using higher level programming.

We were able to find a dedicated keyboard made by Onn
that correctly outputs PS2 scan codes. Once connected to the
FPGA we were able to see the test code from the PS2 VHDL
output the corresponding scan code hex values to the LEDs
and 7-segment displays on the Nexys 4 board.

Figure 1: Onn PS2 Keypad

Our team mapped the PS2 scan codes to binary values for
each corresponding alphanumeric key on the keyboard (0 to
F) while using the scan codes as is for enter, add, subtract,

multiply, divide). The method of mapping was simply using
a lookup table (LUT).

Alphanumeric
Key

PS/2 Code
Make

PS/2 Code
Break

0 70 F0,70

1 69 F0,69

2 72 F0,72

3 7A F0,7A

4 6B F0,6B

5 73 F0,73

6 74 F0,74

7 6C F0,6C

8 75 F0,75

9 7D F0,7D

A 1C F0,1C

B 32 F0,32

C 21 F0,21

D 23 F0,23

E 24 F0,24

F 2B F0,2B

+ 79 F0,79

- 7B F0,7B

* 7C F0,7C

/ E0,4A E0,F0,4A

ENTER E0,5A E0,F0,5A

Figure 2: PS/2 Scan Codes

B. 16x2 LCD Screen:

The LCD portion of the project did not go as smooth as
expected initially. We used Dr. Llamocca’s LCD VHDL
code as a starting point, but right away we noticed that the
display was behaving oddly. Initially we thought that our
LCD’s wiring was incorrect since the letters seemed very
faint, even after adjusting the contrast setting to the
maximum contrast. It turns out that the LCD we are using
requires a 5v supply to work correctly with the contrast
adjustment. The FPGA board is only capable of outputting
3.3v supply. To get the full range of contrast on this LCD

we must have a full 0v-5v range. This meant that the 0-3.3v
range we had connected to the LCD explained the faint
letters on the screen. We wired up a negative voltage supply
using a 9v battery and a potentiometer to go from -9v to
+3.3v. This allowed us to adjust the contrast setting on the
LCD to where the text was visible to a normal user’s eye.

The second hurtle with the LCD was the initial VHDL
code we were using. We noticed that when we powered on
the LCD and initialized it using the provided VHDL code,
that sometimes the LCD would not show text at all or
sometimes it would show strange characters.

We referenced the HD44780U datasheet [2] to try to
figure out what could be occurring. It turns out, that if the
LCD has less than a 4.5V supply at power on, a manual
initialization procedure must be made so that the LCD can
work in “low power mode”. We modified the state machine
for the LCD so that the manual initialization procedure was
called during start up. After implementing the changes, the
LCD no longer displayed strange characters.

Unfortunately, even after these changes, we still had a 3rd
problem. Sometimes the input sent to the LCD would not do
anything or sometimes the LCD would get “stuck”. After
troubleshooting the issue more, it turns we had two
problems. One being that the LCD state machine had a bug
where it allowed it to skip S3, S4 and S5. This was fixed.
However, it still seemed that sometimes the input would not
get sent to the LCD. We were able to use our past
experience with this LCD to determine that the timing was
too fast. When we increased the time between states for the
state machine by the LCD began to work flawlessly. We
believe this may be due to our LCD running at 3.3V (instead
of 5v) and thus needing the pins asserted HIGH for slightly
longer period of time for the LCD to register the assertion.

To wrap up this topic, we also incorporated “scroll left
and scroll right” features for the LCD so that we will be able
to see all the precision bits from our calculation. The LCD
can actually show up to 80 characters per line; however, only
16 are visible at a time, thus the need for scrolling left and
right through the screen to see all the printed characters.

C. Calculator results conversion: binary to BCD to ASCII:

For this portion of the project, we found pre-made code

online as coming up with the algorithm to convert binary to

BCD would have been past the scope of the project. Due to

troubleshooting issues, we actually attempted to implement

several BCD converters thinking that there were issues with

the algorithm itself. The first algorithm from duolos.com

[4] used the double dabble method of BCD conversion. It

was implemented into our circuit successfully, however, the

result always seemed to be truncated or rounded near the

LSB values. After struggling with this, our second attempt

was another double dabble BCD algorithm from

nandland.com [3]. We tried to implement the code as is

from the website. It simulated just fine, however, when we

tried to synthesize the code in Vivado, it would throw an

error. Using Dr. Llamocca’s assistance, he helped us turn

un-synthesizable code into Vivado friendly synthesizable

code. However, even after doing this, we seemed to get the

same strange truncation/rounding of the LSB values. After

contacting the professor and informing him of our troubles,

he found that the issue was actually the MATLAB quantizer

feature we were using to convert from decimal to [64 16]

binary values. As explained by the professor, it turns out

that the fixed point values we were requesting from the

quantizer feature were in fact too precise for the quantizer

feature to handle. Thus it would round off our input

decimal values during the binary conversion. In hindsight,

had we known about the limitation of the MATLAB

quantizer feature, we would have stuck with the first binary

to BCD converted and finished this part of the project

sooner.

After debugging all the issues, the binary to BCD

converter was successfully implemented. We shift in each

BCD value to a 4 bit register and add x”30” to it to convert

it to a numeric ASCII character. This then gets sent to the

LCD to display. We shift in all the integers, when

complete, place the decimal point, and finally place the

fractional ASCII digits in the LCD using the same shifting

method as the integers.

Figure 3: Vivado test bench of Binary to BCD conversion

Figure 4: Overview of state machine used for LCD display

and BCD conversion

D. Calculator for addition, subtraction, multiplication and

division.

64-bit signed addition, subtraction, multiplication and

division has been designed using Vivado and verified using

the test bench. The output is [112 16] because multiplication

of two 64-bit inputs needs 128 bits. We have discarded 16

LSBs from the output because 32 bits for decimal number is

a little excessive. The input to the LCD is the sign bit and

unsigned representation of the math output which is signed.

Figure 5: Multiplication logic design used in project

Figure 6: Division logic design used in project

E. Main state machine for entire system

The FPGA has been programmed to read the user entry

from key board. The finite state machine shown in Figure 7

has been designed to parse the user entries into operands

and the operation. 16 x 2 hexadecimal characters for both

operands were shifted into a 128-bit logic vector.

Figure 7: Parsing state machine

III. EXPERIMENTAL SETUP

We used two methods of ensuring our hardware is
functioning correctly. For the calculator itself, we used the
Vivado test bench to ensure that our calculation of addition,
subtraction, multiplication and division was functioning
correctly. This was done by simply inputting different
operands into the ALUs and comparing the output to known
good results.

For the LCD portion of the project, we used multiple
methods of testing the hardware and FPGA circuit. As
mentioned before, we found by visual inspection that the
LCD was not initializing correctly. We were able to adjust
the timing of the assertion of the data signals to the LCD
until the LCD printed characters bug free. This was not
something that would be feasible on the test bench as we
were using a 5v LCD with a 3.3V supply, thus it needed
extra “HIGH” assertion time.

Our Binary to BCD to ACSII conversion circuit of course
had to be thoroughly tested using the Vivado test bench
functionality. We were able to understand and debug our
BCD conversion by observing the values being shifted in and
out of registers. This was not something that would have
been easily done by looking at the output on the LCD as
inspection of each circuit and state machine status needed to
be observed.

Finally, for our keyboard input circuit, we had to use a
combination of visual confirmation and test bench
confirmation to debug and ensure the circuit was fully
functional. Through the Vivado test bench, we were able to
find issues with our VHDL code and state machine.
However even after fixing the code, the actual real world
behavior was erratic. For whatever reason, after hours of
troubleshooting, we found that the FPGA board needed a
power cycle and everything began to function as expected
since then.

IV. RESULTS

We were able to successfully implement a [64 16] input
fixed point calculator using a keyboard for input, FPGA for
signal processing, and LCD for outputting the results. Our
output, as mentioned previously is in the format of [112 16]
and our LCD successfully converts the binary values to
ASCII characters to display on the LCD.

Figure 8: Picture of entire project, with keyboard and LCD

working.

CONCLUSIONS

Although our project has met all the requirements set
forth in the proposal, we would recommend an improvement
to make this calculator user friendly. We currently have to
input the operands in HEX format (16 hex values * 2 + 1
operation code = 33 characters). This requires the user to
first “think” in decimal and convert the decimal values into
hex. From there the user must input the values into our FX
calculator in HEX. The result comes out in user friendly
decimal format thanks to the binary to BCD conversion. In
order to allow direct decimal input from the keyboard, we
would have to solve the problem of converting BCD input to
binary values, which would require additional development
time.

REFERENCES

[1] Nexys 4 DDR Keyboard Demo. Digilent Inc., n.d. Web. 15 Mar.

2017. <https://reference.digilentinc.com/learn/programmable-
logic/tutorials/nexys-4-ddr-keyboard-demo/start>

[2] HD44780U (LCD-II). Hitachi, 1999. Web. 15 Mar. 2017.
https://www.sparkfun.com/datasheets/LCD/HD44780.pdf

[3] "Convert Binary numbers to BCD in VHDL and Verilog." Convert
Binary numbers to BCD in VHDL and Verilog. N.p., n.d. Web. 21
Apr. 2017. https://www.nandland.com/vhdl/modules/double-
dabble.html

[4] "Binary To BCD Conversion." Binary To BCD Conversion. N.p., n.d.
Web. 21 Apr. 2017.
https://www.doulos.com/knowhow/vhdl_designers_guide/models/bin
ary_bcd/

https://www.sparkfun.com/datasheets/LCD/HD44780.pdf
https://www.nandland.com/vhdl/modules/double-dabble.html
https://www.nandland.com/vhdl/modules/double-dabble.html
https://www.doulos.com/knowhow/vhdl_designers_guide/models/binary_bcd/
https://www.doulos.com/knowhow/vhdl_designers_guide/models/binary_bcd/

