
ECE 378 Design
Project:

Audio Looper
Prof. Daniel Llamocca

William Blackburn, Syed Ahmed,
Geoffrey Williston

Project Description
● The ideal goal was to create an audio looper and recorder
● Utilized switches, memory interface, clocks, counters, mux, combinatorial

and sequential circuits, FSM, audio I/O
● Memory access

Why choose this project?

● Wanted to better understand ADC
● This project has real world applications

Project Specifics
● Half leds lit up = recording

● Full leds = playback

● Switches 12-15 used to select which track to record to
○ No track selected = no recording

● Switch 0 displays track on hex7seg display

● Switch 1 records the track

● Switch 2 plays back the selected track
○ If no tracks selected or contains no data = no output

Project Specifics
● A toggle switch used to start and stop recording. If selected track contains

previous recording data, it’s overwritten.

● Another toggle switch will be used to cancel active recording. If selected

track contains data from a previous recording, it’s kept.

● Audio output jack used for audio playback

Project Plan
● Develop a project outline
● Block diagram top file
● Split VHDL into distinct modules

○ Memory
○ UI
○ Audio In
○ Audio Out

● Flowchart the UI and memory modules
● Implement in VHDL and debug

VHDL: Top File

VHDL: UI Module
● Looked at tracks to

be recorded
● If record button was

pressed and if only
one track was
selected, then it sent
a recording active
flag for sampling time
and 3 bits specifying
the track

VHDL:
Memory
Module

VHDL: Memory Module

VHDL: Memory Module: Buffer
● Nexys 4 has 128 MiB DDR2 memory (224, 64-bit addresses, 16-bit accessible per address)

● 8 tracks of 16-bit audio samples, 2,097,152 samples max per track

● 128 kbps sampling rate, 8kHz decimation clock, ~4.3 minutes of audio max per track

● Total memory had to be split up into 8 tracks, 480,000 samples/track was chosen (60 seconds)

● Buffer index incremented on each 8kHz decimation clock then summed with track index multiplied
by buffer size

○ Example: Writing to track3, at buffer index 5824, address = 0x160FC0 = 5824 + 480000 x 3

VHDL: Memory Module: RAM Timing

VHDL: Audio Input Module
● Convert from PDM (pulse density modulation) to PCM (pulse code

modulation)
● PCM = series of stair steps
● PDM = logic high is up, logic low is down (relative description)
● Wanted to use algorithm to convert
● Send the PCM signal to memory
● Send out that PCM signal to audio out and then convert to PDM

while sending the signal out to sound generation (headphones or
speaker)

VHDL: Audio Output Module
● Audio output was the inverse of the audio input

● Wanted to to convert from PDM signal to PCM signal

● Then insert sound generation device to audio output jack

(speakers/headphones)

VHDL: Audio Input Module

Timing Diagram 1

Timing Diagram 2

Timing Diagram 3

Timing Diagram 4

ASM
Resetn = ‘0’S1

sw(2) 1

0

sw(1)0
S2a

S3a

Rt=1

Rt=1

0

0

S3

S2

Record <= 1
Cancount <= 1
Led <= 101...

Play <= 1
Cancount <= 1
Led <= 111...

St=449999

St=449999

1

1

1

0
0

1

Problems Faced
● Onboard vs external mic

● Onboard mic implementation

● Audio input/output and memory clock synchronization

and resulting noise

● Mixing multiple tracks

● Thought PCM ⇔ PDM was easy

● Generating testbench for VHDL relying on physical HW

What we would have done with more time
● Reduce noise resulting from high mic sample

frequency versus available memory

● Decide on external vs internal mic sooner in design

process

● Research how to layer more effectively

