
We Process

Jonathon Helms & John Falvey

Electrical and Computer Engineering

School of Engineering and Computer Science

Oakland University, Rochester, MI

jkhelms@oakland.edu & jpfalvey@oakland.edu

Abstract—We Process is a project containing a combination of a

microprocessor and a UART interface.

I. INTRODUCTION

We Processes is a combination of a microprocessor and a
UART, outputting to two 7segment displays to show two hex
values. These hex values are determined by the processors
ALU, which obtains its values from the UART.

For the main dive, of We Process, practicality was the
primary idea. Keeping the project within this realm of
practicality meant looking for the most optimal use. The most
optimal use, that was thought of, came from understanding
how common serial communication is within industry, such
as CAN systems. Serial communications interfaces, such as
PuTTY, Visual Studio, or Java. As We Process was coming
to fruition, it was observed to have a commonality between it
and a calculator; giving the project not just a use as a
microprocessor, but a use at a calculator which also contained
logic functions.

II. METHODOLOGY

UART

Possibly the most challenging part of the project; was the
creation of an interaction between the computer and the
NEXYS 4 DDR. Originally, the idea was to build our own
UART using the knowledge that the serial communication
information was coming out of the USB port with a start bit
of 0 and an end bit of 1. However, matching the baud rates
ended up being more challenging than previously expected.

The difficulty in matching the baud rates eventually drove
the project to use/adapt example code to a form usable by the
NEXYS 4. [1] [4] The code that was used suggest the
following diagram representation:

In the UART Receiver, there is are six modules that make
up the system. The RX component outputs it data to the
multiplexer and is then controlled by the FSM to send the data
to the two registers. These the FSM has received the “done”
signal from the RX receiver then the registers connected to the
multiplexer shifts out the hex value to their designated
locations. Following is the states that they FSM, for the
UART, will go through during this operation:

mailto:jkhelms@oakland.edu
mailto:jpfalvey@oakland.edu

Microprocessor

The main body, in order to complete the desired operations
and logic comparisons, required a multiplexer, register, FSM,
and a ALU. The FSM would dictate how the data received
from the UART was going to be handled. Once the UART
was transmitting the data, the FSM of the microprocessor
would know what the user wanted done with the given data
values. Once the ALU was done with its operation, the
outputted value is stored in an output register and transmitted
to the 7segment displays. The diagram for the microprocessor,
minus the FSM, is as follows:

The ALU in the diagram above preforms a range of

operations; from logic operators to multiplication. One of the
major points with this ALU is the way multiplication is
performed. [2] In order to create the circuit for the multiplier,
instead of a ripple adder, which is taught in the class, this ALU
used a Carry Save Adder along with a Wallace Tree. Their
diagrams are as follows:

Due to the way this program was written, an additional

signal had to be implemented in order to capture the resulting
value. This value ended up being output about two clock
cycles later than any of the other operational values. The
controlling FSM for the processor was according to the
following state diagram:

For the data to be transmitted to, the 7segment displays are

always displaying the current value they have stored. When
the program is first booted up; the values that are displayed on
the board are zeros. Once the value being transmitted to the
7segment display is changed, the 8bits coming in are separated
into two, four bit numbers, and their hex values are displayed
on the displays.

III. EXPERIMENTAL SETUP

Along with a timing simulation, PuTTY was used to verify
that the program would output the proper values (a timing
simulation for the shift left register is provided on the last
page). The PuTTY setup was designed to mimic the baud rate
of a standard USB2.0 connection. The following PuTTY
configuration was used for the project:

IV. RESULTS

Once the base of the project was finished, one of the many
points that were noted was the change from using hex values
as our output and changing it to dec. Another change that
could have been bad, would have been adding more
operations to the ALU, along with adding more registers and
having multiple ALUs in order to perform multiple operations
at once.

CONCLUSION

The project showed that there are multiple, including
easier, ways to perform the same operation. Using the Wallace
Tree seemed to be much easier than the multiplier that was
showed in the book.

Also, seeing the difficulties that are associated with
matching baud rates between the board and the computer. This
part of the project was extremely difficult. The baud rate was
something that was really not able to be observed easy,
therefore designing software that would work with it was
challenging.

However, challenging the project was, using the
tools that were learned during the class were helpful. Tools
such as the state flow diagrams gave a great visual
representation of how the program needed to flow. Combining
the results of many timing diagrams, the state diagrams gave
a better insight on when we needed to trigger different signals
and when enables needed to be sent.

Given more time, we wanted to make the ALU and
main body of the project more complex; however, once the
project was operational with what we had built, it seemed too
late to make any major changes to the design to fit what edits
we wanted to make.

A take away from the project/class would have to be
how modular in nature VHDL seemed to be. Being able to
implement old code and diagraming out the program was
useful, and made much of the project’s design easier.

REFERENCES

[1] Chapman, Ken. "UART Transmitter and Receiver Macros."

(n.d.): n. pag. Jan. 2003. Web. 6 Apr. 2016.

[2] Chu, Pong P. "FPGA PROTOTYPING BY VHDL
EXAMPLES." (n.d.): n. pag. Ebooksclub. JOHN WILEY &
SONS, INC., 2008. Web. 6 Apr. 2016.

[3] Cuzeau, Bertrand. "VHDL - Practical Example - Designing an
UART." (n.d.): n. pag. Javadoc. ALSE, Sept. 2001. Web. 6
Apr. 2016.

[4] Toomey, Warren (DoctorWkt), and Hamster. "VHDL UART
RX for Nexys4 DDR?" Digilent Forum. N.p., 9 July 2015.
Web. 17 Apr. 2016. <https://forum.digilentinc.com/topic/766-
vhdl-uart-rx-for-nexys4-ddr>.

