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Abstract— The project summarized here is a 

temperature and humidity reader. The sensor we 

used was a humidity and temperature Sensor - 

RHT03 that was purchased through sparkfun.com. 

The output of the sensor is a single wire bidirectional 

digital interface that outputs a forty bit stream after 

is receives a start bit from the control board. The 

forty bit stream is then decoded through various 

modules we built into the top module to produce a 

display of the temperature or humidity that is 

selected by the switches on the Digilent FPGANexys 

4 DDR Artix-7 FPGA: Trainer Board. 

I. INTRODUCTION 

 The scope of this project was to make a field-

programmable gate array, FPGA, board to read and receive 

data from an external temperature and humidity sensor. The 

sensor used was the RHT03 sensor, built by Maxdetect. The 

motivation was from the idea that the weather channel never 

has the exact temperature or humidity for where you are at 

that exact moment. The people who want to know exactly 

what to wear for that day, without actually going outside, 

would use this. All the specifications of this RHT03 sensor 

are shown in Figure 1. 

 
[2]. Figure 1: Specifications of RHT03 Sensor 

 

This project directly utilizes the premise of several 

labs that were conducted in class. This project covers many 

topics from the course material, such as, finite state 

machines, a bidirectional bus, counters, registers, and a 

serializer. It also covers a topic that was not covered, which 

is a direct binary to seven-segment display convertor. This 

project can be applied to the everyday life of people who 

want to start there day with a current weather update. 

Although it cannot predict weather changes, it is useful 

enough to start your day. 

 

II. METHODOLOGY 

The RHT03 sensor was designed for a different language 

of coding, C, and a different board.  This created issues with 

the timing of reading the data and many different techniques 

in VHDL had to be used to implement this sensor. When 

outlining the premise of this circuit design, we originally 

began with a different style of a design using a random 

access memory emulator. This was scraped do to the way 

this sensor needed to be initiated and read from. This 

changed into using many different counters and a main 

finite state machine to run this process. RHT03 works on a 

timing basis and outputs 40 bits of data, which takes a long 

time, compared to the speed of modern computers. To get 

this sensor to begin its process of reading the temperature 

and humidity, the FPGA board must send a start signal. 

Since this sensor sends and receives data through just one 

wire, a bidirectional bus was necessary.  

 This bidirectional bus sends and receives its data 

directly into our finite state machine. This main finite state 

machine is essentially the control unit. This finite state 

machine outputs a one into the bus while the tri-state buffer 

going out is enabled and the input buffer is disabled, which 

is also a signal sent from this main FSM. Once this initiation 

signal is sent, the board pulls low, by sending a ‘0’, for ten 

milli-seconds, and then the board pulls high, by sending a 

‘1’, for twenty microseconds. The finite state machine keeps 

track of this time by sending out a count signal, ‘1’, to the 

first and second counter. These are integer counters based 

on the period, 10 nanoseconds, of the 100 MHz input clock. 

After this happens, the sensor takes over and the input 

buffer is then enabled for the rest of the process, while 

disabling the output buffer. This is beginning process is 

shown in Figure 2.  



 
[2]. Figure 2: Initialization of RHT03 

 

 Once the sensor takes over, the finite state machine 

must interpret what the sensor is sending into the board. 

After the second counter finished, the finite state machine 

must wait for the data coming in to output a ‘0’. The state 

machine must keep count for 80 microseconds and then look 

for when the data coming is a ‘1’.  The FSM then clears and 

utilizes the same 80 microsecond counter then looks to see 

if the data coming into the state machine is a ‘0’. Once the 

finite state machine recognizes its low state, it waits until 

the data goes high again. After all this, the actual data, to be 

collected, begins to be documented. 

 For this sensor, it is all based on time of how long 

the data coming in stays high. If the data coming in stays 

high for only 26 microseconds, then the output is a ‘0’, 

shown in Figure 3. If it stays high for 70 microseconds, the 

data being read is a ‘1’, shown in Figure 4. To keep track of 

this count, an integer counter is used based upon the 

frequency of the input clock and how long each clock tick 

period is. The initial counter is counted up to 26 

microseconds and then the finite state machine checks to see 

if the data has gone low or is still high. When it is low at 

this point, the finite state machine shifts in a ‘0’ into the 40-

bit register, which is also enabled at the same time. This 

then initializes our 40-bit counter to keep track of all the bits 

coming in. If instead the data coming in was a ‘1’ after the 

26 microsecond counter, it enters another counter which 

counts up to 44 microseconds, to meet the 70 microseconds 

need to be a ‘1’. There is a fail safe after this point to check 

if the data is still high or has gone low. If the data has gone 

low, then the finite state machine enables and shifts in a ‘0’. 

If it is still high, then the data being shifted in is a ‘1’. The 

main finite state machine explained can be seen in the ASM 

form in Figure 6. This then goes to the 40-bit counter to 

keep track of all the bits coming in to tell when the process 

has stopped. Once all the bits are accounted for, there is a 

“swait” state that continuously loops around until the start 

button is pressed again to start the process all over again.  

 
[2]. Figure 3: Detecting a ‘0’ 

 

 
[2]. Figure 4: Detecting a ‘1’ 

 

 

 Once all this data is collected and output from the 

register, a signal is used to separate the 40-bits into two 16-

bit sections and an 8-bit section. The 40-bit output consists 

of bits 39 down to 24 being the reading for the relative 

humidity. The next 16-bits, 23 down to 8, is the temperature 

reading. The last 8-bits is the check sum, which is the first 

32-bits added together to make sure that the output is 

correct. The 8-bit output for the check sum is sent and 

displayed on the first 8 LED’s on the board. Using the 

branches of the signal “dataout,” the relative humidity and 

temperature bits are sent into their respective 16-bit register. 

The output of the two registers are then sent through a mux 

which allows us to toggle between reading the temperature 

and humidity through “sw<0>” on the board. Since this 

output is in binary, there had to be a way to convert this 

binary output into their respective seven-segment codes.  

The decoder, while simple in theory, was in fact 

quite substantial, as instead of creating a binary-to-bcd 

converter, we found it simpler to write select statements for 

each possible input, and for each of the digits.  First off, the 

sensors data sheet informed us that if the reading was 

negative, then the 16th bit would be a one, and the other 15 

bits would be displayed the same.  This made our job a bit 

simpler as we would not need to correct for the 1s or 2s 

compliment.  So a simple statement was written to check for 

a value of the 16th bit and set the value of that display to be 

a dash if so.  For the remaining digits we only looked at the 

remaining 15bits, so as not to have to double our workload. 



Being that the sensor could only read up to 80 C or 

100% Humidity, we saw no reason to exceed a reading of 

99.9, which would be output by the sensor as 999, and as a 

result only wrote statements up to 1024, or the 11th bit.  It 

seemed like an inefficient sensor design to send 16 bits 

when only 12 would be relevant (11 plus the “negative”) but 

regardless.  So select statements were written for each of the 

3 digits given every possible input up to 999 (or 

“000001111100111”), and all others were set to display a 

dash.  Then another bit was added to the 7bit outputs for 

each so that a decimal point could be added onto the second 

digit to handle our division by 10. 

Once the converter finds every possibility and 

converts this 16-bits, it outputs four 7-bit signals. Each 

output has its purpose in depicting what and there to display 

each number. One signal is for the ones place, one for the 

tens place, one for the hundreds place, and one just in case 

the temperature reads a negative number. Since this input to 

the converter is a large decimal number, the sensor must 

divide by ten to calculate the actual reading. We did this by 

always setting the tens place seven-segment display to 

having the decimal point on. This made the coding easier for 

not having to actually compute this in code. The four 7-bit 

signals are sent into a multiplexer, which is controlled by 

the serializer finite state machine, shown in Figure 5. This 

code we obtained from Dr. Llamocca [1].  This state 

machine initializes a counter, a decoder, and the 

multiplexer. The idea of this is to quickly enable each 

seven-segment display, while displaying each output of the 

multiplexer. The finite state machine uses the counter to 

cycle through the mux and the decoder so quickly that the 

human eye cannot tell that they are not actually all on at 

once. This serializer had to be used because the FPGA board 

does not allow the user to display each output separately on 

each display and turn them on at the same time [1]. To show 

how all these components interact with each other, the top-

level design is shown in Figure 7. 

 

 
Figure 5: FSM of the Serializer in ASM form 



 

 
Figure 6: Main FSM in ASM form 

 
Figure 7: Top-Level Circuit Design 

 

III. EXPERIMENTAL SETUP 

To make sure that this was functioning before we hooked 

up the sensor, we made a testbenh using ISE. We ran this 

testbench through the simulation tool in ISE to make sure that 

the control finite state machine was switching states correctly 

and the timing was on. Since the data was going to be 

different for each input of a ‘0’ and a ‘1’, we continuously 

switched between a ‘1’ and a ‘0’ for each of the 40-bits. To 

tell if the timing was correct, we set the top level design side 

by side with the simulation to make sure that it was sending 

the signals and switching states correctly. Once this 

simulation was verified, we could plug the sensor in and test 

it. Had we plugged the sensor in prior to doing this, we could 

have blown the sensor if the timing was off. We expected 

there to be issues with the timing and this is where debugging 

was a must.  



IV. RESULTS 

For the results, we obtained the simulation of the whole 

design. These results were exactly what we had expected. It 

was difficult to figure out how to obtain these results, but it 

was done through understanding the testbenches for an 

’inout’ signal data input. Learning more about bidirectional 

buses and how to implement them in a testbench helped this 

part. Also, understanding how a finite state machine 

operates and what to implement this in a testbench helped. 

Once you make sure you input the correct data to begin the 

process of the state machine it was easy to see. Only one 

thing was going to possibly unexplainable. If the sensor was 

not sending out the correct data, then we would not be able 

to tell what the issue was. Luckily the sensor we had was 

perfectly functioning and the answers that displayed on the 

seven-segments correlated well with the actual temperature 

and humidity. The good part was that everything was 

visually seen in the simulation. This allowed us to know if it 

was going to work well before we programmed the board 

and tested it. The only possibility of an issue when 

programming the board was to make sure that the 

constraints file was correctly written. Once the constraints 

file was done, the only thing left was to test it. The 

simulation played perfectly on the board, just as expected. 

The results of this data can be seen in figures 8 and 9. This 

shows the states changing at the correct times as the data 

coming in oscillates from being a ‘1’ and a ‘0’. 

 
Figure 8: First Simulation Piece 

 
Figure 9: Second Simulation Piece 

V.  CONCLUSIONS 

 

 

This project really made it clear on how to implement 

VHDL coding for an external sensor. This gave a clear 

understanding on how to bring a sensor, meant for a 

different language and board, to VHDL and an FPGA board. 

It really helped give a better understanding of debugging 

and what to look for when it comes to debugging via 

simulation model. This project could have been improved 

had the timing been right on down to the nanosecond, but it 

was close enough to be within the range of uncertainty 

allotted for such sensor. Could have also been improved if 

the sensor was a higher quality sensor.  Every issue that we 

ran into was solved through help from the teacher or self-

taught. 
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