
Blind Spot Monitor

Tim Salanta, Tejas Sevak, Brent Stelzer, Shaun Tobiczyk

Why design a blind spot monitor?

- A Blind spot is defined as the area a driver cannot see while driving and using their mirrors.
- The National Highway Traffic Safety Administration reports 300 fatalities and 18,000 injuries occur yearly in the United States due to blind spots.¹
- Regardless of mirror positions, blind spots still exists in the side and rear of vehicle
- Blind spot monitors exist in newer vehicles but they are costly

¹http://www.fortheinjured.com/blind-spot-accident.html

Why design a blind spot monitor?

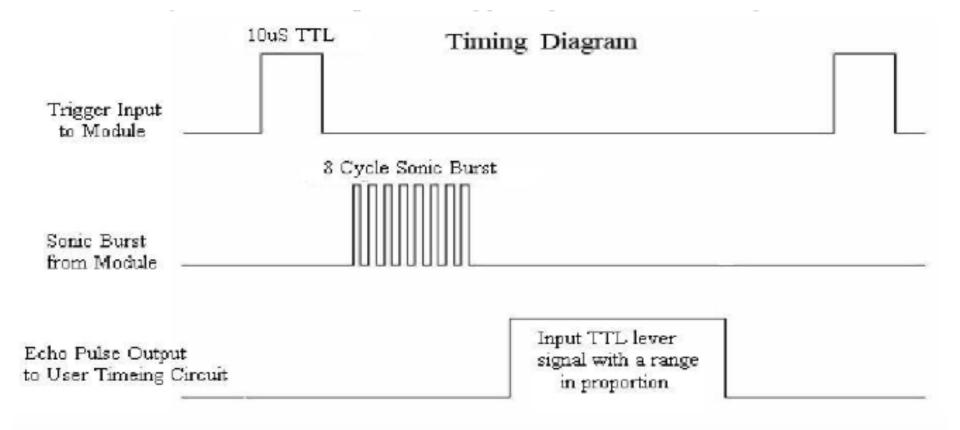
- Design a system that could be added to just about any car affordably
- It helps "eliminate" blind spots
- Could also be added to the front and rear of the car (parking and reversing)

Sonar Sensor

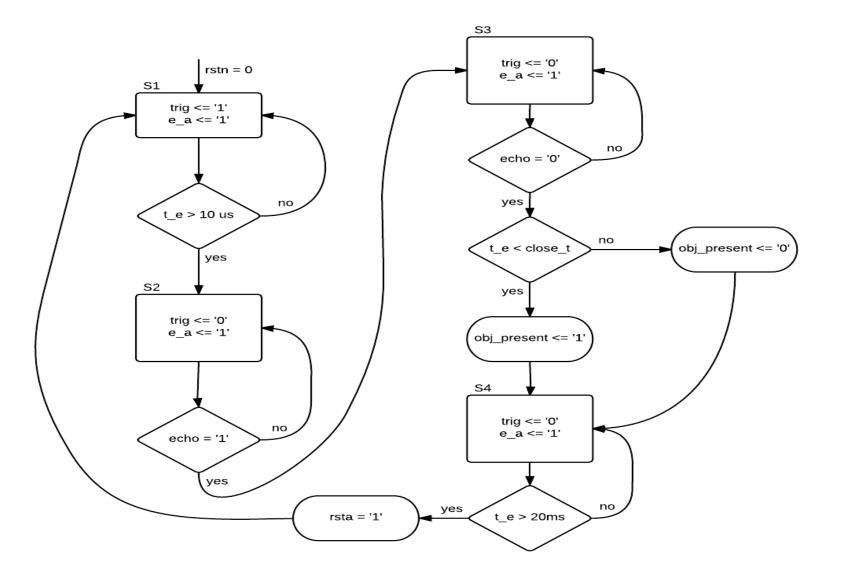
- -Distance measuring sensor
- -15 ft. dowel
- -Detects objects
- -Requires 5 volts to run properly
- -15 degree sensing angle
- -Electric frequency output ranging from 5V (on), 0V (off).

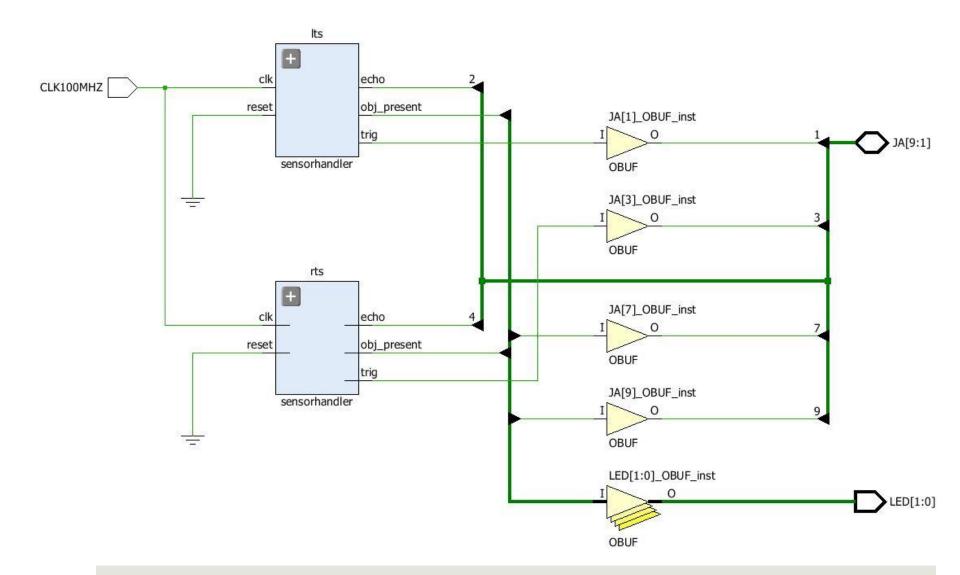
-Simulation of car mirrors, two sensors to detect blind spot on each side of vehicle

Sonar Sensor


Formula used in calculating the distance from the sensor:

uS / 58 = centimetersuS / 148 = inch


Calculating the range: range = high level time * velocity (340M/S) / 2


Sonar Sensor

Control & Datapath

Top Level

Waveform

Name	Value	0 us	500 us	1,000 us	1,500 us	2,000 us	2,500 us	3,000 us
Uk dock	0							
14 left	0							
🕼 right	1							
1 echo1	0							
🕌 echo2	0							
🕼 trig1	0							
👍 trig2	ō							
🕼 dk_period	10000 ps						10000 ps	

Name	Value	0 us		5 us		10 us		15 us		20 us	
Ug dock	o				<u> </u>						
🗤 left	0										
🖫 right	1										
The echo1	0										
🕼 echo2	0										
🐚 trig1	0	đ									
👍 trig2	0										
🕼 dk_period	10000 ps							10000) ps		

Initial Ideas

- Using different sensors.
- □ Lidar, infrared
- Different project, such as line following robot
- Scaled the project from car size to smaller scale.

Problems Faced

- □ Using 3.3V caused issues with the sonar sensor.
- □ 5V fixed the issue.
- Having multiple parts for testing purposes
- Obtaining parts on time

Improvements

- Display distance to object
- Output audio feedback for the driver
- Add another sensor in the front and rear of vehicle
- Make it life scale (to fit in car)
- More accurate sensors
- 3.3V sensor to work on the same supply