
Connect Four Emulator

James Van Koevering, Kevin Weinert, Diana Szeto, Kyle Johannes
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

 jgvankoevering@oakland.edu, keweiner@oakland.edu, dszeto@oakland.edu, kjohannes@oakland.edu

Abstract— Connect Four is a popular strategy game

developed and marketed in 1974 by the Milton Bradley
Company. The project will focus on the implementation of
the game onto a Nexys 4 DDR FPGA device. The
programming will require the use of a large finite state
machine for positioning of the black and red chips. A
combinational logic circuit will be used to check for a win.
A video game controller will be used for player input. A
VGA controller will be programmed to display the game
onto a monitor.

I. INTRODUCTION
Connect Four is a game where two players take turns

dropping black and red chips down columns in attempt to
align four chips of their color in a row. The winning four
can be vertical, horizontal, or diagonal.

Each player will utilize a controller to choose their
desired column. Since players can win the game with any
combination of their four chips in a row, the program must
check each possible location. Most of the programming
techniques and material required to produce the desired
results of the project were discussed in class, such as logic
gates, port mapping, and finite state machines. However,
there is additional material that must be addressed in order
to achieve success. This includes imaging using the VGA
output, and wiring of a controller to the Nexys4 DDR.

II. METHODOLOGY

A. NES Controller

Figure 1. Top-level diagram of NES controller code.

Figure 2. Standard NES controller.

A basic video game controller was used for the player

input to make the gaming experience more realistic. The
standard controller from the Nintendo Entertainment
System (NES) was chosen for this purpose. A clock
divider was used to divide the Nexys 4 100 MHz clock to
produce a 400 Hz clock for the NES controller. The
controller was wired to the JC port on the Nexys 4 board.
The NES controller internally has an 8-bit parallel to
serial shift register (CD4021) to shift data corresponding
to the eight buttons A, B, Select, Start, Up, Down, Left,
and Right. For this project, only the buttons A, Left, and
Right were used to drop the chip, move the chip left, and
move the chip right, respectively. Each button is
connected to a pull-down switch. A latch signal enables
the parallel loading of the input data, shown below in
Figure 3.

Figure 3. Timing diagram of controller parallel load [2].

The latch enable comes from a state machine counter

that was programmed to output a ‘1’ when the count
returns to “000”, after all 8 bits of the data are loaded in.
The counter also outputs a ‘1’ for the output register
enable when the count reaches “111”, just one clock tick
before the latch enable goes high. Bits 7, 1, and 0 (A, left,
and right) of the 8-bit output are each fed to a “button
press” state machine that outputs a ‘1’ only when it

detects the sequence of a user’s button press, then button
release. This was implemented to obtain the user’s actual
input, as well as to prevent the unintended dropping of
multiple chips at once, or moving of the chip more than
one column at a time. Outputs A, left, and right are then
picked up as inputs by the positioning system.

B. Positioning System
One of the most challenging aspects of this project

was programming the positioning system. The Connect
Four game board consists of a grid with 7 columns by 6
rows. If there are six 7-bit vector variables to store the
state of each position, the entire game can be described
with binary values. A binary bit only describes two
states, ‘1’ or ‘0’, while Connect Four has three states for
each position. There could be a red chip, black chip, or
no chip at each location. To remedy this problem, a two
bit system for positioning is used. In this case, each
location on the board has a bit for whether or not it’s
occupied and a bit for the chip color. Each column in
the grid corresponds to one vector output of the state
machines. Therefore, each output position vector is now
12 bits long.

Figure 4. ASM representation of positioning system.

As shown in Figure 4, the state of the chips in each

column are checked during every turn. CS (controller

scroll) denotes over which column the player’s chip is
currently hovering, which is controlled by the player
pressing the left of right buttons on the NES controller.
When the player presses A to drop a chip in a column,
the state machine will check what chips are in that
column, and add a chip of the appropriate color
pertaining to the player. For example, say a player
decides to drop a chip in an empty column. The position
vector of that column will be “000000000000”. Red
chips are assigned to “01” while black chips are assigned
to “11”. If player 1 (red) drops a chip in the empty
column, the new position vector will be
“000000000001”. If player 2 (black) drops a chip in that
same column, the new vector will then be
“000000001101”. Every time a player drops a chip, the
state machine also outputs an enable signal for a register
corresponding to the column. At the end of every turn,
each of the seven position vectors are stored in a 12-bit
register, which are then fed into a win check system to
determine whether a player has connected any four of
their chips. As will be discussed in the next section, the
win check system is constantly exchanging data with the
positioning system. When a win is detected, the position
vectors will automatically change to display the entire
board filled with chips of the winning player’s color. For
instance, when player 1 wins, all the vectors will be
“010101010101”, and when player 2 wins, the vectors
will be “111111111111”. The positioning also sends
data continuously to the VGA controller so that the game
can be displayed on a monitor in real-time.

C. Win Check System
The Win Check system is a large combinational logic
circuit that checks for a win based on data from the
positioning system. This system is made of three main
components: fullCheck, gridCheck, and singleCheck.
fullCheck determines if four adjacent slots in the board
are occupied by checking every possible combination.
It simply uses 4-input AND gates to determine whether
any four slots in a row, column, or diagonal are
occupied and therefore possible locations for a win. It
then outputs a 69-bit signal that specifies which
combinations of four adjacent slots are occupied.

Figure 5. “fullCheck” checks for four adjacent chips.

The component singleCheck is a 4-bit comparator
circuit used to check if the four specified input chips are
of the same color. It gets enabled if four adjacent slots
are occupied. The comparator circuit consists of three
2-input XNOR gates and one 3-input AND gate. The
XNOR gates are used to check whether a pair of
locations is occupied by the same color chip. The AND
gate then combines the results from the three pairs and
if this result is a ‘1’, then the player has won the game.

Figure 6. “singleCheck” checks if four input chips are

of the same color.

gridCheck uses 69 singleCheck components to
determine if any four adjacent slots in the board are
occupied by the same player’s chip, thereby resulting in
a win. Each singleCheck is enabled by the
corresponding bit from the output of fullCheck.

Figure 7. “gridCheck” checks whole board for a win.

gridCheck outputs a win signal if a player has won, by
putting the win signals from all of the singleCheck
components into the process shown in Figure 8. These
results are then passed to the positioning system, that
will communicate with the VGA controller to
appropriately display a win.

Figure 8. Process in “gridCheck” outputs a win if any

four adjacent chips are of the same color.

D. VGA Controller

Figure 9. Top-level diagram of VGA controller [2].

 Dr. Llamocca’s basic 12-bit VGA controller [2] was
modified to display the game board and player
movement of the chip in selecting the next drop
location. The switch input was replaced by the seven
14-bit position vectors output by the positioning system
that describe the chips in each column.

Figure 10. Addition of multiplexer system to

12-bit VGA controller.

These vectors are input into a multiplexer system
composed of 49 4-to-1 multiplexers feeding into a 52-
to-1 multiplexer, where the other 3 inputs are constant
yellow, blue, and white signals. Each 4-to-1 multiplexer
selects one of three colors: black, red, or white. Black

and red are for the chip colors while white is for a blank
space. Since two of the inputs are blank, it essentially
acts as a 3-to-1 multiplexer where one input can be
passed through by two different select line inputs. The
select line comes from the position vectors, where “01”
denotes a red chip and “11” denotes a black chip. The
remaining possibilities “10” and “00” will select a
blank. A 20-to-6 bit decoder is used to decode the HC
and VC signals into a 6-bit select line for the 52-to-1
multiplexer. The 52-to-1 multiplexer outputs a color
based on the region defined by the decoder. Each chip
slot and the yellow area of the board between each slot
was designed to be 40 by 30. Since the board has 7
columns by 6 rows and the maximum display size for
VGA is 640 by 480 pixels, this allowed for a 20 pixel
wide blue vertical border that runs along the whole
length of the left and right sides of the screen. In
addition, the remaining 90 pixel long region for the
scrolling chip above the board was left white to
highlight the current chip in play.

Figure 11. Multiplexer system designed to determine

which color the VGA needs to display based on the
region of the display.

III. EXPERIMENTAL SETUP
Test benches were written and functional

simulations were performed to check representative
cases to verify the correct functionality of the
positioning and win check systems. Due to the nature of
the hardware components of the NES controller and the
VGA controller, they were not simulated in a test bench.
Once the functionality of the logic was confirmed,
instead of performing timing simulations, the top-level
design was programmed onto the board. This allowed
for much easier debugging of the entire system.

IV. RESULTS

Figure 12. Functional simulation of positioning
system state machine.

As seen in Figure 12, the state machine used in

controlling the positioning system behaves as expected.
Beginning with an empty board (v1 to v7 =
“000000000000”), when player 1 (player=’0’) drops a
chip (CD=’1’) into column 2 (CS=”001”), only the
output position vector for column 2 changes
(b=”000000000001”) to add a red chip (“01”) to the
least significant two bits of the original position vector.
In the next turn, player 2 (player=’1’) also drops a chip
into column 2, and the output vector appropriately
changes to add a black chip (“11”) on top of the red
chip, resulting in b=”000000001101”. Also shown in
the simulation is the enable signals going high at the
appropriate times for the 12-bit register corresponding
to each column.

Figure 13. Functional simulation of fullCheck.

The figure above shows a few cases simulated for
the fullCheck component of the win check system,
which should output a ‘1’ in its 69-bit vector if it detects
any four adjacent chips. The first case represents four
adjacent chips in a row, and the output vector fourFull
has a ‘1’. The second and third cases represent four
adjacent chips in a diagonal and in a vertical
configuration, respectively. In both these cases, the
output vector has a ‘1’ as well. Therefore, fullCheck and
its subcomponent singleCheck are functioning as
expected.

Figure 14. Functional simulation of gridCheck.

Lastly, the gridCheck component was simulated to

confirm the proper functioning of the win check system
as a whole. In the first case, there are four diagonal
adjacent chips of the same color, and the win signal goes
high as expected. In the second case, there are only three
chips in a row, and the win signal does not go high, as
expected. In the third case, there are four chips in a row,
resulting in a high win signal, as expected.

V. CONCLUSIONS
Choosing to make a Connect Four emulator resulted

in a very challenging project. The individual
components of the positioning system and the win
check system were not difficult, but integrating them
into a single top-level design did create many problems.
We did experience some minor issues with the NES
controller, since hardware is often unpredictable and
difficult to debug. Trial-and-error was used often to
solve these problems, by programming the board and
physically testing the controller. The single most
challenging part of the project was the VGA controller.
Again, the easiest way to debug the VGA controller was
to simply program the system onto the board and
observe what the monitor was actually displaying, and
adjust the code accordingly.

VI. REFERENCES
[1] http://seb.riot.org/nescontr/
[2] Dr. Llamocca’s VGA controller code.

Figure 15. Full trial run of the game.
Top: Game start.

Center: A few turns.
Bottom: Player 2 wins.

The top-level was programmed to the FPGA to test
for full functionality of all of the components
together. As shown in Figure 15, a full game is
successfully played with the NES controller and
displayed on the VGA monitor.

