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Abstract— Connect Four is a popular strategy game 

developed and marketed in 1974 by the Milton Bradley 
Company. The project will focus on the implementation of 
the game onto a Nexys 4 DDR FPGA device. The 
programming will require the use of a large finite state 
machine for positioning of the black and red chips.  A 
combinational logic circuit will be used to check for a win. 
A video game controller will be used for player input. A 
VGA controller will be programmed to display the game 
onto a monitor.  

I.   INTRODUCTION 
Connect Four is a game where two players take turns 

dropping black and red chips down columns in attempt to 
align four chips of their color in a row. The winning four 
can be vertical, horizontal, or diagonal.  

Each player will utilize a controller to choose their 
desired column. Since players can win the game with any 
combination of their four chips in a row, the program must 
check each possible location. Most of the programming 
techniques and material required to produce the desired 
results of the project were discussed in class, such as logic 
gates, port mapping, and finite state machines. However, 
there is additional material that must be addressed in order 
to achieve success. This includes imaging using the VGA 
output, and wiring of a controller to the Nexys4 DDR. 

II.   METHODOLOGY 

A.   NES Controller 

 
Figure 1. Top-level diagram of NES controller code. 
 

Figure 2. Standard NES controller. 
 
A basic video game controller was used for the player 

input to make the gaming experience more realistic. The 
standard controller from the Nintendo Entertainment 
System (NES) was chosen for this purpose. A clock 
divider was used to divide the Nexys 4 100 MHz clock to 
produce a 400 Hz clock for the NES controller. The 
controller was wired to the JC port on the Nexys 4 board. 
The NES controller internally has an 8-bit parallel to 
serial shift register (CD4021) to shift data corresponding 
to the eight buttons A, B, Select, Start, Up, Down, Left, 
and Right. For this project, only the buttons A, Left, and 
Right were used to drop the chip, move the chip left, and 
move the chip right, respectively. Each button is 
connected to a pull-down switch. A latch signal enables 
the parallel loading of the input data, shown below in 
Figure 3. 

Figure 3. Timing diagram of controller parallel load [2]. 
 
The latch enable comes from a state machine counter 

that was programmed to output a ‘1’ when the count 
returns to “000”, after all 8 bits of the data are loaded in. 
The counter also outputs a ‘1’ for the output register 
enable when the count reaches “111”, just one clock tick 
before the latch enable goes high.  Bits 7, 1, and 0 (A, left, 
and right) of the 8-bit output are each fed to a “button 
press” state machine that outputs a ‘1’ only when it 



detects the sequence of a user’s button press, then button 
release. This was implemented to obtain the user’s actual 
input, as well as to prevent the unintended dropping of 
multiple chips at once, or moving of the chip more than 
one column at a time. Outputs A, left, and right are then 
picked up as inputs by the positioning system. 

B.   Positioning System 
One of the most challenging aspects of this project 

was programming the positioning system. The Connect 
Four game board consists of a grid with 7 columns by 6 
rows. If there are six 7-bit vector variables to store the 
state of each position, the entire game can be described 
with binary values. A binary bit only describes two 
states, ‘1’ or ‘0’, while Connect Four has three states for 
each position.  There could be a red chip, black chip, or 
no chip at each location. To remedy this problem, a two 
bit system for positioning is used.  In this case, each 
location on the board has a bit for whether or not it’s 
occupied and a bit for the chip color.  Each column in 
the grid corresponds to one vector output of the state 
machines.  Therefore, each output position vector is now 
12 bits long. 

 

Figure 4. ASM representation of positioning system. 
 
As shown in Figure 4, the state of the chips in each 

column are checked during every turn. CS (controller 

scroll) denotes over which column the player’s chip is 
currently hovering, which is controlled by the player 
pressing the left of right buttons on the NES controller. 
When the player presses A to drop a chip in a column, 
the state machine will check what chips are in that 
column, and add a chip of the appropriate color 
pertaining to the player. For example, say a player 
decides to drop a chip in an empty column. The position 
vector of that column will be “000000000000”. Red 
chips are assigned to “01” while black chips are assigned 
to “11”. If player 1 (red) drops a chip in the empty 
column, the new position vector will be 
“000000000001”. If player 2 (black) drops a chip in that 
same column, the new vector will then be 
“000000001101”. Every time a player drops a chip, the 
state machine also outputs an enable signal for a register 
corresponding to the column. At the end of every turn, 
each of the seven position vectors are stored in a 12-bit 
register, which are then fed into a win check system to 
determine whether a player has connected any four of 
their chips. As will be discussed in the next section, the 
win check system is constantly exchanging data with the 
positioning system. When a win is detected, the position 
vectors will automatically change to display the entire 
board filled with chips of the winning player’s color. For 
instance, when player 1 wins, all the vectors will be 
“010101010101”, and when player 2 wins, the vectors 
will be “111111111111”. The positioning also sends 
data continuously to the VGA controller so that the game 
can be displayed on a monitor in real-time. 

C.   Win Check System 
The Win Check system is a large combinational logic 
circuit that checks for a win based on data from the 
positioning system. This system is made of three main 
components: fullCheck, gridCheck, and singleCheck. 
fullCheck determines if four adjacent slots in the board 
are occupied by checking every possible combination. 
It simply uses 4-input AND gates to determine whether 
any four slots in a row, column, or diagonal are 
occupied and therefore possible locations for a win. It 
then outputs a 69-bit signal that specifies which 
combinations of four adjacent slots are occupied. 

 
Figure 5. “fullCheck” checks for four adjacent chips. 



The component singleCheck is a 4-bit comparator 
circuit used to check if the four specified input chips are 
of the same color. It gets enabled if four adjacent slots 
are occupied. The comparator circuit consists of three 
2-input XNOR gates and one 3-input AND gate.  The 
XNOR gates are used to check whether a pair of 
locations is occupied by the same color chip.  The AND 
gate then combines the results from the three pairs and 
if this result is a ‘1’, then the player has won the game. 

 
Figure 6. “singleCheck” checks if four input chips are 

of the same color. 
 

gridCheck uses 69 singleCheck components to 
determine if any four adjacent slots in the board are 
occupied by the same player’s chip, thereby resulting in 
a win. Each singleCheck is enabled by the 
corresponding bit from the output of fullCheck.  

Figure 7. “gridCheck” checks whole board for a win. 
 
gridCheck outputs a win signal if a player has won, by 
putting the win signals from all of the singleCheck 
components into the process shown in Figure 8. These 
results are then passed to the positioning system, that 
will communicate with the VGA controller to 
appropriately display a win. 

 
Figure 8. Process in “gridCheck” outputs a win if any 

four adjacent chips are of the same color. 

D.   VGA Controller 

Figure 9. Top-level diagram of VGA controller [2]. 
 

 Dr. Llamocca’s basic 12-bit VGA controller [2] was 
modified to display the game board and player 
movement of the chip in selecting the next drop 
location. The switch input was replaced by the seven 
14-bit position vectors output by the positioning system 
that describe the chips in each column. 

 
Figure 10. Addition of multiplexer system to 

12-bit VGA controller. 
 

These vectors are input into a multiplexer system 
composed of 49 4-to-1 multiplexers feeding into a 52-
to-1 multiplexer, where the other 3 inputs are constant 
yellow, blue, and white signals. Each 4-to-1 multiplexer 
selects one of three colors: black, red, or white. Black 



and red are for the chip colors while white is for a blank 
space. Since two of the inputs are blank, it essentially 
acts as a 3-to-1 multiplexer where one input can be 
passed through by two different select line inputs. The 
select line comes from the position vectors, where “01” 
denotes a red chip and “11” denotes a black chip. The 
remaining possibilities “10” and “00” will select a 
blank. A 20-to-6 bit decoder is used to decode the HC 
and VC signals into a 6-bit select line for the 52-to-1 
multiplexer. The 52-to-1 multiplexer outputs a color 
based on the region defined by the decoder. Each chip 
slot and the yellow area of the board between each slot 
was designed to be 40 by 30. Since the board has 7 
columns by 6 rows and the maximum display size for 
VGA is 640 by 480 pixels, this allowed for a 20 pixel 
wide blue vertical border that runs along the whole 
length of the left and right sides of the screen. In 
addition, the remaining 90 pixel long region for the 
scrolling chip above the board was left white to 
highlight the current chip in play. 

 
Figure 11. Multiplexer system designed to determine 

which color the VGA needs to display based on the 
region of the display. 

 

III.   EXPERIMENTAL SETUP 
Test benches were written and functional 

simulations were performed to check representative 
cases to verify the correct functionality of the 
positioning and win check systems. Due to the nature of 
the hardware components of the NES controller and the 
VGA controller, they were not simulated in a test bench. 
Once the functionality of the logic was confirmed, 
instead of performing timing simulations, the top-level 
design was programmed onto the board. This allowed 
for much easier debugging of the entire system. 

IV.   RESULTS 

Figure 12. Functional simulation of positioning 
system state machine. 

 
As seen in Figure 12, the state machine used in 

controlling the positioning system behaves as expected. 
Beginning with an empty board (v1 to v7 = 
“000000000000”), when player 1 (player=’0’) drops a 
chip (CD=’1’) into column 2 (CS=”001”), only the 
output position vector for column 2 changes 
(b=”000000000001”) to add a red chip (“01”) to the 
least significant two bits of the original position vector. 
In the next turn, player 2 (player=’1’) also drops a chip 
into column 2, and the output vector appropriately 
changes to add a black chip (“11”) on top of the red 
chip, resulting in b=”000000001101”. Also shown in 
the simulation is the enable signals going high at the 
appropriate times for the 12-bit register corresponding 
to each column. 

Figure 13. Functional simulation of fullCheck. 
 

The figure above shows a few cases simulated for 
the fullCheck component of the win check system, 
which should output a ‘1’ in its 69-bit vector if it detects 
any four adjacent chips. The first case represents four 
adjacent chips in a row, and the output vector fourFull 
has a ‘1’. The second and third cases represent four 
adjacent chips in a diagonal and in a vertical 
configuration, respectively. In both these cases, the 
output vector has a ‘1’ as well. Therefore, fullCheck and 
its subcomponent singleCheck are functioning as 
expected. 

 
 
 
 
 



 
Figure 14. Functional simulation of gridCheck. 

 
Lastly, the gridCheck component was simulated to 

confirm the proper functioning of the win check system 
as a whole. In the first case, there are four diagonal 
adjacent chips of the same color, and the win signal goes 
high as expected. In the second case, there are only three 
chips in a row, and the win signal does not go high, as 
expected. In the third case, there are four chips in a row, 
resulting in a high win signal, as expected. 
 

 
 

 
 
 
 

 
  

V.   CONCLUSIONS 
Choosing to make a Connect Four emulator resulted 

in a very challenging project. The individual 
components of the positioning system and the win 
check system were not difficult, but integrating them 
into a single top-level design did create many problems. 
We did experience some minor issues with the NES 
controller, since hardware is often unpredictable and 
difficult to debug. Trial-and-error was used often to 
solve these problems, by programming the board and 
physically testing the controller. The single most 
challenging part of the project was the VGA controller. 
Again, the easiest way to debug the VGA controller was 
to simply program the system onto the board and 
observe what the monitor was actually displaying, and 
adjust the code accordingly. 
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Figure 15. Full trial run of the game. 
Top: Game start. 

Center: A few turns. 
Bottom: Player 2 wins. 

The top-level was programmed to the FPGA to test 
for full functionality of all of the components 
together. As shown in Figure 15, a full game is 
successfully played with the NES controller and 
displayed on the VGA monitor. 


