
MASTERMIND

Christopher Grzybowski, Naisarg Gohil, Grace O’Georgia, Sindura Gullapelli

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

E-mails: cjgrzybowski@oakland.edu, ngohil@oakland.edu, gmogeorg@oakland.edu, sgullape@oakland.edu

Abstract— The purpose of this project was to simulate a

version of the board game, Mastermind, using

VHDL. Digital components that were used were

registers, RAM, a comparator, a decoder, a counter,

debouncer, multiplexer, and a finite state machine. The

comparator compares a code with eight guesses, and

displays “hints” for each guess made. If the code is

guessed correctly, the guesser wins the game. The

output was intended to be displayed on an LCD, but was

instead displayed on the 7-segment displays and LEDs.

I. INTRODUCTION

The motivation for this project came form the strategic

board game called Mastermind and the concepts covered in

the later laboratory assignments from ECE 378. The lab

experiments that the project referenced were mainly Labs 4,

5, and 6 [1]. From these labs, random access memory

(RAM), finite state machines (FSM), debouncers, counters,

among other important concepts, were utilized. The

Methodology section of this report will review the original

board game and the digital implementation of this model in

detail. The Experimental Setup section will discuss how the

methodology and the board were brought together to create

the project. In the Results section, the final outcome of the

project will be revealed. Lastly, the Conclusion will state

potential improvements and realizations.

II. METHODOLOGY

The Mastermind game is played with two players: the

code maker and the code breaker. The object of the game

is for the code breaker to guess the code maker’s code

without exhausting all of their attempts. A digital version

of the original board game was created for this project.

The circuit contained many components in order to

recreate this simplistic, strategic game.

A. Original Board Game Version

In the original version, the game components

consisted of a decoding board, colored code pegs, and red

and white key pegs. The decoding board is where the

code maker stores their code (in a hidden section), the

code breaker places their guesses, and subsequently

where the code maker gives feedback to each guess. The

code pegs are the used for the code and guesses. The key

pegs tell the guesser whether or not their guess is close to

the correct code. For example, if the code breaker’s

guess has a right color in the right place of the code, then

that would receive a red key peg. If there is a color in the

guess that was in the code, but in the wrong position, it

would receive a white key peg. The code maker places

the key pegs on the board after each guess. These

responses help the guesser make their next guess to crack

the code.

B. Digital Version of Game

 Instead of colors like in the original board game,

the digital version of this uses a 4-digit number with 3 bits

per digit. Numbers 1 through 7 can be used, but numbers

cannot be used twice. The code is entered into a register

with an enable. After the code is entered, it is sent to the

comparator, and the guesses are ready to be made. Each

guess will also be sent to the comparator, thus comparing

each guess to the code. Once compared, there are outputs

that symbolize the red and white key pegs of the original

board game. The outputs, or “hints”, are called RR and

RW. RR stands for right number (digit), right position. RW

represents a right number, in the wrong position. These

outputs are concatenated with each guess to store in a

register in RAM. The FSM controls the order of events, and

the count of the guess determines which register to write to.

The count is shown on a 7-segment display. The output is

then an 18-bit number that needs to be split up into an

individual guess, and corresponding RR and RW, to display

on the LCD. Since a part of the original game is to see the

previous guesses, and they are helpful in making the next

guess, an FSM was designed to toggle through the RAM to

output onto the display.

C. Finite State Machine

 The FSM of this digital circuit controlled all of the

events happening in the game. In State 1, the count is 0 and

E_code is checked. If it is ‘1’, Er is enabled, which writes

the code to the code register. Next, State 2 is reached,

where E_guess is checked. If it is ‘1’, E_comp is enabled,

which compares the current guess input with the saved code.

This creates outputs, RR and RW, and the FSM moves to

State 3. In State 3, the guess, RR and RW are written to the

register using the count as the address. If at this moment,

RR is equal to 4 (winner/matching number) or the count

reaches 7 (loser/8 incorrect guesses), then the state is

returned to State 1. If not, then the count increases by one

and the next guess is ready to be made until there is a

winner or loser. This FSM can be seen in Figure 1 below.

Figure 2 shows the component block diagram of the digital

circuit, using a multiplexer in place of the toggle FSM.

Figure 1. Main FSM

Figure 2. Component block diagram

III. EXPERIMENTAL SETUP

The Nexys 4 DDR board was used on ISE 14.7 software
to implement the digital circuit with VHDL. The enable for
the code was assigned to SW15. The code and guesses were
assigned three switches per digit (SW11-SW0). The enable
for the code to be entered was the center button (btnC) and
would then display the current guess and the RR and RW
responses for that guess on the LCD. Left and right toggle
buttons (btnL and btnR) were designed to toggle back and
forth through the previously entered guesses. The reset
button on the board reset the program. The LCD module had
pins connecting to the board for power, ground, data, enable,
and read/write [2]. The LCD controller had a clock, reset,
enable, and data bus for the output data [3]. The LCD
controller and module can be seen in Figure 3. It also had it’s
own FSM, which can be seen in Figure 4. The expected
results are to save a code then input up to 8 guesses that
show up on the LCD screen with their resulting RR and RW
values.

Figure 3. LCD Module

Figure 4. LCD Controller FSM

IV. RESULTS

Several adjustments were made to comply with time

restrictions for this project. Unfortunately, the LCD was the

largest piece of the design that was left out of the final

result. The code for the LCD was unable to be sorted out in

the allotted time; therefore alternative methods of

demonstrating the circuit were used. The setup was to show

the 4-digit code/guess on the 7-segment display instead of

the LCD. To show RR and RW, LEDs were used to

represent these 3 bit numbers. The leftmost 7-segment

display also counted up with the guess count. Also, the

toggle FSM was changed into a multiplexor, as shown in

Figure 2, to ensure success with the new experimental setup.

A green light was added to go off when a guess matched the

code correctly and there was a winner. Although this was

not ideal to the original plan, the game could still be played

and it successfully showed how the circuit was designed.

There were test benches made for a losing scenario and for a

winning scenario to show the working circuit. They can be

seen in Figure 5 and Figure 6 of the Appendix. They show

how the registers receive the data of the guess, RR, and RW

when the FSM goes to State 2. In State 3, for the losing

simulation, the game is reset after State 3 determines that

the count has reached 7 without a correct guess. For the

winning simulation, the code is guessed on the 4th try, and

State 3 see RR equal to 4. Therefore the game resets at this

point. On the board, the code is entered and shown on the

displays, and the switch to write the code is flipped. At the

point the guesser is handed the board with the switches in

the down position and all 0’s on the 7-segment display. The

guesser will enter a guess, it will show up on the displays,

and the center button is pushed. The counter counts up at

each guess, and RR and RW show up on the assigned LEDs.

The game can still be played even without the LCD as the

output display.

CONCLUSIONS

A digital project needs to be very carefully planned and
thought out. Every single scenario and outcome needs to
have a solution. Otherwise it will create problems during the
design process. The planning stage for this project could
have been better executed. Although there were many
setbacks to this project, the design team analyzed the
problem, brainstormed solutions, and in the end came out
with a working digital version to the game. Designing and
coding in VHDL is a learning process, and this project
greatly accelerated this process for the team members
involved.

REFERENCES

[1] Daniel Llamocca. “VHDL Coding for FPGAs”.

http://www.secs.oakland.edu/~llamocca/VHDLforFPG
As.html

[2] Shenzhen Eone Electronics Co., Ltd. “Specification fro
LCD Module 1602a”.

https://www.openhacks.com/uploadsproductos/eone-
1602a1.pdf

[3] Scott Larson. “Character LCD Module Controller
(VHDL)”. Edited Aug. 2013.

https://eewiki.net/pages/viewpage.action?pageId=4096
079

http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
https://eewiki.net/pages/viewpage.action?pageId=4096079
https://eewiki.net/pages/viewpage.action?pageId=4096079

Appendix

Figure 5. Losing Simulation

Figure 6. Winning Simulation

