Implementation of Hyperbolic
CORDIC with AXI Full Interface

Project submitted by: Sagar Vaidya
Electrical and Computer Engineering Department
School of Engineering and Computer Science
Oakland University, Rochester, Ml
e-mail: sagarvaidya@oakland.edu

CORDIC

* CORDIC — COORDINATE ROTATION DIGITAL COMPUTER

e Basic CORDIC algorithms —
* Circular CORDIC
* Linear CORDIC
* Hyperbolic CORDIC

* Hyperbolic CORDIC — Used to compute hyperbolic functions in
efficient and fast way

Introduction

 Basic hyperbolic CORDIC algorithm is a fixed-point architecture with
an expanded range of convergence and a scale-free fixed-point
hardware

* It can be used in powering architecture generally that takes high cost
of computation where FPGAs can be a solution if designed efficiently.

* This project mainly focuses on design of a hyperbolic CORDIC design
and verification.

Methodology

* This is extension to the original CORDIC equations that allows for the
computation of hyperbolic functions, where i is the index of the
iteration (i =1, 2, 3, ...)

* The following iterations must be repeated to guarantee convergence:
1=4,13,40, ..,k 3k+1

* Below are the equations for hyperbolic CORDIC -
Xy =4 - f)}:-:[-E"'

Yisr = Vi - G2
s = 2+ 66, 6 = tanh™(27)

Rotation: 6, = +11if z; < 0; =1, 0therwise
Vectoring: §; = +11f x;y; 2 0; =1, otherwise

Methodology contnd.

* Depending on the mode of operation, the quantities X, Y and Z
converge to the following values, for sufficiently large N —

Rotation Mode Vectoring Mode

Xy = Ap(x;c0shzy + y;5inhz;) X = Ay ’Iiz - ¥

Ya = Ap(yicoshz; + x;sinhz;) _
Ya =0

=0
zn z, = 2, + tanh™(y,/x,)
A, <[, V1 =272 (this includes the repeated iterations i = 4,13,40,...,). For N o, A, = 0.8

* With a proper choice of the initial values x1, y1, z1 and the operation
mode, the above functions can be directly computed.

HARDWARE BLOCK DIAGRAM

Xin

done

L
o |
“ = > :
' # .
|"wr ——> 5 XYZ "
I . "
“ = !
Pt .
_ I
. I
" E] =P "
| I
“ Z_ - N R |
] m |v. ﬂ_ Fil] Bd “
| 3 Bl S g !
_ I
! A N
1 N _
I ~ [[| !
I = & L fr.u !
, nﬂﬂ Walw i "
1 r "
B
_ 0 [
_ .n/\.u
1 s " N
I
o) I
" |—V0| I
I . =
! x> 3
=
“ g S
1
NN ‘ |
] ra k= o L2 “
1
! 3 _
_ I
I - .
S ey N w i .
n./. s | !
" = \\u “
= A i
= } |
“ “ "
= A4 .
I
P8 :
1 e .
1 [_
1 3] ol - ..m__ "
" !] — | — 8 I
! ol !
! I
[.
_ I
_ I
_ I
P = 5d A !
| = | y '
NS SN w-J 8 "
n/- o r/_ g (e iu le ey Fu I
i =] + % !
_ o L2
! =t
! r o= :
" b ~—> I
_ I
| E* ./JV.“
! 20
E

CONTROL DIAGRAM

Y(19) xnor X(19)
* This control diagram depicts mode
selection of the hyperbolic CORDIC 2(15)

based on assignment of input data in
the word

. . Mode (r or v) 3
* Vectoring and Rotating modes are ’

selected based on MUX inputs

FSM

* FSM implements 16 iterations, though
starting point is the 15t iteration

 [terations 4 and 13 are repeated

* When iteration is #4 or #13, we go back
to the same state

* When iteration is #15, we go back to the
first state

« This can be extended to implemented n
number of operations, in that case, it
needs to be repeating for 4, 13, 40, ..., k,
3k+1

_wmyz =1
sz |
y L d
E=1 -
-_'!'
=d 0, iziet |
- 8L
=3 5
E=1]-
47'31' i=i+1
S4 1
1 w
E=1 |‘ .
/ 0 [i=i+1
=5 1
L d
dons =1 l

BLOCK DIAGRAM

This is the block design that is
generated in Vivado project by
importing AXI interface IP
generated (mycordicfull) and
Zybo board

_

1

1st_ps7_0_100M

vovedl syne ok
ext reset in

A _reset in
mb_debug sys 1

dom locked

mb_reset

bes struct reset|00f
penpheral reset|00]
IMRICONNRCT_aresein 00|

pesiphéral aresein|00f

axi_smc

processing system7 0

et M_AXLGPO_ACLK 7YN()‘

MOIO_ETHERNET 2 o]

E,‘-f- seong N

MW Moo Ax +;f;—
[B ‘

ack
L{ arasetn x

AXI SmartConnect

T { pbR

oor 4|}
Fecen 10 + |

SO0D + "
useinD.0 4 ||

M A GPO 4 13
TTCO WAVEQ OUT =
TTCO, WAVE! OUT =
TTCOWAVE2 OUT =

FCLK CLKD |

{D AXED IO

mycordicfull 0

4 500 A0

FOLK RESETON Ol

300 _ax_acik
q $00_axw_aresatn
\
mweordiciull v

10 {Pre-Producton)

SOFTWARE ROUTINE

Software routine is implemented in SDK to verify the functionality of the design on Zybo board

Steps involved are as below —

* Initialize base address based on AXI base address

» Write first set of input data using AXI interface write API defined in the design

This includes writing 2 words sequentially

Add a small delay to process the data

Read 2 words using AXI interface read APl defined in the design

Repeat these steps for additional sets of inputs and outputs

Build the SDK, connect the board and run on the hardware to see the output in serial console

SIMULATION OF AXI FULL INTERFACE

* Generated AXl interface is then simulated in Vivado by adding the
testbench for simulation that uses AXI read/write APIs on the
input/output dataset

* Dataset
Input Data Output Data
An=0.8 X0 y0 20 xN yN zN
M=0 0 (1/2An)2800 (ni/6)2182 (0.273927)1188 |(0.570119)247C
(1/2An)2800 (-pi/3)BCFA |(-0.624684)D806| (0.800143)3335
M=1 (0.9)3999 (0.7)2CCC (-0.9)(C667) | (0.452548)1CF6 0 (0.139721)08F1
(0.5)2000 (0.4)1999 5 (0.24)0F5C 0 (0.198612)0CB6

SIMULATION RESULTS

emectar AZ2Hra P VR

¥ mipsoedeul [CCU S e Stmesta ryecngiatul g Vvado 20151 SR

wndw lwewm Yew fno Hep Sprdhes Ol el

¢ Horom W - =

[}

A g

|
T

~ SIMULATION

nsiruati: £

“ INFLEMENTATE
v IMNEENTATION LEIAEN TATIN

 Benimpemenatian

als

~ P

mezadiculieor - Wk 20181 x [T —

Bl Pl it mncoed eyl - Ve 20T o=

wndw Lgn few BE Hp
B o2 E H ok ow 0 o= v E <]

He BT Bow [ods ROAG Mnoow L

B e Symiteds e

: s ~) » B8 T ¥OWoe o 3w - X e vewilnot v
~ PROJECT MANAGER a1 ~ "
5 th myramdic Sehavwedg FROIECT MAHAGER b mycordic_beha. meig
Sutings
G oMo o8 e Mo i kd o W SOHIH = e &

P patsiog T weataing

~ IR ~ ININTEGRATOR

creme Bock Deagn
~ SIMULATICH ¥ SIMULATICN

#un Sm.lson fun it
~ AT A

3 OoenBascratzd Desan

~ IR
B e

> Gensmmenze: Desgn

~ MATTATIO

¥ Buninglemematio

|~ pRoGRew annnFG |

I |~ PRoGEAw aRD G

Rotating Mode

Vectoring Mode

. Problems «|Tasks & Console []Properties E SDK Terminal &

Connected to COMb at 115200
AXI4-Full CORDIC Peripheral: Testd

Peripheral: Base address is Ox7AADD0OOD

Set1 Data Received (QIR) is 0x122725C6
Set1 Data Received (Q|R) is 0x00000000
Set2 Data Received (QJR) is 0xD6973507
Set2 Data Received (Q|R) is Ox00000000
Set3 Data Received (QIR) is Ox1DFB0000
Set3 Data Received (Q|R) is Ox000008EB
Set4 Data Received (QIR) is OxOFE70000
Set4 Data Received (QIR) is OxQ0000CAD

SDK Program Output on HW

This verifies that the output
of the hardware hyperbolic
CORDIC design and the
calculated output in the above
dataset match with very little
deviation

CONCLUSION

* Designing a hyperbolic CORDIC hardware software interface needs
good mathematics and electronics knowledge

* These mathematical operators and its VHDL implementation is useful
in different applications, such as computing (x*y) powering formulae,
sinh, cosh, tanh of the given angles, logarithmic computations and
many more

 Components implemented in VHDL are generic and can be adapted
easily to any application listed but not limited to the above ones.

REFERENCES

[1] Diqital Library - Arithmetic Cores (oakland.edu)

2]
https://moodle.oakland.edu/pluginfile.php/7667929/mod_resourc

e/content/5/Notes%20-%20Unit%203.pdf

[3] Circular CORDIC implementation with AXI Full interface from
Lab 3 assignment

https://www.secs.oakland.edu/~llamocca/arithcores.html
https://moodle.oakland.edu/pluginfile.php/7667929/mod_resource/content/5/Notes%20-%20Unit%203.pdf

