
TH Logger

List of Authors: Robert Grooms, Matthew Harkness, Yunhao Chen, Keith Inch

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: rcgrooms@oakland.edu , mdharkne@oakland.edu , ychen2@oakland.edu, kjinch@oakland.edu

Abstract— The project summarized here is a

temperature and humidity reader. The sensor we

used was a humidity and temperature Sensor -

RHT03 that was purchased through sparkfun.com.

The output of the sensor is a single wire bidirectional

digital interface that outputs a forty bit stream after

is receives a start bit from the control board. The

forty bit stream is then decoded through various

modules we built into the top module to produce a

display of the temperature or humidity that is

selected by the switches on the Digilent FPGANexys

4 DDR Artix-7 FPGA: Trainer Board.

I. INTRODUCTION

 The scope of this project was to make a field-

programmable gate array, FPGA, board to read and receive

data from an external temperature and humidity sensor. The

sensor used was the RHT03 sensor, built by Maxdetect. The

motivation was from the idea that the weather channel never

has the exact temperature or humidity for where you are at

that exact moment. The people who want to know exactly

what to wear for that day, without actually going outside,

would use this. All the specifications of this RHT03 sensor

are shown in Figure 1.

[2]. Figure 1: Specifications of RHT03 Sensor

This project directly utilizes the premise of several

labs that were conducted in class. This project covers many

topics from the course material, such as, finite state

machines, a bidirectional bus, counters, registers, and a

serializer. It also covers a topic that was not covered, which

is a direct binary to seven-segment display convertor. This

project can be applied to the everyday life of people who

want to start there day with a current weather update.

Although it cannot predict weather changes, it is useful

enough to start your day.

II. METHODOLOGY

The RHT03 sensor was designed for a different language

of coding, C, and a different board. This created issues with

the timing of reading the data and many different techniques

in VHDL had to be used to implement this sensor. When

outlining the premise of this circuit design, we originally

began with a different style of a design using a random

access memory emulator. This was scraped do to the way

this sensor needed to be initiated and read from. This

changed into using many different counters and a main

finite state machine to run this process. RHT03 works on a

timing basis and outputs 40 bits of data, which takes a long

time, compared to the speed of modern computers. To get

this sensor to begin its process of reading the temperature

and humidity, the FPGA board must send a start signal.

Since this sensor sends and receives data through just one

wire, a bidirectional bus was necessary.

 This bidirectional bus sends and receives its data

directly into our finite state machine. This main finite state

machine is essentially the control unit. This finite state

machine outputs a one into the bus while the tri-state buffer

going out is enabled and the input buffer is disabled, which

is also a signal sent from this main FSM. Once this initiation

signal is sent, the board pulls low, by sending a ‘0’, for ten

milli-seconds, and then the board pulls high, by sending a

‘1’, for twenty microseconds. The finite state machine keeps

track of this time by sending out a count signal, ‘1’, to the

first and second counter. These are integer counters based

on the period, 10 nanoseconds, of the 100 MHz input clock.

After this happens, the sensor takes over and the input

buffer is then enabled for the rest of the process, while

disabling the output buffer. This is beginning process is

shown in Figure 2.

[2]. Figure 2: Initialization of RHT03

 Once the sensor takes over, the finite state machine

must interpret what the sensor is sending into the board.

After the second counter finished, the finite state machine

must wait for the data coming in to output a ‘0’. The state

machine must keep count for 80 microseconds and then look

for when the data coming is a ‘1’. The FSM then clears and

utilizes the same 80 microsecond counter then looks to see

if the data coming into the state machine is a ‘0’. Once the

finite state machine recognizes its low state, it waits until

the data goes high again. After all this, the actual data, to be

collected, begins to be documented.

 For this sensor, it is all based on time of how long

the data coming in stays high. If the data coming in stays

high for only 26 microseconds, then the output is a ‘0’,

shown in Figure 3. If it stays high for 70 microseconds, the

data being read is a ‘1’, shown in Figure 4. To keep track of

this count, an integer counter is used based upon the

frequency of the input clock and how long each clock tick

period is. The initial counter is counted up to 26

microseconds and then the finite state machine checks to see

if the data has gone low or is still high. When it is low at

this point, the finite state machine shifts in a ‘0’ into the 40-

bit register, which is also enabled at the same time. This

then initializes our 40-bit counter to keep track of all the bits

coming in. If instead the data coming in was a ‘1’ after the

26 microsecond counter, it enters another counter which

counts up to 44 microseconds, to meet the 70 microseconds

need to be a ‘1’. There is a fail safe after this point to check

if the data is still high or has gone low. If the data has gone

low, then the finite state machine enables and shifts in a ‘0’.

If it is still high, then the data being shifted in is a ‘1’. The

main finite state machine explained can be seen in the ASM

form in Figure 6. This then goes to the 40-bit counter to

keep track of all the bits coming in to tell when the process

has stopped. Once all the bits are accounted for, there is a

“swait” state that continuously loops around until the start

button is pressed again to start the process all over again.

[2]. Figure 3: Detecting a ‘0’

[2]. Figure 4: Detecting a ‘1’

 Once all this data is collected and output from the

register, a signal is used to separate the 40-bits into two 16-

bit sections and an 8-bit section. The 40-bit output consists

of bits 39 down to 24 being the reading for the relative

humidity. The next 16-bits, 23 down to 8, is the temperature

reading. The last 8-bits is the check sum, which is the first

32-bits added together to make sure that the output is

correct. The 8-bit output for the check sum is sent and

displayed on the first 8 LED’s on the board. Using the

branches of the signal “dataout,” the relative humidity and

temperature bits are sent into their respective 16-bit register.

The output of the two registers are then sent through a mux

which allows us to toggle between reading the temperature

and humidity through “sw<0>” on the board. Since this

output is in binary, there had to be a way to convert this

binary output into their respective seven-segment codes.

The decoder, while simple in theory, was in fact

quite substantial, as instead of creating a binary-to-bcd

converter, we found it simpler to write select statements for

each possible input, and for each of the digits. First off, the

sensors data sheet informed us that if the reading was

negative, then the 16th bit would be a one, and the other 15

bits would be displayed the same. This made our job a bit

simpler as we would not need to correct for the 1s or 2s

compliment. So a simple statement was written to check for

a value of the 16th bit and set the value of that display to be

a dash if so. For the remaining digits we only looked at the

remaining 15bits, so as not to have to double our workload.

Being that the sensor could only read up to 80 C or

100% Humidity, we saw no reason to exceed a reading of

99.9, which would be output by the sensor as 999, and as a

result only wrote statements up to 1024, or the 11th bit. It

seemed like an inefficient sensor design to send 16 bits

when only 12 would be relevant (11 plus the “negative”) but

regardless. So select statements were written for each of the

3 digits given every possible input up to 999 (or

“000001111100111”), and all others were set to display a

dash. Then another bit was added to the 7bit outputs for

each so that a decimal point could be added onto the second

digit to handle our division by 10.

Once the converter finds every possibility and

converts this 16-bits, it outputs four 7-bit signals. Each

output has its purpose in depicting what and there to display

each number. One signal is for the ones place, one for the

tens place, one for the hundreds place, and one just in case

the temperature reads a negative number. Since this input to

the converter is a large decimal number, the sensor must

divide by ten to calculate the actual reading. We did this by

always setting the tens place seven-segment display to

having the decimal point on. This made the coding easier for

not having to actually compute this in code. The four 7-bit

signals are sent into a multiplexer, which is controlled by

the serializer finite state machine, shown in Figure 5. This

code we obtained from Dr. Llamocca [1]. This state

machine initializes a counter, a decoder, and the

multiplexer. The idea of this is to quickly enable each

seven-segment display, while displaying each output of the

multiplexer. The finite state machine uses the counter to

cycle through the mux and the decoder so quickly that the

human eye cannot tell that they are not actually all on at

once. This serializer had to be used because the FPGA board

does not allow the user to display each output separately on

each display and turn them on at the same time [1]. To show

how all these components interact with each other, the top-

level design is shown in Figure 7.

Figure 5: FSM of the Serializer in ASM form

Figure 6: Main FSM in ASM form

Figure 7: Top-Level Circuit Design

III. EXPERIMENTAL SETUP

To make sure that this was functioning before we hooked

up the sensor, we made a testbenh using ISE. We ran this

testbench through the simulation tool in ISE to make sure that

the control finite state machine was switching states correctly

and the timing was on. Since the data was going to be

different for each input of a ‘0’ and a ‘1’, we continuously

switched between a ‘1’ and a ‘0’ for each of the 40-bits. To

tell if the timing was correct, we set the top level design side

by side with the simulation to make sure that it was sending

the signals and switching states correctly. Once this

simulation was verified, we could plug the sensor in and test

it. Had we plugged the sensor in prior to doing this, we could

have blown the sensor if the timing was off. We expected

there to be issues with the timing and this is where debugging

was a must.

IV. RESULTS

For the results, we obtained the simulation of the whole

design. These results were exactly what we had expected. It

was difficult to figure out how to obtain these results, but it

was done through understanding the testbenches for an

’inout’ signal data input. Learning more about bidirectional

buses and how to implement them in a testbench helped this

part. Also, understanding how a finite state machine

operates and what to implement this in a testbench helped.

Once you make sure you input the correct data to begin the

process of the state machine it was easy to see. Only one

thing was going to possibly unexplainable. If the sensor was

not sending out the correct data, then we would not be able

to tell what the issue was. Luckily the sensor we had was

perfectly functioning and the answers that displayed on the

seven-segments correlated well with the actual temperature

and humidity. The good part was that everything was

visually seen in the simulation. This allowed us to know if it

was going to work well before we programmed the board

and tested it. The only possibility of an issue when

programming the board was to make sure that the

constraints file was correctly written. Once the constraints

file was done, the only thing left was to test it. The

simulation played perfectly on the board, just as expected.

The results of this data can be seen in figures 8 and 9. This

shows the states changing at the correct times as the data

coming in oscillates from being a ‘1’ and a ‘0’.

Figure 8: First Simulation Piece

Figure 9: Second Simulation Piece

V. CONCLUSIONS

This project really made it clear on how to implement

VHDL coding for an external sensor. This gave a clear

understanding on how to bring a sensor, meant for a

different language and board, to VHDL and an FPGA board.

It really helped give a better understanding of debugging

and what to look for when it comes to debugging via

simulation model. This project could have been improved

had the timing been right on down to the nanosecond, but it

was close enough to be within the range of uncertainty

allotted for such sensor. Could have also been improved if

the sensor was a higher quality sensor. Every issue that we

ran into was solved through help from the teacher or self-

taught.

REFERENCES

[1]. VHDL Coding Tutorial- Daniel Llamocca

http://www.secs.oakland.edu/~llamocca/VH

DLforFPGAs.html

[2]. Liu, Thomas. "Digital Relative Humidity & Temperature
Sensor RHT03." Humiditycn. MaxDetect Technology
Co., Ltd.
Web.14,Apr.2016.<https://dlnmh9ip6v2uc.cloudfront.net/
datasheets/Sensors/Weather/RHT03.pdf>.

